Abstract

Silver nanowires were used to enhance stimulated emission of Rhodamine 6G in a liquid random laser. Low-threshold coherent emission from the nanosecond-pulse-pumped random laser was achieved. Surface plasmonic resonance plays a key role in low-threshold operation of this random laser. The results demonstrate the ability of silver nanowires to enhance the stimulated emission, especially when the emission light from the dye molecules is far from the plasmonic resonance peak. Although the random laser shows different emission spectra in different directions, universal properties of strong interaction among multiple modes under different pump power densities were also demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
    [CrossRef]
  2. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38, 10497–10535 (2005).
    [CrossRef]
  3. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
    [CrossRef]
  4. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
    [CrossRef]
  5. S. Chen, J. Shi, X. Kong, Z. Wang, and D. Liu, “Cavity coupling in a random laser formed by ZnO nanoparticles with gain materials,” Laser Phys. Lett. 10, 055006 (2013).
    [CrossRef]
  6. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [CrossRef]
  7. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
    [CrossRef]
  8. R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
    [CrossRef]
  9. X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
    [CrossRef]
  10. T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82, 023824 (2010).
    [CrossRef]
  11. G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
    [CrossRef]
  12. A. Z. Popov and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006).
    [CrossRef]
  13. X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
    [CrossRef]
  14. X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009).
    [CrossRef]
  15. X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11, 1374–1378 (2011).
    [CrossRef]
  16. T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wanget, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11, 4295–4298 (2011).
    [CrossRef]
  17. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
    [CrossRef]
  18. A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
    [CrossRef]
  19. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007).
    [CrossRef]
  20. Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
    [CrossRef]
  21. R. F. Aroca, P. J. G. Goulet, D. S. dos Santos, R. A. Alvarez-Puebla, and O. N. Oliveira, “Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering,” Anal. Chem. 77, 378–382 (2005).
    [CrossRef]
  22. Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2, 165–168 (2002).
    [CrossRef]
  23. L. Gou, M. Chipara, and J. M. Zaleski, “Convenient, rapid synthesis of Ag nanowires,” Chem. Mater. 19, 1755–1760 (2007).
    [CrossRef]
  24. Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
    [CrossRef]
  25. X. D. Zhang and Z. Q. Zhang, “Coherent backscattering of light in a strong localization regime,” Phys. Rev. B 65, 155208 (2002).
    [CrossRef]
  26. B. Davison and J. B. Sykes, Neutron Transport Theory (Oxford University, 1958).
  27. H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
    [CrossRef]
  28. M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
    [CrossRef]
  29. P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

2013

S. Chen, J. Shi, X. Kong, Z. Wang, and D. Liu, “Cavity coupling in a random laser formed by ZnO nanoparticles with gain materials,” Laser Phys. Lett. 10, 055006 (2013).
[CrossRef]

2012

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[CrossRef]

2011

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11, 1374–1378 (2011).
[CrossRef]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wanget, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11, 4295–4298 (2011).
[CrossRef]

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[CrossRef]

2010

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82, 023824 (2010).
[CrossRef]

2009

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009).
[CrossRef]

2008

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
[CrossRef]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[CrossRef]

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
[CrossRef]

2007

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007).
[CrossRef]

L. Gou, M. Chipara, and J. M. Zaleski, “Convenient, rapid synthesis of Ag nanowires,” Chem. Mater. 19, 1755–1760 (2007).
[CrossRef]

2006

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

A. Z. Popov and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006).
[CrossRef]

2005

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38, 10497–10535 (2005).
[CrossRef]

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[CrossRef]

R. F. Aroca, P. J. G. Goulet, D. S. dos Santos, R. A. Alvarez-Puebla, and O. N. Oliveira, “Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering,” Anal. Chem. 77, 378–382 (2005).
[CrossRef]

2004

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef]

2002

Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2, 165–168 (2002).
[CrossRef]

Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
[CrossRef]

X. D. Zhang and Z. Q. Zhang, “Coherent backscattering of light in a strong localization regime,” Phys. Rev. B 65, 155208 (2002).
[CrossRef]

2000

H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[CrossRef]

1999

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

1994

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

1972

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Alvarez-Puebla, R. A.

R. F. Aroca, P. J. G. Goulet, D. S. dos Santos, R. A. Alvarez-Puebla, and O. N. Oliveira, “Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering,” Anal. Chem. 77, 378–382 (2005).
[CrossRef]

Aroca, R. F.

R. F. Aroca, P. J. G. Goulet, D. S. dos Santos, R. A. Alvarez-Puebla, and O. N. Oliveira, “Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering,” Anal. Chem. 77, 378–382 (2005).
[CrossRef]

Asatryan, A. A.

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Boriskina, S. V.

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
[CrossRef]

Botten, L. C.

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[CrossRef]

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38, 10497–10535 (2005).
[CrossRef]

H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Chabanov, A. A.

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Chang, S. H.

H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[CrossRef]

Chen, S.

