Abstract

We report the results of systematic measurements of the group velocity dispersion (GVD) in chalcogenide glass (ChG) bulk samples, composite ChG fibers, and robust high-index-contrast nanotapers. The composite ChG-polymer fibers are drawn from an extruded multimaterial preform incorporating a thick built-in polymer jacket that is thermally compatible with the ChG used, and the nanotapers are then produced without removing the polymer. We isolate the contributions of material and waveguide GVD to the total dispersion in the nanotapers and support the results with finite-element simulations. These results indicate many possibilities for dispersion engineering and nonlinearity enhancement in all-solid index-guiding ChG fibers stemming from the flexibility of this fiber fabrication methodology.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
    [CrossRef]
  2. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).
  3. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Topics Quantum Elect. 15, 114–119 (2009).
    [CrossRef]
  4. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
    [CrossRef]
  5. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear GeAsSe and GeAsSSe glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002).
    [CrossRef]
  6. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
    [CrossRef]
  7. R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14, 11702–11708 (2006).
    [CrossRef]
  8. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354, 462–467 (2008).
    [CrossRef]
  9. J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).
    [CrossRef]
  10. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer-Verlag, 2007).
  11. A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16, 18524–18534 (2008).
    [CrossRef]
  12. G. Delaizir, J.-S. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibers,” J. Phys. D 42, 095405 (2009).
    [CrossRef]
  13. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
    [CrossRef]
  14. I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72, 1–29 (2001).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  16. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  17. J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  18. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006).
    [CrossRef]
  19. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
    [CrossRef]
  20. B. Dabas and R. Sinha, “Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber,” Opt. Commun. 283, 1331–1337 (2010).
    [CrossRef]
  21. S. A. Ray Hilton, Chalcogenide Glasses for Infrared Optics (McGraw-Hill, 2009).
  22. G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Sci. 3, 349–368 (2012).
    [CrossRef]
  23. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
    [CrossRef]
  24. S. W. Haruna, K. S. Limb, and H. Ahmad, “Investigation of dispersion characteristic in tapered fiber,” Laser Phys. 21, 945–947 (2011).
    [CrossRef]
  25. K. M. Mohsin, M. S. Alam, D. M. N. Hasan, and M. N. Hossain, “Dispersion and nonlinearity properties of a chalcogenide As2Se3 suspended core fiber,” Appl. Opt. 50, E102–E107 (2011).
    [CrossRef]
  26. S. D. Le, D. M. Nguyen, M. Thua, L. Bramerie, M. C. e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19, B653–B660 (2011).
    [CrossRef]
  27. G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform co-extrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
    [CrossRef]
  28. S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
    [CrossRef]
  29. J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).
    [CrossRef]
  30. S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide fiber nano-tapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
    [CrossRef]
  31. P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of mono-mode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
    [CrossRef]
  32. G. Imeshev and M. E. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13, 7424–7431 (2005).
    [CrossRef]
  33. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33, 1336–1338 (2008).
    [CrossRef]
  34. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
    [CrossRef]
  35. T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt. 49, 6236–6238 (2010).
    [CrossRef]
  36. F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion,” Opt. Express 18, 18981–18988 (2010).
    [CrossRef]
  37. W. Burckhardt, “Refractive index and dispersion of glasses with different degrees of linking,” J. Non-Cryst. Solids 50, 173–182 (1982).
    [CrossRef]
  38. W. S. Rodney, I. H. Malitson, and T. A. King, “Refractive index of arsenic trisulfide,” J. Opt. Soc. Am. 48, 633–636 (1958).
    [CrossRef]
  39. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3–5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett. 35, 2907–2909 (2010).
    [CrossRef]
  40. N. Carlie, J. N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82, 053103 (2011).
    [CrossRef]
  41. M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
    [CrossRef]
  42. L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637–7644 (2005).
    [CrossRef]
  43. J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and nonlinear characterizations of chalcogenide photonic crystal fibers,” J. Lightwave Technol. 27, 1707–1715 (2009).
    [CrossRef]
  44. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
    [CrossRef]
  45. S. Shabahang, G. Tao, M. P. Marquez, D. J. Hagan, E. W. Van Stryland, P. J. Delfyett, and A. F. Abouraddy, in preparation (2013).
  46. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Myashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
    [CrossRef]
  47. N. J. Pitt, G. S. Sapsford, T. V. Clapp, R. Worthington, and M. G. Scott, “Telluride glass fibres for transmission in the 8-12 micrometres waveband,” Proc. SPIE 618, 124–129 (1986).
    [CrossRef]
  48. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
    [CrossRef]
  49. M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
    [CrossRef]
  50. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
    [CrossRef]
  51. C. Baker and M. Rochette, “High nonlinearity and single-mode transmission in tapered multimode As2Se3-PMMA fibers,” IEEE Photon. J. 4, 960–969 (2012).
    [CrossRef]
  52. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107–161 (2009).
    [CrossRef]
  53. J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
    [CrossRef]
  54. L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
    [CrossRef]
  55. V. Page and L. Chen, “Measuring chromatic dispersion of optical fiber using time of flight and a tunable multi-wavelength semiconductor fiber laser,” Opt. Commun. 265, 161–170 (2006).
    [CrossRef]
  56. D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
    [CrossRef]
  57. C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring dispersion in single-mode fibers in the 1.1–1.3 μm spectral region—a pulse synchronization technique,” IEEE J. Quantum Electron. 16, 33–36 (1980).
    [CrossRef]
  58. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microwave Theor. Tech. 30, 1497–1503 (1982).
    [CrossRef]
  59. T. M. Kardas and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365 (2009).
    [CrossRef]
  60. N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010).
    [CrossRef]
  61. G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a noval heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009).
    [CrossRef]
  62. http://www.amorphousmaterials.com/ .

