Abstract

The improvement in the performance of an atomic line filter (ALF) under the action of a repump laser is reported in the current experimental work. We address the issue of repumping by including an additional laser coupling the 5S1/2(F=1)5P3/2(F=2,1,0) hyperfine levels whereas the optical filter action is exhibited through a pump–probe laser-induced excited state absorption {5S1/2(F=2)5P3/2(F=3)5D3/2(F=3)} of the Rb87 atom. It is found that the application of the repump mechanism considerably influences the characterizing parameters (i.e., transmittance and width) of the ALF. To optimize the performance of the ALF, it is required to carefully choose the detuning and intensity of the repump laser for a fixed set of pump–probe combination. For this purpose, the effect of systematic change in detuning and intensity of the repump laser on the ALF signal is studied in detail. For example, it is experimentally found that ALF considerably benefits (30%) in transmittance from selective repumping of atoms. It is to be noted that, unlike earlier reports, where the frequency scale of the filter is calibrated with Faby–Perot etalons of comparatively larger free spectral range, the marking is done here with the help of double resonance optical pumping (DROP) signals. The DROP signals, which originate from two-photon coupling within the 5S5P5D hyperfine domain, also act as an indicator of the existing “Radiation Trapping” process in the cascade medium. The current study may help in improving the performance of narrow-bandwidth ALF, which is useful for free space optical communication systems and laser spectroscopy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Arimondo, Coherent Population Trapping in Laser Spectroscopy, Vol. XXXV of Progress in Optics (Elsevier, 1996), p. 258.
  2. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef]
  3. A. M. Akulshin, S. Barriero, and A. Lezamo, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
    [CrossRef]
  4. O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001).
    [CrossRef]
  5. S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
    [CrossRef]
  6. M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, “Picotesla magnetometry with coherent dark states,” Europhys. Lett. 54, 323 (2001).
    [CrossRef]
  7. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).
    [CrossRef]
  8. H. Chen, M. A. White, D. A. Krueger, and C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093–1095 (1996).
    [CrossRef]
  9. C. Fricke-Begeman, M. Alpers, and J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002).
    [CrossRef]
  10. J. Höffner and C. Fricke-Begeman, “Accurate lidar temperatures with narrowband filters,” Opt. Lett. 30, 890–892 (2005).
    [CrossRef]
  11. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express 15, 7940–7949 (2007).
    [CrossRef]
  12. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
    [CrossRef]
  13. H. Chen, C. Y. She, P. Searcy, and E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett. 18, 1019–1021 (1993).
    [CrossRef]
  14. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Alloca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20, 106–108 (1995).
    [CrossRef]
  15. L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
    [CrossRef]
  16. S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, Y. Guangning, P. R. Herczfeld, and D. M. Alloca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett. 20, 1427–1429 (1995).
    [CrossRef]
  17. L. D. Turner, V. Karagnov, P. J. O. Teubner, and R. E. Scholten, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett. 27, 500–502 (2002).
    [CrossRef]
  18. Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theory and experiment for atomic optical filter based on optical anisotropy in rubidium,” Opt. Commun. 282, 4548–4551 (2009).
    [CrossRef]
  19. A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett. 34, 1012–1014 (2009).
    [CrossRef]
  20. Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth,” Opt. Lett. 37, 4059–4061 (2012).
    [CrossRef]
  21. C. Cohen-Tannoudji and A. Kastler, “Optical pumping,” Prog. Opt. 5, 1–81 (1966).
    [CrossRef]
  22. Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theoretical model for an atomic optical filter based on optical anisotropy,” J. Opt. Soc. Am. B 26, 1755–1759 (2009).
    [CrossRef]
  23. S. Liu and Y. Zhang, “Incoherent pump assisted atomic filter based on laser-induced optical anisotropy,” Appl. Opt. 51, 7183–7187 (2012).
    [CrossRef]
  24. H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of Rb87 atoms,” J. Phys. B 44, 055004 (2011).
    [CrossRef]
  25. A. Ray, Md. S. Ali, and A. Chakrabarti, “Optical switching in a Ξ system: a comparative study on DROP and EIT,” Eur. Phys. J. D 67, 78 (2013).
    [CrossRef]
  26. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef]
  27. B. W. Shore, “Coherent manipulation of atoms using laser light,” Act. Phys. Slov. 58, 243–486 (2008).
    [CrossRef]
  28. D. A. Steck, “Rubidium 87 D Line Data,” http://steck.us/alkalidata/rubidium87numbers.1.6.pdf .
  29. M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes and polarizabilities in rubidium,” Phys. Rev. A 69, 022509 (2004).
    [CrossRef]
  30. W. Demtröder, Laser Spectroscopy. Basic Concepts and Instrumentation, 3rd ed. (Springer-Verlag, 2003).
  31. A. Corney, Atomic and Laser Spectroscopy (Oxford, 1977).

