Abstract

By using coupled-mode analysis, we investigate numerically the extraordinary optical transmission (EOT) of incommensurate metal hole arrays (IMHAs) in the terahertz region to study how the degree of long-range and short-range orders affect EOT. In IMHAs, the holes of one set of metal hole arrays (MHAs) are regarded to work as impurities to the holes of another set of MHAs. Therefore, the transmittance spectra are expected to be significantly modified from those of the constituent MHAs. It is found that the resonance transmission frequencies of IMHAs almost coincide with those of the composite MHAs despite the fact that the surface waves of each MHA are mutually perturbed strongly due to the presence of short-range disorder. This indicates that the presence of long-range order is essential to establish EOT. These observations allow more flexible design of narrow bandpass filters in the terahertz region.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. F. J. Garcia de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  4. J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68201306 (2003).
  5. H. Cao and A. Nahata, “Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures,” Opt. Express 12, 1004–1010 (2004).
    [CrossRef]
  6. F. J. Garcia de Abajo, R. Gomez-Medina, and J. J. Saenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E72016608 (2005).
  7. J. Bravo-Abad, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99203905 (2007).
    [CrossRef]
  8. M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A. Z. Jin, and H. F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23, 486–488 (2006).
    [CrossRef]
  9. F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89, 121115 (2006).
    [CrossRef]
  10. A. Agrawal, T. Matsui, Z. Valy Vardeny, and A. Nahata, “Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays,” J. Opt. Soc. Am. B242545–2555 (2007).
  11. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
    [CrossRef]
  12. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).
  13. F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742–2744 (2004).
    [CrossRef]
  14. J. Henzie, M. Lee, and T. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549–554 (2007).
    [CrossRef]
  15. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. Garcia-Vidal, and L. Martin-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571–9579 (2008).
    [CrossRef]
  16. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
    [CrossRef]
  17. H. F. Ghaemi, T. Thino, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
  18. J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107, 073101 (2010).
    [CrossRef]
  19. A. G. Markelz, A. Roitberg, and E. J. Heiweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000).
    [CrossRef]
  20. M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
    [CrossRef]
  21. M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80, 154–156 (2002).
    [CrossRef]
  22. M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
    [CrossRef]
  23. D. M. Mittleman, M. Gupta, B. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B68, 1085–1094 (1999).
    [CrossRef]
  24. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [CrossRef]
  25. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theor. Tech. 50, 910–927 (2002).
    [CrossRef]
  26. J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
    [CrossRef]
  27. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [CrossRef]
  28. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
    [CrossRef]
  29. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
    [CrossRef]
  30. A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,” J. Opt. Soc. Am. A4, 1970–1983 (1987).
    [CrossRef]
  31. N. Marcuvitz, Waveguide Handbook (Boston Technical, 1964).

2010 (2)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107, 073101 (2010).
[CrossRef]

2008 (2)

2007 (5)

A. Agrawal, T. Matsui, Z. Valy Vardeny, and A. Nahata, “Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays,” J. Opt. Soc. Am. B242545–2555 (2007).

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[CrossRef]

J. Henzie, M. Lee, and T. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549–554 (2007).
[CrossRef]

F. J. Garcia de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

J. Bravo-Abad, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99203905 (2007).
[CrossRef]

2006 (3)

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A. Z. Jin, and H. F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23, 486–488 (2006).
[CrossRef]

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89, 121115 (2006).
[CrossRef]

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
[CrossRef]

2005 (1)

F. J. Garcia de Abajo, R. Gomez-Medina, and J. J. Saenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E72016608 (2005).

2004 (5)

H. Cao and A. Nahata, “Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures,” Opt. Express 12, 1004–1010 (2004).
[CrossRef]

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742–2744 (2004).
[CrossRef]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

2003 (1)

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68201306 (2003).

2002 (3)

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80, 154–156 (2002).
[CrossRef]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theor. Tech. 50, 910–927 (2002).
[CrossRef]

2000 (3)

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[CrossRef]

A. G. Markelz, A. Roitberg, and E. J. Heiweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

1999 (2)

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).

