Abstract

A tunable nor gate based on the Kerr effect in silicon-rod-based photonic crystals is presented. The proposed gate consists of two-dimensional photonic crystal add–drop filters with wavelength-selective reflector cavities, which are aligned in series with each other. The main feature of this structure is the enhancement of nonlinear phenomena caused by strong light localization in the photonic crystal nanocavities. Because of this feature, the designed nor gate can control the amount of dropped probe signal light and change the gate output. The operation of the proposed gate is investigated numerically by using the finite-difference time domain method. The results reveal that the power levels of 0, 1, and uncertain states can be changed by appropriate adjustment of the probe signal frequency.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Fraga, J. W. M. Menezes, M. G. Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on a asymmetric nonlinear directional coupler,” J. Opt. Commun. 262, 32–37 (2006).
    [CrossRef]
  2. K. Igarashi and K. Kikuchi, “Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 14, 551–565 (2008).
    [CrossRef]
  3. Y. D. Wu, T. T. Shih, and M. H. Chen, “New all-optical logic gates based on the local nonlinear Mach–Zehnder interferometer,” Opt. Express 16, 248–257 (2008).
    [CrossRef]
  4. D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
    [CrossRef]
  5. H. Soto, C. A. Diaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14, 498–500 (2002).
    [CrossRef]
  6. A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436 (2005).
    [CrossRef]
  7. J. W. M. Menezes, W. B. Fraga, A. C. Ferreira, K. D. A. Saboia, A. F. G. F. Filho, G. F. Guimarães, J. R. R. Sousa, H. H. B. Rocha, and A. S. B. Sombra, “Logic gates based in two- and three-modes nonlinear optical fiber couplers,” Opt. Quantum Electron. 39, 1191–1206 (2007).
    [CrossRef]
  8. K. S. Choi, Y. T. Byun, S. Lee, and Y. M. Jhon, “All-optical OR/NOR bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers,” J. Korean Phys. Soc. 56, 1093–1096 (2010).
    [CrossRef]
  9. Z. Li and G. Li, “Ultrahigh speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006).
    [CrossRef]
  10. Y.-D. Wu, “All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 11, 307–312 (2005).
    [CrossRef]
  11. E. Yablonovitch, “Photonic bandgap based designs for nano-photonic integrated circuits,” in Proceeding of IEEE Conference on Semiconductor Device Research Symposium (IEEE, 2003), pp. 17–20.
  12. F. Cuesta-Soto, A. Martinez, J. Garcia, F. Ramos, P. Sanchis, J. Blasco, and J. Marti, “All-optical switching structure based on a photonic crystal directional coupler,” Opt. Express 12, 161–167 (2004).
    [CrossRef]
  13. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
    [CrossRef]
  14. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, and L. O’Faolain, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
    [CrossRef]
  15. S. Scholz, O. Hess, and R. Ruhle, “Dynamic cross-waveguide optical switching with a nonlinear photonic band-gap structure,” Opt. Express 3, 28–34 (1998).
    [CrossRef]
  16. P. Andalib and N. Granpayeh, “All-optical ultra-compact photonic crystal AND gate based on nonlinear ring resonators,” J. Opt. Soc. Am. B 26, 10–16 (2009).
    [CrossRef]
  17. K. Fasihi and S. Mohammadnejad, “Highly efficient channel-drop filter with a coupled cavity-based wavelength-selective reflection feedback,” Opt. Express 17, 8983–8997 (2009).
    [CrossRef]
  18. H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express 14, 2446–2458 (2006).
    [CrossRef]
  19. H. Ren, C. Jiang, W. Hu, Mi. Gao, Y. Qu, and F. Wang, “Channel drop filter in two-dimensional triangular lattice photonic crystals,” J. Opt. Soc. Am. A 24, A7–A11 (2007).
    [CrossRef]
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  21. D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: critical issues for all-optical switching,” Phys. Rev. A 72, 013807 (2005).
    [CrossRef]

2010

K. S. Choi, Y. T. Byun, S. Lee, and Y. M. Jhon, “All-optical OR/NOR bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers,” J. Korean Phys. Soc. 56, 1093–1096 (2010).
[CrossRef]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, and L. O’Faolain, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

2009

2008

Y. D. Wu, T. T. Shih, and M. H. Chen, “New all-optical logic gates based on the local nonlinear Mach–Zehnder interferometer,” Opt. Express 16, 248–257 (2008).
[CrossRef]

K. Igarashi and K. Kikuchi, “Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 14, 551–565 (2008).
[CrossRef]

2007

H. Ren, C. Jiang, W. Hu, Mi. Gao, Y. Qu, and F. Wang, “Channel drop filter in two-dimensional triangular lattice photonic crystals,” J. Opt. Soc. Am. A 24, A7–A11 (2007).
[CrossRef]