2013 (1)

A. Ray, Md. S. Ali, and A. Chakrabarti, “Optical switching in a Ξ system: a comparative study on DROP and EIT,” Eur. Phys. J. D 67, 78 (2013).
[CrossRef]

2012 (2)

2011 (1)

H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of Rb87 atoms,” J. Phys. B 44, 055004 (2011).
[CrossRef]

2009 (3)

2008 (2)

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

B. W. Shore, “Coherent manipulation of atoms using laser light,” Act. Phys. Slov. 58, 243–486 (2008).
[CrossRef]

2007 (1)

2005 (1)

2004 (2)

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes and polarizabilities in rubidium,” Phys. Rev. A 69, 022509 (2004).
[CrossRef]

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[CrossRef]

2002 (2)

2001 (2)

M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, “Picotesla magnetometry with coherent dark states,” Europhys. Lett. 54, 323 (2001).
[CrossRef]

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001).
[CrossRef]

1998 (2)

A. M. Akulshin, S. Barriero, and A. Lezamo, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
[CrossRef]

1996 (1)

1995 (3)

1993 (1)

1991 (1)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

1980 (1)

1966 (1)

C. Cohen-Tannoudji and A. Kastler, “Optical pumping,” Prog. Opt. 5, 1–81 (1966).
[CrossRef]

Abad, M.

Affolderbach, C.

M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, “Picotesla magnetometry with coherent dark states,” Europhys. Lett. 54, 323 (2001).
[CrossRef]

Akulshin, A. M.

A. M. Akulshin, S. Barriero, and A. Lezamo, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

Ali, Md. S.

A. Ray, Md. S. Ali, and A. Chakrabarti, “Optical switching in a Ξ system: a comparative study on DROP and EIT,” Eur. Phys. J. D 67, 78 (2013).
[CrossRef]

Alloca, D. M.

Alpers, M.

Arimondo, E.

E. Arimondo, Coherent Population Trapping in Laser Spectroscopy, Vol. XXXV of Progress in Optics (Elsevier, 1996), p. 258.

Bao, X.-H.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Barriero, S.

A. M. Akulshin, S. Barriero, and A. Lezamo, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

Billmers, R. I.

Bjorklund, G. C.

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Cerè, A.

Chakrabarti, A.

A. Ray, Md. S. Ali, and A. Chakrabarti, “Optical switching in a Ξ system: a comparative study on DROP and EIT,” Eur. Phys. J. D 67, 78 (2013).
[CrossRef]

Chen, H.

Chen, J.

Chen, Z.-B.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Clark, C. W.

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes and polarizabilities in rubidium,” Phys. Rev. A 69, 022509 (2004).
[CrossRef]

Cohen-Tannoudji, C.

C. Cohen-Tannoudji and A. Kastler, “Optical pumping,” Prog. Opt. 5, 1–81 (1966).
[CrossRef]

Contarino, V. M.

Corney, A.

A. Corney, Atomic and Laser Spectroscopy (Oxford, 1977).

Demtröder, W.

W. Demtröder, Laser Spectroscopy. Basic Concepts and Instrumentation, 3rd ed. (Springer-Verlag, 2003).

Duan, M.

Fricke-Begeman, C.

Gan, J.

Gayen, S. K.

Guangning, Y.

Harris, S. E.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

He, Z.

Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theoretical model for an atomic optical filter based on optical anisotropy,” J. Opt. Soc. Am. B 26, 1755–1759 (2009).
[CrossRef]

Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theory and experiment for atomic optical filter based on optical anisotropy in rubidium,” Opt. Commun. 282, 4548–4551 (2009).
[CrossRef]

Herczfeld, P. R.