D. M. Mittleman, M. Gupta, B. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B68, 1085–1094 (1999).
[CrossRef]

1998 (2)

H. F. Ghaemi, T. Thino, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1987 (1)

A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,” J. Opt. Soc. Am. A4, 1970–1983 (1987).
[CrossRef]

Agrawal, A.

A. Agrawal, T. Matsui, Z. Valy Vardeny, and A. Nahata, “Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays,” J. Opt. Soc. Am. B242545–2555 (2007).

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[CrossRef]

Baraniuk, R. G.

D. M. Mittleman, M. Gupta, B. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B68, 1085–1094 (1999).
[CrossRef]

Bosserhoff, A.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80, 154–156 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Bravo-Abad, J.

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. Garcia-Vidal, and L. Martin-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571–9579 (2008).
[CrossRef]

J. Bravo-Abad, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99203905 (2007).
[CrossRef]

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[CrossRef]

Brucherseifer, M.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80, 154–156 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Büttner, R.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80, 154–156 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Cao, H.

Cheng, B.-Y.

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A. Z. Jin, and H. F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23, 486–488 (2006).
[CrossRef]

de Leon-Perez, F.

Degiron, A.

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. Garcia-Vidal, and L. Martin-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571–9579 (2008).
[CrossRef]

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89, 121115 (2006).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).

H. F. Ghaemi, T. Thino, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Enoch, S.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Fernandez-Dominguez, A. I.

J. Bravo-Abad, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99203905 (2007).
[CrossRef]

Fischer, B.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[CrossRef]

Fu, J. X.

J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107, 073101 (2010).
[CrossRef]

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

F. J. Garcia de Abajo, R. Gomez-Medina, and J. J. Saenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E72016608 (2005).

Garcia-Vidal, F.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

J. Bravo-Abad, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99203905 (2007).
[CrossRef]

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

Genet, C.

Ghaemi, H. F.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).

H. F. Ghaemi, T. Thino, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Gomez Rivas, J.

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68201306 (2003).

Gomez-Medina, R.

F. J. Garcia de Abajo, R. Gomez-Medina, and J. J. Saenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E72016608 (2005).

Grupp, D. E.

H. F. Ghaemi, T. Thino, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).

Gupta, M.

D. M. Mittleman, M. Gupta, B. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B68, 1085–1094 (1999).
[CrossRef]

Hangyo, M.

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742–2744 (2004).
[CrossRef]

Haring Bolivar, P.

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68201306 (2003).

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80, 154–156 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Heiweil, E. J.

A. G. Markelz, A. Roitberg, and E. J. Heiweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

Helm, H.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[CrossRef]

Henzie, J.

J. Henzie, M. Lee, and T. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549–554 (2007).
[CrossRef]

Hua, Y. L.

J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107, 073101 (2010).
[CrossRef]

Hugonin, J. P.

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
[CrossRef]

Jin, A. Z.

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A. Z. Jin, and H. F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23, 486–488 (2006).
[CrossRef]

Kipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Koch, M.

D. M. Mittleman, M. Gupta, B. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B68, 1085–1094 (1999).
[CrossRef]

Koerkamp, K. J. K.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

Kuipers, L.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

Kurz, H.

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68201306 (2003).

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80, 154–156 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Lalanne, P.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
[CrossRef]

Lee, M.

J. Henzie, M. Lee, and T. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549–554 (2007).
[CrossRef]

Lezec, H. J.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).

H. F. Ghaemi, T. Thino, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, J. Y.

J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107, 073101 (2010).
[CrossRef]

Li, Z. Y.

J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107, 073101 (2010).
[CrossRef]

Li, Z.-Y.

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A. Z. Jin, and H. F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23, 486–488 (2006).
[CrossRef]

Liu, H.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

Marcuvitz, N.

N. Marcuvitz, Waveguide Handbook (Boston Technical, 1964).

Markelz, A. G.

A. G. Markelz, A. Roitberg, and E. J. Heiweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. Garcia-Vidal, and L. Martin-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571–9579 (2008).
[CrossRef]

J. Bravo-Abad, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99203905 (2007).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[CrossRef]

Matsui, T.

