Abstract

The group index and its lineshape parameters of a relatively weak double-resonance probe pulse (signal) propagating through an open doubly driven M-type five-level atomic system are analytically formulated. It is shown for the first time, to our knowledge, that the group velocity status of the signal can be altered (between superluminal and subluminal propagation) by the combined effect of atomic coherence and linear AC Stark shift through coherent coupling. The distinct feature in this scheme is that, although it does not rely on electromagnetically induced transparency, a double-switching effect (i.e., from superluminal to subluminal and vice versa) is observed with negligible absorption/gain at two different frequency regimes.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Switching from subluminal to superluminal light propagation via a coherent pump field in a four-level atomic system

Shang-qi Kuang, Ren-gang Wan, Jun Kou, Yun Jiang, and Jin-yue Gao
J. Opt. Soc. Am. B 26(12) 2256-2260 (2009)

Phase controlled subluminal and superluminal light propagation in double quantum wells

Mostafa Sahrai, Mozhgan Momeni-Demne, and Jafar Poursamad
J. Opt. Soc. Am. B 32(6) 1139-1145 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription