Abstract

We developed a semi-analytical and semi-classical theory for nonlinear scattering of coherent anti-Stokes Raman scattering (CARS) signal from a cylindrical microparticle by paraxial focused laser beams. We study the effects of radius and length of the microparticle, as well as the orientation on the angular distributions of the CARS signal. The waist of the laser beam is found to have a significant effect on the angular distribution. The combination of Gaussian laser beams and cylindrical geometry yields analytical expressions for the orientation factor and the CARS electric field, which permit convenient and efficient computation of the scattering signal versus various physical parameters.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
    [CrossRef]
  2. W. Demtroder, Molecular Physics: Theoretical Principles and Experimental Methods (Wiley-VCH, 2005).
  3. H. Haken and H. C. Wolf, Molecular Physics and Elements of Quantum Chemistry (Springer-Verlag, 1995).
  4. P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
    [CrossRef]
  5. S. Rahav and S. Mukamel, “Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double-slit interference of two-photon Stokes pathways,” Proc. Natl. Acad. Sci. USA 107, 4825–4829 (2010).
    [CrossRef]
  6. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002).
    [CrossRef]
  7. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
    [CrossRef]
  8. J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
    [CrossRef]
  9. G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776–7779 (2007).
    [CrossRef]
  10. H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106, 238106 (2011).
  11. V. V. Yakovlev, H. F. Zhang, G. D. Noojin, M. L. Denton, R. J. Thomas, and M. O. Scully, “Stimulated Raman photoacoustic imaging,” Proc. Natl. Acad. Sci. USA 107, 20335–20339 (2010).
    [CrossRef]
  12. O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
    [CrossRef]
  13. N. G. Kalugin, L. Wang, Z. E. Sariyanni, Y. V. Rostovtsev, and M. O. Scully, “Multi-phonon absorption spectra of dipicolinic acid,” Chem. Phys. Lett. 417, 261–265 (2006).
    [CrossRef]
  14. D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
    [CrossRef]
  15. A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-Stokes Raman spectroscopy,” J. Appl. Phys. 103, 036103 (2008).
    [CrossRef]
  16. A. Portnov, I. Bar, and S. Rosenwaks, “Highly sensitive standoff detection of explosives via backward coherent anti-Stokes Raman scattering,” Appl. Phys. B 98, 529–535 (2010).
  17. M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
    [CrossRef]
  18. V. A. Sautenkov, C. Y. Ye, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Enhancement of field generation via maximal atomic coherence prepared by fast adiabatic passage in Rb vapor,” Phys. Rev. A 70, 033406 (2004).
    [CrossRef]
  19. M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994–11001 (2002).
    [CrossRef]
  20. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
    [CrossRef]
  21. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
    [CrossRef]
  22. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
    [CrossRef]
  23. V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
    [CrossRef]
  24. G. Petrov, V. Yakovlev, A. Sokolov, and M. Scully, “Detection of Bacillus subtilis spores in water by means of broadband coherent anti-Stokes Raman spectroscopy,” Opt. Express 13, 9537–9542 (2005).
    [CrossRef]
  25. D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
    [CrossRef]
  26. C. H. Raymond Ooi, “Theory of coherent anti-Stokes Raman scattering for mesoscopic particle with complex molecules: angular-dependent spectrum,” J. Raman Spectrosc. 40, 714–725 (2009).
    [CrossRef]
  27. D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
    [CrossRef]
  28. C. H. Raymond Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72, 023807 (2005).
    [CrossRef]
  29. C. H. Raymond Ooi, “Near-field and particle size effects in coherent Raman scattering,” Prog. Electromagn. Res. 117, 479–494 (2011).

2011 (4)

H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106, 238106 (2011).

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
[CrossRef]

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
[CrossRef]

C. H. Raymond Ooi, “Near-field and particle size effects in coherent Raman scattering,” Prog. Electromagn. Res. 117, 479–494 (2011).