Höffner, J.

Hollberg, L.

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[CrossRef]

Hong, Y.

Imamoglu, A.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Karagnov, V.

Kastler, A.

C. Cohen-Tannoudji and A. Kastler, “Optical pumping,” Prog. Opt. 5, 1–81 (1966).
[CrossRef]

Kemp, W.

M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, “Picotesla magnetometry with coherent dark states,” Europhys. Lett. 54, 323 (2001).
[CrossRef]

Kitching, J.

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[CrossRef]

Knappe, S.

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[CrossRef]

M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, “Picotesla magnetometry with coherent dark states,” Europhys. Lett. 54, 323 (2001).
[CrossRef]

Kocharovskaya, O.

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001).
[CrossRef]

Kong, J.

Korevaar, E.

Krueger, D. A.

Lezamo, A.

A. M. Akulshin, S. Barriero, and A. Lezamo, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

Li, Y.

Liew, L.

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[CrossRef]

Liu, S.

Mitchell, M. W.

Moon, H. S.

H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of Rb87 atoms,” J. Phys. B 44, 055004 (2011).
[CrossRef]

Moreland, J.

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[CrossRef]

Neergaard-Nielsen, J. S.

Nielsen, B. M.

Noh, H. R.

H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of Rb87 atoms,” J. Phys. B 44, 055004 (2011).
[CrossRef]

Pan, J.-W.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Parigi, V.

Polzik, E. S.

Predojevic, A.

Qian, Y.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Ray, A.

A. Ray, Md. S. Ali, and A. Chakrabarti, “Optical switching in a Ξ system: a comparative study on DROP and EIT,” Eur. Phys. J. D 67, 78 (2013).
[CrossRef]

Rostovtsev, Y.

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001).
[CrossRef]

Safronova, M. S.

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes and polarizabilities in rubidium,” Phys. Rev. A 69, 022509 (2004).
[CrossRef]

Scharpf, W. J.

Scholten, R. E.

Schwindt, P. D.

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[CrossRef]

Scully, M. O.

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001).
[CrossRef]

Searcy, P.

Shah, V.

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[CrossRef]

She, C. Y.

Shore, B. W.

B. W. Shore, “Coherent manipulation of atoms using laser light,” Act. Phys. Slov. 58, 243–486 (2008).
[CrossRef]

Squicciarini, M. F.

Stähler, M.

M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, “Picotesla magnetometry with coherent dark states,” Europhys. Lett. 54, 323 (2001).
[CrossRef]

Takahashi, H.

Tang, J.

L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).
[CrossRef]

Tao, Z.

Teubner, P. J. O.

Turner, L. D.

Vistnes, A. I.

Wang, D.

Wang, Q.

Wang, Y.

White, M. A.

Williams, C. J.

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes and polarizabilities in rubidium,” Phys. Rev. A 69, 022509 (2004).
[CrossRef]

Wolfgramm, F.

Wu, H.

Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theory and experiment for atomic optical filter based on optical anisotropy in rubidium,” Opt. Commun. 282, 4548–4551 (2009).
[CrossRef]

Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theoretical model for an atomic optical filter based on optical anisotropy,” J. Opt. Soc. Am. B 26, 1755–1759 (2009).
[CrossRef]

Wynands, R.

M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, “Picotesla magnetometry with coherent dark states,” Europhys. Lett. 54, 323 (2001).
[CrossRef]

Yang, J.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Yang, T.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Yuan, P.

Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theoretical model for an atomic optical filter based on optical anisotropy,” J. Opt. Soc. Am. B 26, 1755–1759 (2009).
[CrossRef]

Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theory and experiment for atomic optical filter based on optical anisotropy in rubidium,” Opt. Commun. 282, 4548–4551 (2009).
[CrossRef]

Zhang, H.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Zhang, L.

L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).
[CrossRef]

Zhang, S.

Zhang, Y.

Zheng, L.