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

J. W. M. Menezes, W. B. Fraga, A. C. Ferreira, K. D. A. Saboia, A. F. G. F. Filho, G. F. Guimarães, J. R. R. Sousa, H. H. B. Rocha, and A. S. B. Sombra, “Logic gates based in two- and three-modes nonlinear optical fiber couplers,” Opt. Quantum Electron. 39, 1191–1206 (2007).
[CrossRef]

2006

W. B. Fraga, J. W. M. Menezes, M. G. Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on a asymmetric nonlinear directional coupler,” J. Opt. Commun. 262, 32–37 (2006).
[CrossRef]

Z. Li and G. Li, “Ultrahigh speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006).
[CrossRef]

H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express 14, 2446–2458 (2006).
[CrossRef]

2005

D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: critical issues for all-optical switching,” Phys. Rev. A 72, 013807 (2005).
[CrossRef]

Y.-D. Wu, “All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 11, 307–312 (2005).
[CrossRef]

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436 (2005).
[CrossRef]

2004

2002

H. Soto, C. A. Diaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14, 498–500 (2002).
[CrossRef]

1998

Andalib, P.

Blasco, J.

Bogoni, A.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436 (2005).
[CrossRef]

Byun, Y. T.

K. S. Choi, Y. T. Byun, S. Lee, and Y. M. Jhon, “All-optical OR/NOR bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers,” J. Korean Phys. Soc. 56, 1093–1096 (2010).
[CrossRef]

Chen, M. H.

Chen, X.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

Choi, K. S.

K. S. Choi, Y. T. Byun, S. Lee, and Y. M. Jhon, “All-optical OR/NOR bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers,” J. Korean Phys. Soc. 56, 1093–1096 (2010).
[CrossRef]

Corcoran, B.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, and L. O’Faolain, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef]

Cuesta-Soto, F.

Diaz, C. A.

H. Soto, C. A. Diaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14, 498–500 (2002).
[CrossRef]

Ebnali-Heidari, M.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, and L. O’Faolain, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef]

Eggleton, B. J.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, and L. O’Faolain, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef]

Erasme, D.

H. Soto, C. A. Diaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14, 498–500 (2002).
[CrossRef]

Fasihi, K.

Ferreira, A. C.

J. W. M. Menezes, W. B. Fraga, A. C. Ferreira, K. D. A. Saboia, A. F. G. F. Filho, G. F. Guimarães, J. R. R. Sousa, H. H. B. Rocha, and A. S. B. Sombra, “Logic gates based in two- and three-modes nonlinear optical fiber couplers,” Opt. Quantum Electron. 39, 1191–1206 (2007).
[CrossRef]

Filho, A. F. G. F.

J. W. M. Menezes, W. B. Fraga, A. C. Ferreira, K. D. A. Saboia, A. F. G. F. Filho, G. F. Guimarães, J. R. R. Sousa, H. H. B. Rocha, and A. S. B. Sombra, “Logic gates based in two- and three-modes nonlinear optical fiber couplers,” Opt. Quantum Electron. 39, 1191–1206 (2007).
[CrossRef]

Fraga, W. B.

J. W. M. Menezes, W. B. Fraga, A. C. Ferreira, K. D. A. Saboia, A. F. G. F. Filho, G. F. Guimarães, J. R. R. Sousa, H. H. B. Rocha, and A. S. B. Sombra, “Logic gates based in two- and three-modes nonlinear optical fiber couplers,” Opt. Quantum Electron. 39, 1191–1206 (2007).
[CrossRef]

W. B. Fraga, J. W. M. Menezes, M. G. Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on a asymmetric nonlinear directional coupler,” J. Opt. Commun. 262, 32–37 (2006).
[CrossRef]

Gao, M.

Gao, Mi.

Garcia, J.

Ghelfi, P.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436 (2005).
[CrossRef]

Granpayeh, N.

Grillet, C.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, and L. O’Faolain, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef]

Guekos, G.

H. Soto, C. A. Diaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14, 498–500 (2002).
[CrossRef]

Guimarães, G. F.

J. W. M. Menezes, W. B. Fraga, A. C. Ferreira, K. D. A. Saboia, A. F. G. F. Filho, G. F. Guimarães, J. R. R. Sousa, H. H. B. Rocha, and A. S. B. Sombra, “Logic gates based in two- and three-modes nonlinear optical fiber couplers,” Opt. Quantum Electron. 39, 1191–1206 (2007).
[CrossRef]

Hess, O.