2012 (5)

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Sci. 3, 349–368 (2012).
[CrossRef]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform co-extrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[CrossRef]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide fiber nano-tapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
[CrossRef]

C. Baker and M. Rochette, “High nonlinearity and single-mode transmission in tapered multimode As2Se3-PMMA fibers,” IEEE Photon. J. 4, 960–969 (2012).
[CrossRef]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[CrossRef]

2011 (8)

S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[CrossRef]

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).
[CrossRef]

N. Carlie, J. N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82, 053103 (2011).
[CrossRef]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
[CrossRef]

S. W. Haruna, K. S. Limb, and H. Ahmad, “Investigation of dispersion characteristic in tapered fiber,” Laser Phys. 21, 945–947 (2011).
[CrossRef]

K. M. Mohsin, M. S. Alam, D. M. N. Hasan, and M. N. Hossain, “Dispersion and nonlinearity properties of a chalcogenide As2Se3 suspended core fiber,” Appl. Opt. 50, E102–E107 (2011).
[CrossRef]

S. D. Le, D. M. Nguyen, M. Thua, L. Bramerie, M. C. e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19, B653–B660 (2011).
[CrossRef]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[CrossRef]

2010 (8)

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).
[CrossRef]

T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt. 49, 6236–6238 (2010).
[CrossRef]

F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion,” Opt. Express 18, 18981–18988 (2010).
[CrossRef]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[CrossRef]

B. Dabas and R. Sinha, “Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber,” Opt. Commun. 283, 1331–1337 (2010).
[CrossRef]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3–5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett. 35, 2907–2909 (2010).
[CrossRef]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[CrossRef]

N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010).
[CrossRef]

2009 (7)

G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a noval heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009).
[CrossRef]

T. M. Kardas and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365 (2009).
[CrossRef]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and nonlinear characterizations of chalcogenide photonic crystal fibers,” J. Lightwave Technol. 27, 1707–1715 (2009).
[CrossRef]

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107–161 (2009).
[CrossRef]

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Topics Quantum Elect. 15, 114–119 (2009).
[CrossRef]

G. Delaizir, J.-S. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibers,” J. Phys. D 42, 095405 (2009).
[CrossRef]

2008 (3)

2007 (1)

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[CrossRef]

2006 (6)

V. Page and L. Chen, “Measuring chromatic dispersion of optical fiber using time of flight and a tunable multi-wavelength semiconductor fiber laser,” Opt. Commun. 265, 161–170 (2006).
[CrossRef]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
[CrossRef]

R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14, 11702–11708 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006).
[CrossRef]

2005 (2)

2004 (2)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
[CrossRef]

2002 (2)

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear GeAsSe and GeAsSSe glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002).
[CrossRef]

2001 (3)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72, 1–29 (2001).
[CrossRef]

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

1993 (1)

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

1989 (1)