A. Agrawal, T. Matsui, Z. Valy Vardeny, and A. Nahata, “Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays,” J. Opt. Soc. Am. B242545–2555 (2007).

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, M. Gupta, B. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B68, 1085–1094 (1999).
[CrossRef]

Miyamaru, F.

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742–2744 (2004).
[CrossRef]

Nagel, M.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80, 154–156 (2002).
[CrossRef]

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Nahata, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[CrossRef]

A. Agrawal, T. Matsui, Z. Valy Vardeny, and A. Nahata, “Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays,” J. Opt. Soc. Am. B242545–2555 (2007).

H. Cao and A. Nahata, “Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures,” Opt. Express 12, 1004–1010 (2004).
[CrossRef]

Neelamani, B.

D. M. Mittleman, M. Gupta, B. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B68, 1085–1094 (1999).
[CrossRef]

Odom, T.

J. Henzie, M. Lee, and T. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549–554 (2007).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

Przybilla, F.

Roberts, A.

A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,” J. Opt. Soc. Am. A4, 1970–1983 (1987).
[CrossRef]

Roitberg, A.

A. G. Markelz, A. Roitberg, and E. J. Heiweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

Rudd, J. V.

D. M. Mittleman, M. Gupta, B. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B68, 1085–1094 (1999).
[CrossRef]

Saenz, J. J.

F. J. Garcia de Abajo, R. Gomez-Medina, and J. J. Saenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E72016608 (2005).

Schall, M.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[CrossRef]

Schotsch, C.

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68201306 (2003).

Segerink, F. B.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theor. Tech. 50, 910–927 (2002).
[CrossRef]

Sun, M.

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A. Z. Jin, and H. F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23, 486–488 (2006).
[CrossRef]

Thino, T.

H. F. Ghaemi, T. Thino, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).

Thio, T.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Tian, J.

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A. Z. Jin, and H. F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23, 486–488 (2006).
[CrossRef]

Uhd Jepsen, P.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[CrossRef]

Valy Vardeny, Z.

A. Agrawal, T. Matsui, Z. Valy Vardeny, and A. Nahata, “Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays,” J. Opt. Soc. Am. B242545–2555 (2007).

van Hulst, N. F.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[CrossRef]

Walther, M.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[CrossRef]

Wolff, P. A.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Yang, H. F.

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A. Z. Jin, and H. F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23, 486–488 (2006).
[CrossRef]

Zhang, D.-Z.

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A. Z. Jin, and H. F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23, 486–488 (2006).
[CrossRef]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Appl. Phys. (1)

D. M. Mittleman, M. Gupta, B. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B68, 1085–1094 (1999).
[CrossRef]

Appl. Phys. Lett. (4)

M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80, 154–156 (2002).
[CrossRef]

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89, 121115 (2006).
[CrossRef]

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742–2744 (2004).
[CrossRef]

Chem. Phys. Lett. (2)

A. G. Markelz, A. Roitberg, and E. J. Heiweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[CrossRef]

Chin. Phys. Lett. (1)

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A. Z. Jin, and H. F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23, 486–488 (2006).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theor. Tech. 50, 910–927 (2002).
[CrossRef]

J. Appl. Phys. (1)

J. Y. Li, Y. L. Hua, J. X. Fu, and Z. Y. Li, “Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films,” J. Appl. Phys. 107, 073101 (2010).
[CrossRef]

J. Opt. Soc. Am. (3)

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999).

A. Agrawal, T. Matsui, Z. Valy Vardeny, and A. Nahata, “Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays,” J. Opt. Soc. Am. B242545–2555 (2007).

A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,” J. Opt. Soc. Am. A4, 1970–1983 (1987).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Nat. Nanotechnol. (1)

J. Henzie, M. Lee, and T. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549–554 (2007).
[CrossRef]

Nat. Phys. (1)

P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2, 551–556 (2006).
[CrossRef]

Nature (3)

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Express (2)

Phys. Rev. (2)

F. J. Garcia de Abajo, R. Gomez-Medina, and J. J. Saenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E72016608 (2005).