S. Chen, J. Shi, X. Kong, Z. Wang, and D. Liu, “Cavity coupling in a random laser formed by ZnO nanoparticles with gain materials,” Laser Phys. Lett. 10, 055006 (2013).
[CrossRef]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82, 023824 (2010).
[CrossRef]

Chipara, M.

L. Gou, M. Chipara, and J. M. Zaleski, “Convenient, rapid synthesis of Ag nanowires,” Chem. Mater. 19, 1755–1760 (2007).
[CrossRef]

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[CrossRef]

Christy, R.

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Conti, C.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[CrossRef]

Davidov, D.

A. Z. Popov and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006).
[CrossRef]

Davison, B.

B. Davison and J. B. Sykes, Neutron Transport Theory (Oxford University, 1958).

Dice, G. D.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

dos Santos, D. S.

R. F. Aroca, P. J. G. Goulet, D. S. dos Santos, R. A. Alvarez-Puebla, and O. N. Oliveira, “Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering,” Anal. Chem. 77, 378–382 (2005).
[CrossRef]

Elezzabi, A. Y.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

Fang, W.

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

Feng, N. N.

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
[CrossRef]

Feng, S.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wanget, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11, 4295–4298 (2011).
[CrossRef]

Fujita, K.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11, 1374–1378 (2011).
[CrossRef]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009).
[CrossRef]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
[CrossRef]

Gates, B.

Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2, 165–168 (2002).
[CrossRef]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007).
[CrossRef]

Gopinath, A.

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
[CrossRef]

Gou, L.

L. Gou, M. Chipara, and J. M. Zaleski, “Convenient, rapid synthesis of Ag nanowires,” Chem. Mater. 19, 1755–1760 (2007).
[CrossRef]

Goulet, P. J. G.

R. F. Aroca, P. J. G. Goulet, D. S. dos Santos, R. A. Alvarez-Puebla, and O. N. Oliveira, “Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering,” Anal. Chem. 77, 378–382 (2005).
[CrossRef]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007).
[CrossRef]

Herricks, T.

Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
[CrossRef]

Ho, S. T.

H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kong, X.

S. Chen, J. Shi, X. Kong, Z. Wang, and D. Liu, “Cavity coupling in a random laser formed by ZnO nanoparticles with gain materials,” Laser Phys. Lett. 10, 055006 (2013).
[CrossRef]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Leonetti, M.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[CrossRef]

Li, M.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Liu, D.

S. Chen, J. Shi, X. Kong, Z. Wang, and D. Liu, “Cavity coupling in a random laser formed by ZnO nanoparticles with gain materials,” Laser Phys. Lett. 10, 055006 (2013).
[CrossRef]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82, 023824 (2010).
[CrossRef]

Liu, H.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wanget, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11, 4295–4298 (2011).
[CrossRef]

Lopez, C.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[CrossRef]

Matoba, T.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11, 1374–1378 (2011).
[CrossRef]

Mayers, B.

Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2, 165–168 (2002).
[CrossRef]

Mayers, B. T.

Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
[CrossRef]

Meng, X.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11, 1374–1378 (2011).
[CrossRef]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009).
[CrossRef]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
[CrossRef]

Mujumdar, S.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef]

Murai, S.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11, 1374–1378 (2011).
[CrossRef]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009).
[CrossRef]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
[CrossRef]

Negro, L. D.

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
[CrossRef]

Oliveira, O. N.

R. F. Aroca, P. J. G. Goulet, D. S. dos Santos, R. A. Alvarez-Puebla, and O. N. Oliveira, “Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering,” Anal. Chem. 77, 378–382 (2005).
[CrossRef]

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wanget, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11, 4295–4298 (2011).
[CrossRef]

Peng, X. N.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[CrossRef]

Popov, A. Z.

A. Z. Popov and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006).
[CrossRef]

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[CrossRef]

Reinhard, B. M.

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
[CrossRef]

Ricci, M.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Shan, X.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Shi, J.

S. Chen, J. Shi, X. Kong, Z. Wang, and D. Liu, “Cavity coupling in a random laser formed by ZnO nanoparticles with gain materials,” Laser Phys. Lett. 10, 055006 (2013).
[CrossRef]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82, 023824 (2010).
[CrossRef]

Su, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wanget, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11, 4295–4298 (2011).
[CrossRef]

Su, X. R.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Sun, Y.

Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
[CrossRef]

Sun, Y. G.

Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2, 165–168 (2002).
[CrossRef]

Sykes, J. B.

B. Davison and J. B. Sykes, Neutron Transport Theory (Oxford University, 1958).

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007).
[CrossRef]

Tanaka, K.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11, 1374–1378 (2011).
[CrossRef]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009).
[CrossRef]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
[CrossRef]

Torre, R.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[CrossRef]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Wang, Q. Q.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Wang, Z.