P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of mono-mode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[CrossRef]

1986 (1)

N. J. Pitt, G. S. Sapsford, T. V. Clapp, R. Worthington, and M. G. Scott, “Telluride glass fibres for transmission in the 8-12 micrometres waveband,” Proc. SPIE 618, 124–129 (1986).
[CrossRef]

1985 (1)

L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
[CrossRef]

1984 (1)

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Myashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[CrossRef]

1982 (2)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microwave Theor. Tech. 30, 1497–1503 (1982).
[CrossRef]

W. Burckhardt, “Refractive index and dispersion of glasses with different degrees of linking,” J. Non-Cryst. Solids 50, 173–182 (1982).
[CrossRef]

1980 (1)

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring dispersion in single-mode fibers in the 1.1–1.3 μm spectral region—a pulse synchronization technique,” IEEE J. Quantum Electron. 16, 33–36 (1980).
[CrossRef]

1958 (1)

Abouraddy, A. F.

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Sci. 3, 349–368 (2012).
[CrossRef]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform co-extrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[CrossRef]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide fiber nano-tapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
[CrossRef]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[CrossRef]

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).
[CrossRef]

S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[CrossRef]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[CrossRef]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

S. Shabahang, G. Tao, M. P. Marquez, D. J. Hagan, E. W. Van Stryland, P. J. Delfyett, and A. F. Abouraddy, in preparation (2013).

Aggarwal, I. D.

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
[CrossRef]

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).
[CrossRef]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3–5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett. 35, 2907–2909 (2010).
[CrossRef]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Topics Quantum Elect. 15, 114–119 (2009).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354, 462–467 (2008).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
[CrossRef]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Ahmad, H.

S. W. Haruna, K. S. Limb, and H. Ahmad, “Investigation of dispersion characteristic in tapered fiber,” Laser Phys. 21, 945–947 (2011).
[CrossRef]

Aitken, B. G.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear GeAsSe and GeAsSSe glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002).
[CrossRef]

Alam, M. S.

Anheier, J. N. C.

N. Carlie, J. N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82, 053103 (2011).
[CrossRef]

Arnold, J.

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[CrossRef]

Asobe, M.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

Baker, C.

C. Baker and M. Rochette, “High nonlinearity and single-mode transmission in tapered multimode As2Se3-PMMA fibers,” IEEE Photon. J. 4, 960–969 (2012).
[CrossRef]

Banaei, E.-H.

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[CrossRef]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform co-extrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[CrossRef]

Bashkansky, M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354, 462–467 (2008).
[CrossRef]

Bayindir, M.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[CrossRef]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

Bayya, S.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Benoit, G.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[CrossRef]

Berger, N. K.

N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010).
[CrossRef]

Bernacki, B.

N. Carlie, J. N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82, 053103 (2011).
[CrossRef]

Boussard-Pledel, C.

G. Delaizir, J.-S. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibers,” J. Phys. D 42, 095405 (2009).
[CrossRef]

Brambilla, G.

Bramerie, L.

Brawley, G.

Brilland, L.

S. D. Le, D. M. Nguyen, M. Thua, L. Bramerie, M. C. e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19, B653–B660 (2011).
[CrossRef]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[CrossRef]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[CrossRef]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and nonlinear characterizations of chalcogenide photonic crystal fibers,” J. Lightwave Technol. 27, 1707–1715 (2009).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006).
[CrossRef]

Burckhardt, W.

W. Burckhardt, “Refractive index and dispersion of glasses with different degrees of linking,” J. Non-Cryst. Solids 50, 173–182 (1982).
[CrossRef]

Bureau, B.

G. Delaizir, J.-S. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibers,” J. Phys. D 42, 095405 (2009).
[CrossRef]

Busse, L.

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).
[CrossRef]

Busse, L. E.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Carlie, N.

N. Carlie, J. N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82, 053103 (2011).
[CrossRef]

R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14, 11702–11708 (2006).
[CrossRef]

Chartier, T.

Chen, L.

V. Page and L. Chen, “Measuring chromatic dispersion of optical fiber using time of flight and a tunable multi-wavelength semiconductor fiber laser,” Opt. Commun. 265, 161–170 (2006).
[CrossRef]

Chernov, A. I.

Clapp, T. V.