Act. Phys. Slov. (1)

B. W. Shore, “Coherent manipulation of atoms using laser light,” Act. Phys. Slov. 58, 243–486 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Knappe, V. Shah, P. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[CrossRef]

Eur. Phys. J. D (1)

A. Ray, Md. S. Ali, and A. Chakrabarti, “Optical switching in a Ξ system: a comparative study on DROP and EIT,” Eur. Phys. J. D 67, 78 (2013).
[CrossRef]

Europhys. Lett. (1)

M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, “Picotesla magnetometry with coherent dark states,” Europhys. Lett. 54, 323 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of Rb87 atoms,” J. Phys. B 44, 055004 (2011).
[CrossRef]

Opt. Commun. (2)

L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
[CrossRef]

Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theory and experiment for atomic optical filter based on optical anisotropy in rubidium,” Opt. Commun. 282, 4548–4551 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (10)

A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett. 34, 1012–1014 (2009).
[CrossRef]

Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth,” Opt. Lett. 37, 4059–4061 (2012).
[CrossRef]

L. D. Turner, V. Karagnov, P. J. O. Teubner, and R. E. Scholten, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett. 27, 500–502 (2002).
[CrossRef]

C. Fricke-Begeman, M. Alpers, and J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002).
[CrossRef]

J. Höffner and C. Fricke-Begeman, “Accurate lidar temperatures with narrowband filters,” Opt. Lett. 30, 890–892 (2005).
[CrossRef]

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
[CrossRef]

H. Chen, C. Y. She, P. Searcy, and E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett. 18, 1019–1021 (1993).
[CrossRef]

R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Alloca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20, 106–108 (1995).
[CrossRef]

S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, Y. Guangning, P. R. Herczfeld, and D. M. Alloca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett. 20, 1427–1429 (1995).
[CrossRef]

H. Chen, M. A. White, D. A. Krueger, and C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093–1095 (1996).
[CrossRef]

Phys. Rev. A (2)

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes and polarizabilities in rubidium,” Phys. Rev. A 69, 022509 (2004).
[CrossRef]

A. M. Akulshin, S. Barriero, and A. Lezamo, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001).
[CrossRef]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Prog. Opt. (1)

C. Cohen-Tannoudji and A. Kastler, “Optical pumping,” Prog. Opt. 5, 1–81 (1966).
[CrossRef]

Other (4)

E. Arimondo, Coherent Population Trapping in Laser Spectroscopy, Vol. XXXV of Progress in Optics (Elsevier, 1996), p. 258.

W. Demtröder, Laser Spectroscopy. Basic Concepts and Instrumentation, 3rd ed. (Springer-Verlag, 2003).

A. Corney, Atomic and Laser Spectroscopy (Oxford, 1977).

D. A. Steck, “Rubidium 87 D Line Data,” http://steck.us/alkalidata/rubidium87numbers.1.6.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Level scheme in 5S1/25P3/2 (D2)5D3/2 transition of rubidium atom (Rb87), with degenerate Zeeman sublevels relevant for ALF experiment. Dephasing between ground state hyperfine components (F=2, 1) is γg,12. Spontaneous decay rate from |j is Γj (dotted arrows). The coherent dephasing rate between |j and |i is γjiΓj+Γi/2. Here Γ3=2π×0.97MHz, Γ2=2π×6.066MHz, Γ1=0 are the natural linewidths and γg,12 is governed by the transit time broadening (for a vapor cell, where mean free path is much larger than laser wavelength). Relevant repump transitions are shown in gray scale.

Fig. 2.
Fig. 2.

Schematic of the experimental arrangement. ECDL, external cavity diode laser; M, mirror; BS, beam splitter; PBS, polarizing cube beam splitter; OI, optical isolator; PD, photodetector; λ/2, half-waveplate; AOFS, acousto-optic frequency shifter; FPI, Fabry–Perot interferometer; WM, wavemeter; GP, glass plate; and SAS, saturation absorption setup. Preamp+Servo combo unit is used for direct locking ECDL2. However, ECDL3 (repump laser) is resonant with weak 5S1/2(F=1)5P3/2(F=2,1,0) hyperfine transition; hence current is modulated to extract 1f discriminator of hyperfine components and is used for frequency calibration and stabilization. Note here that the chopper (amplitude) modulation is exclusively applied to pump beam only. The modulation is transferred to probe laser due to population transfer induced coherence; hence it facilitates phase-sensitive detection of probe laser.