S. Chen, J. Shi, X. Kong, Z. Wang, and D. Liu, “Cavity coupling in a random laser formed by ZnO nanoparticles with gain materials,” Laser Phys. Lett. 10, 055006 (2013).
[CrossRef]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82, 023824 (2010).
[CrossRef]

Wanget, L.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wanget, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11, 4295–4298 (2011).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[CrossRef]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef]

Wu, X.

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

Xia, Y.

Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
[CrossRef]

Xia, Y. N.

Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2, 165–168 (2002).
[CrossRef]

Xu, J. Y.

H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[CrossRef]

Yamilov, A.

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

Yang, Z. J.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Yin, Y.

Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
[CrossRef]

Zaleski, J. M.

L. Gou, M. Chipara, and J. M. Zaleski, “Convenient, rapid synthesis of Ag nanowires,” Chem. Mater. 19, 1755–1760 (2007).
[CrossRef]

Zhai, T.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wanget, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11, 4295–4298 (2011).
[CrossRef]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82, 023824 (2010).
[CrossRef]

Zhang, Q.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Zhang, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wanget, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11, 4295–4298 (2011).
[CrossRef]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82, 023824 (2010).
[CrossRef]

Zhang, X. D.

X. D. Zhang and Z. Q. Zhang, “Coherent backscattering of light in a strong localization regime,” Phys. Rev. B 65, 155208 (2002).
[CrossRef]

Zhang, Z.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Zhang, Z. Q.

X. D. Zhang and Z. Q. Zhang, “Coherent backscattering of light in a strong localization regime,” Phys. Rev. B 65, 155208 (2002).
[CrossRef]

Zhang, Z. S.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Zhou, Y.

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82, 023824 (2010).
[CrossRef]

Zhou, Z. K.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Zong, Y.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
[CrossRef]

Anal. Chem.

R. F. Aroca, P. J. G. Goulet, D. S. dos Santos, R. A. Alvarez-Puebla, and O. N. Oliveira, “Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering,” Anal. Chem. 77, 378–382 (2005).
[CrossRef]

Appl. Phys. Lett.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

A. Z. Popov and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006).
[CrossRef]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
[CrossRef]

Chem. Mater.

L. Gou, M. Chipara, and J. M. Zaleski, “Convenient, rapid synthesis of Ag nanowires,” Chem. Mater. 19, 1755–1760 (2007).
[CrossRef]

Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone),” Chem. Mater. 14, 4736–4745 (2002).
[CrossRef]

J. Phys. A

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38, 10497–10535 (2005).
[CrossRef]

Laser Phys. Lett.

S. Chen, J. Shi, X. Kong, Z. Wang, and D. Liu, “Cavity coupling in a random laser formed by ZnO nanoparticles with gain materials,” Laser Phys. Lett. 10, 055006 (2013).
[CrossRef]

Nano Lett.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11, 1374–1378 (2011).
[CrossRef]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wanget, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11, 4295–4298 (2011).
[CrossRef]

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8, 2423–2431 (2008).
[CrossRef]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007).
[CrossRef]

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2, 165–168 (2002).
[CrossRef]

Nat. Photonics

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[CrossRef]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[CrossRef]

Nat. Phys.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[CrossRef]

Nature

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Phys. Rev. A

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82, 023824 (2010).
[CrossRef]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[CrossRef]

X. D. Zhang and Z. Q. Zhang, “Coherent backscattering of light in a strong localization regime,” Phys. Rev. B 65, 155208 (2002).
[CrossRef]

Phys. Rev. E

H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[CrossRef]

Phys. Rev. Lett.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef]

Other

B. Davison and J. B. Sykes, Neutron Transport Theory (Oxford University, 1958).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Ag nanowire ink in ethanol solvent with concentration of 3.847mg/mL. (b) Extinction of Ag nanowire ink with concentration of 0.1924mg/mL. (c), (d) scanning electron microscopy images of the synthesized Ag nanowires.

Fig. 2.
Fig. 2.

(a) Setup geometry. (b), (c) Measured emission spectra of the random laser for different pump power densities at θ=90°. (d) Output intensity versus the pump power density.

Fig. 3.
Fig. 3.

Measured spectra of the random laser emission at different pump power densities at θ=5°, when the pump power density is (a) above or (b) below 3.88MW/cm2. (c) Output intensity versus pump power density for different coherent peaks. (d) Output intensity of the coherent peak at 573.77 nm versus the pump power density for different emission directions.

Fig. 4.
Fig. 4.

Phase diagrams of maximum relative intensity values of the multiple modes at different pump power densities, with (a) and (c) between wavelengths of 573.77 nm and 580.84 nm, and (b) and (d) between wavelengths of 580.84 nm and 583.41 nm, in different directions.

Fig. 5.
Fig. 5.

Distribution of the electric field intensity normalized by the incoming field near the pure Ag nanowires at the wavelengths of (a) 382 and (b) 532 nm, and the normalized scattered electric field intensity at the wavelengths of (c) 573 and (d) 583 nm.

Metrics