N. J. Pitt, G. S. Sapsford, T. V. Clapp, R. Worthington, and M. G. Scott, “Telluride glass fibres for transmission in the 8-12 micrometres waveband,” Proc. SPIE 618, 124–129 (1986).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Cohen, L. G.

L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
[CrossRef]

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring dispersion in single-mode fibers in the 1.1–1.3 μm spectral region—a pulse synchronization technique,” IEEE J. Quantum Electron. 16, 33–36 (1980).
[CrossRef]

Costa, B.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microwave Theor. Tech. 30, 1497–1503 (1982).
[CrossRef]

Couzi, M.

Dabas, B.

B. Dabas and R. Sinha, “Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber,” Opt. Commun. 283, 1331–1337 (2010).
[CrossRef]

Dekker, S. A.

Delaizir, G.

G. Delaizir, J.-S. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibers,” J. Phys. D 42, 095405 (2009).
[CrossRef]

Delfyett, P.

Delfyett, P. J.

Deng, D. S.

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[CrossRef]

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).
[CrossRef]

S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[CrossRef]

Desevedavy, F.

Désévédavy, F.

Dianov, E. M.

Dorrer, C.

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72, 1–29 (2001).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Dutton, Z.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354, 462–467 (2008).
[CrossRef]

e Silva, M. C.

Eggleton, B. J.

El-Amraoui, M.

Elliott, S. R.

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer-Verlag, 2007).

Fajardo, J. C.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Fatome, J.

Feng, L.

G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a noval heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009).
[CrossRef]

Feng, X.

Fermann, M. E.

Fink, Y.

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[CrossRef]

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).
[CrossRef]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[CrossRef]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

Finot, C.

Fischer, B.

N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010).
[CrossRef]

Florea, C. M.

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354, 462–467 (2008).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
[CrossRef]

Fortier, C.

French, W. G.

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring dispersion in single-mode fibers in the 1.1–1.3 μm spectral region—a pulse synchronization technique,” IEEE J. Quantum Electron. 16, 33–36 (1980).
[CrossRef]

Fu, L. B.

Gadret, G.

Gaeta, A. L.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Gao, W.

Gay, M.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Gibson, D.

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).
[CrossRef]

Gueguen, Y.

G. Delaizir, J.-S. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibers,” J. Phys. D 42, 095405 (2009).
[CrossRef]

Guo, H.

G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a noval heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009).
[CrossRef]

Hagan, D. J.

S. Shabahang, G. Tao, M. P. Marquez, D. J. Hagan, E. W. Van Stryland, P. J. Delfyett, and A. F. Abouraddy, in preparation (2013).

Harbold, J. M.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear GeAsSe and GeAsSSe glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[CrossRef]

Hart, S. D.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

Haruna, S. W.

S. W. Haruna, K. S. Limb, and H. Ahmad, “Investigation of dispersion characteristic in tapered fiber,” Laser Phys. 21, 945–947 (2011).
[CrossRef]

Hasan, D. M. N.

Haxsen, F.

Hodelin, J.

Homoelle, D.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Horak, P.

Hossain, M. N.

Houizot, P.

Hu, J.

Hudson, D. D.

Ilday, F. O.

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear GeAsSe and GeAsSSe glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002).
[CrossRef]

Imeshev, G.

Jackson, D. A.

P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of mono-mode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[CrossRef]

Jackson, S. D.

Joannopoulos, J. D.

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

Johnson, S. G.

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[CrossRef]

Judge, A. C.

Jules, J. C.

Jung, Y.

Kadwani, P.

Kanamori, T.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Myashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[CrossRef]

Kardas, T. M.

T. M. Kardas and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365 (2009).
[CrossRef]

Kaufman, J. J.

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[CrossRef]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform co-extrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[CrossRef]

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).
[CrossRef]

S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[CrossRef]

Kibler, B.

Kieu, K.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

King, E. A.

G. Delaizir, J.-S. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibers,” J. Phys. D 42, 095405 (2009).
[CrossRef]

King, T. A.

Koch, K. W.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Koizumi, F.

Konov, V. I.

Koukharenko, E.

Kracht, D.

Kubodera, K.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Kung, F. H.

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).
[CrossRef]

Kuriki, K.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[CrossRef]

Le, S. D.

Lenglé, K.

Lenz, G.

Levit, B.

N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010).
[CrossRef]

Li, E.

Liang, X.

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[CrossRef]

Limb, K. S.