Hu, W.

Igarashi, K.

K. Igarashi and K. Kikuchi, “Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 14, 551–565 (2008).
[CrossRef]

Jhon, Y. M.

K. S. Choi, Y. T. Byun, S. Lee, and Y. M. Jhon, “All-optical OR/NOR bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers,” J. Korean Phys. Soc. 56, 1093–1096 (2010).
[CrossRef]

Jiang, C.

Jiang, X.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

John, S.

D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: critical issues for all-optical switching,” Phys. Rev. A 72, 013807 (2005).
[CrossRef]

Kikuchi, K.

K. Igarashi and K. Kikuchi, “Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 14, 551–565 (2008).
[CrossRef]

Krauss, T. F.

Lee, S.

K. S. Choi, Y. T. Byun, S. Lee, and Y. M. Jhon, “All-optical OR/NOR bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers,” J. Korean Phys. Soc. 56, 1093–1096 (2010).
[CrossRef]

Li, G.

Z. Li and G. Li, “Ultrahigh speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006).
[CrossRef]

Li, Z.

Z. Li and G. Li, “Ultrahigh speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006).
[CrossRef]

Marti, J.

Martinez, A.

Meloni, G.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436 (2005).
[CrossRef]

Menezes, J. W. M.

J. W. M. Menezes, W. B. Fraga, A. C. Ferreira, K. D. A. Saboia, A. F. G. F. Filho, G. F. Guimarães, J. R. R. Sousa, H. H. B. Rocha, and A. S. B. Sombra, “Logic gates based in two- and three-modes nonlinear optical fiber couplers,” Opt. Quantum Electron. 39, 1191–1206 (2007).
[CrossRef]

W. B. Fraga, J. W. M. Menezes, M. G. Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on a asymmetric nonlinear directional coupler,” J. Opt. Commun. 262, 32–37 (2006).
[CrossRef]

Mohammadnejad, S.

Monat, C.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, and L. O’Faolain, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef]

Moss, D. J.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, and L. O’Faolain, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

O’Faolain, L.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, and L. O’Faolain, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef]

Pelusi, M. D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, and L. O’Faolain, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Ponzini, F.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436 (2005).
[CrossRef]

Poti, L.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436 (2005).
[CrossRef]

Proietti, R.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436 (2005).
[CrossRef]

Pudo, D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, and L. O’Faolain, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Qu, Y.

Ramos, F.

Ren, H.

Rocha, H. H. B.

J. W. M. Menezes, W. B. Fraga, A. C. Ferreira, K. D. A. Saboia, A. F. G. F. Filho, G. F. Guimarães, J. R. R. Sousa, H. H. B. Rocha, and A. S. B. Sombra, “Logic gates based in two- and three-modes nonlinear optical fiber couplers,” Opt. Quantum Electron. 39, 1191–1206 (2007).
[CrossRef]

Ruhle, R.

Saboia, K. D. A.

J. W. M. Menezes, W. B. Fraga, A. C. Ferreira, K. D. A. Saboia, A. F. G. F. Filho, G. F. Guimarães, J. R. R. Sousa, H. H. B. Rocha, and A. S. B. Sombra, “Logic gates based in two- and three-modes nonlinear optical fiber couplers,” Opt. Quantum Electron. 39, 1191–1206 (2007).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Sanchis, P.

Schares, L.

H. Soto, C. A. Diaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14, 498–500 (2002).
[CrossRef]

Scholz, S.

Shih, T. T.

Silva, M. G.

W. B. Fraga, J. W. M. Menezes, M. G. Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on a asymmetric nonlinear directional coupler,” J. Opt. Commun. 262, 32–37 (2006).
[CrossRef]

Sobrinho, C. S.

W. B. Fraga, J. W. M. Menezes, M. G. Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on a asymmetric nonlinear directional coupler,” J. Opt. Commun. 262, 32–37 (2006).
[CrossRef]

Sombra, A. S. B.

J. W. M. Menezes, W. B. Fraga, A. C. Ferreira, K. D. A. Saboia, A. F. G. F. Filho, G. F. Guimarães, J. R. R. Sousa, H. H. B. Rocha, and A. S. B. Sombra, “Logic gates based in two- and three-modes nonlinear optical fiber couplers,” Opt. Quantum Electron. 39, 1191–1206 (2007).
[CrossRef]

W. B. Fraga, J. W. M. Menezes, M. G. Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on a asymmetric nonlinear directional coupler,” J. Opt. Commun. 262, 32–37 (2006).
[CrossRef]

Soto, H.

H. Soto, C. A. Diaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14, 498–500 (2002).
[CrossRef]

Sousa, J. R. R.