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68201306 (2003).

Phys. Rev. B (1)

H. F. Ghaemi, T. Thino, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).

Phys. Rev. Lett. (3)

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

J. Bravo-Abad, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99203905 (2007).
[CrossRef]

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[CrossRef]

Rev. Mod. Phys. (2)

F. J. Garcia de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Science (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

Other (1)

N. Marcuvitz, Waveguide Handbook (Boston Technical, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Arrangement of the apertures of an IMHA for the case of N0=17 and N1=11. Open and solid circles, respectively, represent the apertures of SL0 and SL1. d0, d1, and a are the lattice constant of SL0 and SL1, and the radius of the apertures, respectively.

Fig. 2.
Fig. 2.

Structure factor of IMHA for the case of N0=17 and N1=11. T0i and T1j show the wave vectors of SL0 and SL1, respectively.

Fig. 3.
Fig. 3.

Normalized-to-area transmittances plotted as a function of frequency for h=0.01mm, a=0.1mm, d0=0.5mm, and d1=3d0. Solid, dashed, and dashed–dotted lines represent, respectively, the IMHA, SL0, and SL1 for the case of N0=17 and N1=11.

Fig. 4.
Fig. 4.

Electric field intensities of the IMHA at y=(h+0.1d0) for the transmittance peaks shown by the solid line in Fig. 3: (a)–(c) are the cases of T01, T13, and T14 for the IMHA, respectively; (d) shows the case of T01 for only SL0; and (f) and (e) show the cases of T13 and T14 for only SL1, respectively.

Fig. 5.
Fig. 5.

(a) Arrangement of the apertures of an IMHA that gives priority to the apertures of SL0 whenever the apertures happen to overlap partially for the case of N0=17 and N1=11. (b) Corresponding normalized-to-area transmittances plotted as a function of frequency. Lattice and substrate parameters are the same as in Fig. 3.

Fig. 6.
Fig. 6.

(a) Arrangement of the apertures of an IMHA in which the two layers of single-period hole arrays (SL1) are added to surround the arrangement in Fig. 5(a) for the case of N0=17 and N1=15. (b) Normalized-to-area transmittances as a function of frequency with increasing number of hole frames (SL1) surrounding the IMHA in Fig. 5(a). Lattice and substrate parameters are the same as in Fig. 3. Solid, dashed, dashed–dotted, and two-dot chain lines represent no, one, two, and three surrounding layers, respectively.

Fig. 7.
Fig. 7.

Normalized-to-area transmittances as a function of frequency for varying numbers of apertures of IMHAs that do not have extra surrounding frames. Lattice and substrate parameters are the same as in Fig. 3. Short-dashed, dashed, dashed–dotted, and solid lines represent the cases of (N0,N1)=(11,7), (15, 9), (17, 11), and (21, 13), respectively.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Ei=|k0σ0,
Z0ey×Hi=1β0Ei.
Er=k,σrkσ|kσ+,
Z0ey×Hr=k,σYkσrkσ|kσ+,
Et=k,σtkσ|kσ,
Z0ey×Ht=k,σYkσtkσ|kσ,
r|k1=(γξexαξez)k02πexp{ik(α0xβy+γz)},
r|k2=(αξex+γξez)k02πexp{ik(α0xβy+γz)}.
β={1ξ2;ifξ=α2+β21,iξ21;otherwise.
Ykσ={±β;forTEmode,±1β;forTMmode.
E=jη{Ajηexp(+iqjηy)+Bjηexp(iqjηy)}|jη,
Z0ey×H=jηYjη{Ajηexp(+iqjηy)Bjηexp(iqjηy)}|jη.
Ejη=Ajη+Bjη,
Ejη=Ajηexp(iqjηh)Bjηexp(iqjηh).
(Gjη,jηκjη)Ejη+ζjηGjη,ζEζGjηVEjη=Ijη,
GjηVEjη+(Gjη,jηκjη)Ejη+ζjηGjη,ζEζ=0,
Py=1Z0jηIm(GjηVEjηEjη).
I0=NcosψZ0(k0a)24π,

Metrics