S. W. Haruna, K. S. Limb, and H. Ahmad, “Investigation of dispersion characteristic in tapered fiber,” Laser Phys. 21, 945–947 (2011).
[CrossRef]

Lin, C.

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring dispersion in single-mode fibers in the 1.1–1.3 μm spectral region—a pulse synchronization technique,” IEEE J. Quantum Electron. 16, 33–36 (1980).
[CrossRef]

Lobach, A. S.

Lu, M.

G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a noval heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009).
[CrossRef]

Lucas, P.

G. Delaizir, J.-S. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibers,” J. Phys. D 42, 095405 (2009).
[CrossRef]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[CrossRef]

Mägi, E. C.

Malitson, I. H.

Marquez, M. P.

Mazzoni, D.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microwave Theor. Tech. 30, 1497–1503 (1982).
[CrossRef]

McComb, T. S.

Méchin, D.

Menyuk, C. R.

Merritt, P.

P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of mono-mode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[CrossRef]

Messaad, K.

Messaddeq, Y.

Mohsin, K. M.

Monteville, A.

Morgner, U.

Moss, D. J.

Murugan, G. S.

Musgraves, J. D.

N. Carlie, J. N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82, 053103 (2011).
[CrossRef]

Myashita, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Myashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[CrossRef]

Neumann, J.

Nguyen, D.

Nguyen, D. M.

Nguyen, T. N.

Nguyen, V.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Nguyen, V. Q.

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354, 462–467 (2008).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[CrossRef]

Obraztsova, E. D.

Ohishi, Y.

Orf, N.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[CrossRef]

Ouzounov, D.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Page, V.

V. Page and L. Chen, “Measuring chromatic dispersion of optical fiber using time of flight and a tunable multi-wavelength semiconductor fiber laser,” Opt. Commun. 265, 161–170 (2006).
[CrossRef]

Peng, B.

G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a noval heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009).
[CrossRef]

Petit, L.

N. Carlie, J. N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82, 053103 (2011).
[CrossRef]

R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14, 11702–11708 (2006).
[CrossRef]

Phillips, M. C.

N. Carlie, J. N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82, 053103 (2011).
[CrossRef]

Piracha, M. U.

Pitois, S.

Pitt, N. J.

N. J. Pitt, G. S. Sapsford, T. V. Clapp, R. Worthington, and M. G. Scott, “Telluride glass fibres for transmission in the 8-12 micrometres waveband,” Proc. SPIE 618, 124–129 (1986).
[CrossRef]

Polacchini, C.

Presby, H. M.

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring dispersion in single-mode fibers in the 1.1–1.3 μm spectral region—a pulse synchronization technique,” IEEE J. Quantum Electron. 16, 33–36 (1980).
[CrossRef]

Puleo, M.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microwave Theor. Tech. 30, 1497–1503 (1982).
[CrossRef]

Pureza, P.

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354, 462–467 (2008).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Qiao, H. A.

N. Carlie, J. N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82, 053103 (2011).
[CrossRef]

Radzewicz, C.

T. M. Kardas and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365 (2009).
[CrossRef]

Ray Hilton, S. A.

S. A. Ray Hilton, Chalcogenide Glasses for Infrared Optics (McGraw-Hill, 2009).

Renversez, G.

Richardson, D. J.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[CrossRef]

N. Carlie, J. N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82, 053103 (2011).
[CrossRef]

R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14, 11702–11708 (2006).
[CrossRef]

Richardson, M.

Rochette, M.

Rodney, W. S.

Sanghera, J.

Sanghera, J. S.

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
[CrossRef]

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).
[CrossRef]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3–5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett. 35, 2907–2909 (2010).
[CrossRef]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Topics Quantum Elect. 15, 114–119 (2009).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354, 462–467 (2008).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Sangleboeuf, J.-S.

G. Delaizir, J.-S. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibers,” J. Phys. D 42, 095405 (2009).
[CrossRef]

Sapsford, G. S.

N. J. Pitt, G. S. Sapsford, T. V. Clapp, R. Worthington, and M. G. Scott, “Telluride glass fibres for transmission in the 8-12 micrometres waveband,” Proc. SPIE 618, 124–129 (1986).
[CrossRef]

Saygin-Hinczewski, D.

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[CrossRef]

Scott, M. G.