J. W. M. Menezes, W. B. Fraga, A. C. Ferreira, K. D. A. Saboia, A. F. G. F. Filho, G. F. Guimarães, J. R. R. Sousa, H. H. B. Rocha, and A. S. B. Sombra, “Logic gates based in two- and three-modes nonlinear optical fiber couplers,” Opt. Quantum Electron. 39, 1191–1206 (2007).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Topomondzo, J.

H. Soto, C. A. Diaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14, 498–500 (2002).
[CrossRef]

Vujic, D.

D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: critical issues for all-optical switching,” Phys. Rev. A 72, 013807 (2005).
[CrossRef]

Wang, F.

Wang, J.

White, T. P.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, and L. O’Faolain, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef]

Wu, Y. D.

Wu, Y.-D.

Y.-D. Wu, “All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 11, 307–312 (2005).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Photonic bandgap based designs for nano-photonic integrated circuits,” in Proceeding of IEEE Conference on Semiconductor Device Research Symposium (IEEE, 2003), pp. 17–20.

Yao, P.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

Zhang, J.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

Zhao, D.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

Appl. Phys. Lett.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007).
[CrossRef]

Electron. Lett.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y.-D. Wu, “All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 11, 307–312 (2005).
[CrossRef]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, and L. O’Faolain, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

K. Igarashi and K. Kikuchi, “Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 14, 551–565 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Li and G. Li, “Ultrahigh speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343 (2006).
[CrossRef]

H. Soto, C. A. Diaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 14, 498–500 (2002).
[CrossRef]

J. Korean Phys. Soc.

K. S. Choi, Y. T. Byun, S. Lee, and Y. M. Jhon, “All-optical OR/NOR bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers,” J. Korean Phys. Soc. 56, 1093–1096 (2010).
[CrossRef]

J. Opt. Commun.

W. B. Fraga, J. W. M. Menezes, M. G. Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on a asymmetric nonlinear directional coupler,” J. Opt. Commun. 262, 32–37 (2006).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Express

Opt. Quantum Electron.

J. W. M. Menezes, W. B. Fraga, A. C. Ferreira, K. D. A. Saboia, A. F. G. F. Filho, G. F. Guimarães, J. R. R. Sousa, H. H. B. Rocha, and A. S. B. Sombra, “Logic gates based in two- and three-modes nonlinear optical fiber couplers,” Opt. Quantum Electron. 39, 1191–1206 (2007).
[CrossRef]

Phys. Rev. A

D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: critical issues for all-optical switching,” Phys. Rev. A 72, 013807 (2005).
[CrossRef]

Other

E. Yablonovitch, “Photonic bandgap based designs for nano-photonic integrated circuits,” in Proceeding of IEEE Conference on Semiconductor Device Research Symposium (IEEE, 2003), pp. 17–20.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of a three-port channel-drop filter with coupled-cavities-based wavelength-selective reflector.

Fig. 2.
Fig. 2.

Transmission spectra of applied filter with rd=0.055a and Ld=14a.

Fig. 3.
Fig. 3.

Schematic top view of the proposed all-optical nor gate.

Fig. 4.
Fig. 4.

Normalized resonance frequency of point defects versus normalized radii. The curve marked with asterisks is the first transmission peak, and the second transmission peak is shown with open circles.

Fig. 5.
Fig. 5.

Transmission spectrum of two filters having different nanocavities with defect radii of 0.054a and 0.062a, respectively, to show how we select the input frequencies and probe frequency.

Fig. 6.
Fig. 6.

Normalized output of the gate (port D) versus different input intensities for two different cases: (1) when one input signal is applied to the gate (diamonds) and (2) when two simultaneous input signals with equal powers are applied to the gate (asterisks).

Fig. 7.
Fig. 7.

Normalized gate output for three probe signals with different frequencies when fr is 0.3614(a/λ): solid and dotted lines with circles, 0.3613(a/λ) [Δf=0.0001(a/λ)]; solid and dotted lines with triangles, 0.3612(a/λ) [Δf=0.0002(a/λ)]; and solid and dotted lines with asterisks, 0.3611(a/λ) [Δf=0.0003(a/λ)].

Fig. 8.
Fig. 8.

Levels of logical 0, 1, and uncertain margins of this gate for three different fp values [fr=0.3614(a/λ)].

Tables (1)

Tables Icon

Table 1. nor Logic Gate Truth Table Showing Output of Logic Gate (D) as a Function of Probe Signal and Input Signals (A and B)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η|ω=ωres1,2=8k(1cosφ)8k2(1cosφ)+4k(1cosφ)+1,
(Δω2)(Tcavity)=1,

Metrics