Fig. 3.
Fig. 3.

Experimental data recording of ALF lineshape as a function of ECDL1 frequency scan. Here, ECDL1 is scanned over the 5P3/2(F=3)5D3/2(F=3,2) domain whereas the ECDL2 is stabilized on the 5S1/2(F=2)5P3/2(F=3) hyperfine transition. Inset shows DROP signals arising due to probe1(pump1)-induced two-photon coupling of F=3F=3, 2 excited state transitions. DROP originates from trapping of atoms to F=1 state, indicating the presence of radiation trapping. Further narrow (Γ) DROP signals used as marker for the ALF frequency axis, removing the need for using additional FPI. The ALF results due to interaction of probe2(pump2), where (a) shows the ALF with repump laser resonant with 5S1/2(F=1)5P3/2(F=2) hyperfine transition and (b) shows the same without repump. The transmittance is calculated with respect to uncrossed condition of the polarizers (the pump is blocked and probe is tuned far off resonance). It is clear that the ALFTr under repump action increases by 30% than its value without repump and gain in linewidth by 20MHz due to introduction of repumped atoms. For ALF, the intensities are 34(253)mW/cm2 of repump(pump) lasers. For DROP, 140mW/cm2 pump intensity is used; here, no repump beam is used.

Fig. 4.
Fig. 4.

Graphical presentation of (a) FWHM (ΔWALF) and (b) peak transmittance (TrALF) of ALF versus pump intensity. Plot (a) fits well with a model I, which indicates pump power broadening. However, plot (b) shows nature c1×I+c2×I, showing the condition of ALF below and above saturation.

Fig. 5.
Fig. 5.

Effect of repump detuning (Δrepump) on the ALF for repump {5S1/2(F=1)5P3/2(F)} frequency positions: (a) F=1F=0, (b) crossover between F=1F=(1,0), (c) F=1F=1, (d) crossover between F=1F=(2,0), (e) crossover between F=1F=(2,1), (f) F=1F=2, blue detuned by (g) 209 MHz and (h) 580 MHz from F=1F=2. Plots (a)–(h) show appearance of second velocity group of atoms due to pumping by the ECDL3. See text for further details. Inset shows the repump SAS transitions (i) 5S1/2(F=1)5P3/2(F=2,1,0) and (ii) corresponding 1f signals starting from 1, F=1F=2; 2, crossover within F=1F(=2,1); 3, crossover within F=1F(=2,0); 4, F=1F=2; 5, crossover within F=1F(=1,0); and 6, F=1F=0. The intensities are 34(253)mW/cm2 of repump(pump) lasers.

Fig. 6.
Fig. 6.

Graphs showing (a) ΔWALF and (b) TrALF of ALF versus Δrepumper. The FWHM of ALF fits reasonably well with (1) extreme function (see text) and (2) Gaussian. The Gaussian model clearly indicates broader role of velocity-selective optical repumping, which influences the Maxwellian velocity distribution of atoms within the interaction zone. However, the resemblance with the “Extreme” model qualitatively describes the population repump mechanism, which is a complex process, as a continuous function bounded within one Doppler width (repump transition) and it reaches maximum(minimum) at F=1F=2(F=1F=0). The transmittance graph (b) depicts prominent Gaussian nature, again focusing on the one-dimensional velocity distribution of interacting atoms.

Fig. 7.
Fig. 7.

Graphs showing (a) ΔWALF and (b) TrALF of ALF versus (repump intensity (Irepumper). Here the pump(repump) frequencies are resonant with SAS transitions: 5S1/2(F=2)5P3/2(F=3){5S1/2(F=1)5P3/2(F=2)}. The former (a) presents a good fit with Gaussian, which shows that a strong repump laser means increased participation by broader velocity group of atoms. Initially it caused increase in FWHM. However, the strong repump laser can populate other neighboring levels, thereby increasing radiation trapping at the F=1 level. This will weaken the ALF and decrease the FWHM. However, a steady state is reached at more higher intensities due to balance reached between repumping and radiation trapping. It shows that it is possible to control the width of ALF by solely controlling the repump intensity. The Transmittance (b) graph shows a clear presence of saturation value, below which it is Irepump. However the I character is prominent above the saturation.

Metrics