N. J. Pitt, G. S. Sapsford, T. V. Clapp, R. Worthington, and M. G. Scott, “Telluride glass fibres for transmission in the 8-12 micrometres waveband,” Proc. SPIE 618, 124–129 (1986).
[CrossRef]

Sessions, N. P.

Shabahang, S.

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[CrossRef]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide fiber nano-tapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
[CrossRef]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform co-extrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[CrossRef]

S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[CrossRef]

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).
[CrossRef]

S. Shabahang, G. Tao, M. P. Marquez, D. J. Hagan, E. W. Van Stryland, P. J. Delfyett, and A. F. Abouraddy, in preparation (2013).

Shah, L.

Shapira, O.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[CrossRef]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[CrossRef]

Shaw, L. B.

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011).
[CrossRef]

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).
[CrossRef]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3–5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett. 35, 2907–2909 (2010).
[CrossRef]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Topics Quantum Elect. 15, 114–119 (2009).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354, 462–467 (2008).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
[CrossRef]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Sims, R. A.

Sinha, R.

B. Dabas and R. Sinha, “Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber,” Opt. Commun. 283, 1331–1337 (2010).
[CrossRef]

Skripatchev, I.

Slusher, R. E.

Smektala, F.

Solodyankin, M. A.

Sorin, F.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[CrossRef]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

Stegeman, G.

Stegeman, R.

Stolyarov, A. M.

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Sci. 3, 349–368 (2012).
[CrossRef]

Sudesh, V.

Suzuki, T.

Szpulak, M.

Ta’eed, V. G.

Takahashi, S.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Myashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[CrossRef]

Tao, G.

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide fiber nano-tapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
[CrossRef]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform co-extrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[CrossRef]

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Sci. 3, 349–368 (2012).
[CrossRef]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[CrossRef]

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).
[CrossRef]

G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a noval heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009).
[CrossRef]

S. Shabahang, G. Tao, M. P. Marquez, D. J. Hagan, E. W. Van Stryland, P. J. Delfyett, and A. F. Abouraddy, in preparation (2013).

Tatam, R. P.

P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of mono-mode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[CrossRef]

Tausenev, A. V.

Temelkuran, B.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[CrossRef]

Terunuma, Y.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Myashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[CrossRef]

Thielen, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Thua, M.

Toupin, P.

Traynor, N.

Troles, J.

S. D. Le, D. M. Nguyen, M. Thua, L. Bramerie, M. C. e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19, B653–B660 (2011).
[CrossRef]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[CrossRef]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[CrossRef]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and nonlinear characterizations of chalcogenide photonic crystal fibers,” J. Lightwave Technol. 27, 1707–1715 (2009).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006).
[CrossRef]

Tuniz, A.

Van Stryland, E. W.

S. Shabahang, G. Tao, M. P. Marquez, D. J. Hagan, E. W. Van Stryland, P. J. Delfyett, and A. F. Abouraddy, in preparation (2013).

Vezzoni, E.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microwave Theor. Tech. 30, 1497–1503 (1982).
[CrossRef]

Viens, J.

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

Walmsley, I.

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72, 1–29 (2001).
[CrossRef]

Wandt, D.

Waxer, L.

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72, 1–29 (2001).
[CrossRef]

Webb, W. W.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Wei, W.

G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a noval heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009).
[CrossRef]

West, J. A.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Wilkinson, J. S.

Willis, C. C. C.

Wise, F. W.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear GeAsSe and GeAsSSe glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002).
[CrossRef]

Worthington, R.

N. J. Pitt, G. S. Sapsford, T. V. Clapp, R. Worthington, and M. G. Scott, “Telluride glass fibres for transmission in the 8-12 micrometres waveband,” Proc. SPIE 618, 124–129 (1986).
[CrossRef]

Xu, F.

Zakery, A.

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer-Verlag, 2007).

Zhang, X. H.

G. Delaizir, J.-S. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibers,” J. Phys. D 42, 095405 (2009).
[CrossRef]

Zipfel, W.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[CrossRef]

I. J. Appl. Glass Sci. (1)

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” I. J. Appl. Glass Sci. 3, 349–368 (2012).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
[CrossRef]

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring dispersion in single-mode fibers in the 1.1–1.3 μm spectral region—a pulse synchronization technique,” IEEE J. Quantum Electron. 16, 33–36 (1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic structures by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12, 1202–1213 (2006).
[CrossRef]

IEEE J. Sel. Topics Quantum Elect. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Topics Quantum Elect. 15, 114–119 (2009).
[CrossRef]

IEEE Photon. J. (1)

C. Baker and M. Rochette, “High nonlinearity and single-mode transmission in tapered multimode As2Se3-PMMA fibers,” IEEE Photon. J. 4, 960–969 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear GeAsSe and GeAsSSe glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822–824 (2002).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microwave Theor. Tech. 30, 1497–1503 (1982).
[CrossRef]

Int. J. Appl. Glass Sci. (1)

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).
[CrossRef]

J. Am. Ceram. Soc. (1)

G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a noval heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009).
[CrossRef]

J. Lightwave Technol. (4)

L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
[CrossRef]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and nonlinear characterizations of chalcogenide photonic crystal fibers,” J. Lightwave Technol. 27, 1707–1715 (2009).
[CrossRef]

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Myashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[CrossRef]

P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of mono-mode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989).
[CrossRef]

J. Non-Cryst. Solids (2)

W. Burckhardt, “Refractive index and dispersion of glasses with different degrees of linking,” J. Non-Cryst. Solids 50, 173–182 (1982).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354, 462–467 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (2)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

J. Phys. D (1)

G. Delaizir, J.-S. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibers,” J. Phys. D 42, 095405 (2009).
[CrossRef]

Laser Phys. (1)

S. W. Haruna, K. S. Limb, and H. Ahmad, “Investigation of dispersion characteristic in tapered fiber,” Laser Phys. 21, 945–947 (2011).
[CrossRef]

Nano Lett. (1)

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).
[CrossRef]

Nat. Mater. (1)

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[CrossRef]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[CrossRef]

Nature (2)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[CrossRef]

Opt. Commun. (5)

V. Page and L. Chen, “Measuring chromatic dispersion of optical fiber using time of flight and a tunable multi-wavelength semiconductor fiber laser,” Opt. Commun. 265, 161–170 (2006).
[CrossRef]

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[CrossRef]

T. M. Kardas and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365 (2009).
[CrossRef]

N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010).
[CrossRef]

B. Dabas and R. Sinha, “Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber,” Opt. Commun. 283, 1331–1337 (2010).
[CrossRef]

Opt. Express (9)

S. D. Le, D. M. Nguyen, M. Thua, L. Bramerie, M. C. e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19, B653–B660 (2011).
[CrossRef]

G. Imeshev and M. E. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13, 7424–7431 (2005).
[CrossRef]

R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14, 11702–11708 (2006).
[CrossRef]

A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16, 18524–18534 (2008).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006).
[CrossRef]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[CrossRef]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[CrossRef]

L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637–7644 (2005).
[CrossRef]

F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion,” Opt. Express 18, 18981–18988 (2010).
[CrossRef]

Opt. Lett. (6)

Proc. SPIE (1)

N. J. Pitt, G. S. Sapsford, T. V. Clapp, R. Worthington, and M. G. Scott, “Telluride glass fibres for transmission in the 8-12 micrometres waveband,” Proc. SPIE 618, 124–129 (1986).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Rev. Sci. Instrum. (2)

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72, 1–29 (2001).
[CrossRef]

N. Carlie, J. N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82, 053103 (2011).
[CrossRef]

Other (6)

S. A. Ray Hilton, Chalcogenide Glasses for Infrared Optics (McGraw-Hill, 2009).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer-Verlag, 2007).

S. Shabahang, G. Tao, M. P. Marquez, D. J. Hagan, E. W. Van Stryland, P. J. Delfyett, and A. F. Abouraddy, in preparation (2013).

http://www.amorphousmaterials.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) FTIR transmission spectra for three ChG samples. G1:As2Se3; G2:As2Se1.5S1.5; and G3:As2S3. Each sample is a 10-mm-diameter disc of thickness 2mm. Insets show photographs of the samples; all scale bars are 5 mm. (b) FTIR transmission spectra showing the low-wavelength cutoff for G1, G2, and G3. (c) FTIR transmission spectrum for a 2-mm-thick polymer sample; PES, polyethersulfone.

Fig. 2.
Fig. 2.

Scanning electron microscope (SEM) images of Fiber II (a) full cross section and (b) ChG core/cladding region; and Fiber III. (c) Full cross section and (d) ChG core region. P: Polyethersulfone (PES). G1:As2Se3; G2:As2Se1.5S1.5; and G3:As2S3.

Fig. 3.
Fig. 3.

Fiber axial plastic deformation upon heating in a tapering setup with 5 mm wide uniform heating zone—corresponding to the red rectangle in panel (a). Panels (a) through (e) are transmission optical micrographs that correspond to identical samples (Fiber III, equivalent drawing tension of 40 g) at different temperatures for 40 s. Initial fiber outer diameter is 1 mm. (f) Transmission optical micrograph showing a magnified side image of the intact G1 core inside the PES cladding. The black symmetric outer portions of the cladding in the microscope image result from the curvature of the taper outer surface.

Fig. 4.
Fig. 4.

Dependence of the axial plastic deformation upon heating in a tapering setup (see Fig. 3) on the tension during fiber drawing and tapering time. Each panel is an optical transmission micrograph of a fiber sample with initial fiber outer diameter 1 mm. The tapering temperature is held fixed throughout and the fiber-drawing tension is constant in each column.

Fig. 5.
Fig. 5.

(a) Robust nanotaper with minimum core midway along the sample dmin=400nm. (b) Nanotaper mounted on a glass slide and is fixed using epoxy, after which the facets are polished. (c) SEM micrograph of the nanotaper cross section at the taper mid-point (corresponding to minimum diameter). (d) Higher-magnification SEM micrograph highlighting the ChG core/cladding structure; compare to Fig. 2(b). Note the increase in the apparent ChG cladding size due to smearing of the ChG/polymer interface that occurs during surface polishing in preparation for SEM imaging.

Fig. 6.
Fig. 6.

(a) Fraction of light in the core, cladding, and polymer jacket in a structure corresponding to Fiber II while changing the core diameter for both λ=1.55 and 1.95 μm. The fractions were computed assuming the measured indices given in Table 1 and the ratio of diameters corecladding=13.5, as shown in Fig. 2(b). The polymer jacket was assumed infinite. At larger diameters (not shown), the fundamental mode is mostly confined to the core. (b) Transmission loss of λ=1.55μm laser light in 25 mm long tapers with different diameters—normalized to the transmission in an equal length of non-tapered fiber.

Fig. 7.
Fig. 7.

Setup for measuring β2. S, source; FC, fiber coupler; C, collimator; L, lens; A, attenuator (to increase fringe visibility); OSA, optical spectrum analyzer. Solid lines are single-mode fibers.

Fig. 8.
Fig. 8.

(a) Spectral interference fringes in the output spectrum Io(λ) (note the logarithmic vertical scale) obtained using an OSA (Advantest Q8381A). The sample here is the BK7 bulk cube and the source is amplified spontaneous emission (ASE) from an EDFA (EAU-200-c, IPG Photonics). (b) Fourier transform (FT) of Io(λ). The black dashed box corresponds to the portion filtered out to extract the interference fringes. (c) Filtered spectral power density obtained by taking the inverse FT of (b) and the extracted spectral phase Δφ(λ). (d)–(f) are similar to (a)–(c) except that the source is ASE from a thulium fiber laser, the OSA is Yokogawa AQ6375, and the sample used is a bulk As2S3 disc; see Fig. 1(a), lower-left inset.

Fig. 9.
Fig. 9.

(a) Measured diameter profile along the nanotapers’ axes (Table 3). Only half the length of the tapers are shown. The other half of each profile is a mirror reflection around the midpoint. Diameter ranges corresponding to normal and anomalous GVD are identified. (b) Calculated waveguide β2 for Fiber II at λ=1.55μm and λ=1.95μm for different core diameters. (c) Calculated waveguide β2 as a function of core diameter and wavelength. The two horizontal dashed lines correspond to the wavelengths used in our measurements.

Tables (3)

Tables Icon

Table 1. Measured Bulk Index n and GVD β2 in ps2/km at 1.55 and 1.95 μm Wavelengthsa

Tables Icon

Table 2. Measured (Meas.) and Simulated (Sim.) Fiber GVD β2 at 1.55 μm in ps2/km; Jacket: Polymer Outer Jacket

Tables Icon

Table 3. Measured (Meas.) and Simulated (Sim.) Average GVD β¯2 at 1.55 μm in ps2/km for Fiber-II Nanotapers

Metrics