2010 (3)

A. Portnov, I. Bar, and S. Rosenwaks, “Highly sensitive standoff detection of explosives via backward coherent anti-Stokes Raman scattering,” Appl. Phys. B 98, 529–535 (2010).

V. V. Yakovlev, H. F. Zhang, G. D. Noojin, M. L. Denton, R. J. Thomas, and M. O. Scully, “Stimulated Raman photoacoustic imaging,” Proc. Natl. Acad. Sci. USA 107, 20335–20339 (2010).
[CrossRef]

S. Rahav and S. Mukamel, “Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double-slit interference of two-photon Stokes pathways,” Proc. Natl. Acad. Sci. USA 107, 4825–4829 (2010).
[CrossRef]

2009 (2)

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

C. H. Raymond Ooi, “Theory of coherent anti-Stokes Raman scattering for mesoscopic particle with complex molecules: angular-dependent spectrum,” J. Raman Spectrosc. 40, 714–725 (2009).
[CrossRef]

2008 (4)

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-Stokes Raman spectroscopy,” J. Appl. Phys. 103, 036103 (2008).
[CrossRef]

2007 (3)

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[CrossRef]

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776–7779 (2007).
[CrossRef]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[CrossRef]

2006 (1)

N. G. Kalugin, L. Wang, Z. E. Sariyanni, Y. V. Rostovtsev, and M. O. Scully, “Multi-phonon absorption spectra of dipicolinic acid,” Chem. Phys. Lett. 417, 261–265 (2006).
[CrossRef]

2005 (4)

C. H. Raymond Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72, 023807 (2005).
[CrossRef]

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef]

G. Petrov, V. Yakovlev, A. Sokolov, and M. Scully, “Detection of Bacillus subtilis spores in water by means of broadband coherent anti-Stokes Raman spectroscopy,” Opt. Express 13, 9537–9542 (2005).
[CrossRef]

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

2004 (1)

V. A. Sautenkov, C. Y. Ye, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Enhancement of field generation via maximal atomic coherence prepared by fast adiabatic passage in Rb vapor,” Phys. Rev. A 70, 033406 (2004).
[CrossRef]

2002 (4)

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994–11001 (2002).
[CrossRef]

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[CrossRef]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef]

2001 (1)

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

Akimov, D. A.

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

Ariunbold, G. O.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[CrossRef]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[CrossRef]

Arora, R.

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776–7779 (2007).
[CrossRef]

Bar, I.

A. Portnov, I. Bar, and S. Rosenwaks, “Highly sensitive standoff detection of explosives via backward coherent anti-Stokes Raman scattering,” Appl. Phys. B 98, 529–535 (2010).

Beadie, G.

C. H. Raymond Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72, 023807 (2005).
[CrossRef]

Bouwmans, H. S. P.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

Bremer, M. T.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
[CrossRef]

Butcher, N.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
[CrossRef]

Cameron, S.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef]

Chai, N.

H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106, 238106 (2011).

Cheng, J. X.

H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106, 238106 (2011).

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[CrossRef]

Chimento, P. F.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

Dantus, M.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
[CrossRef]

Demtroder, W.

W. Demtroder, Molecular Physics: Theoretical Principles and Experimental Methods (Wiley-VCH, 2005).

Denton, M. L.

V. V. Yakovlev, H. F. Zhang, G. D. Noojin, M. L. Denton, R. J. Thomas, and M. O. Scully, “Stimulated Raman photoacoustic imaging,” Proc. Natl. Acad. Sci. USA 107, 20335–20339 (2010).
[CrossRef]

Dogariu, A.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-Stokes Raman spectroscopy,” J. Appl. Phys. 103, 036103 (2008).
[CrossRef]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[CrossRef]

Dou, W.

H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106, 238106 (2011).

Dudovich, N.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef]

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

Garbacik, E. T.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

Goltsov, A.

A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-Stokes Raman spectroscopy,” J. Appl. Phys. 103, 036103 (2008).
[CrossRef]

Goorskey, D.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

Gord, J. R.

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
[CrossRef]

Graefe, S.

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

Haken, H.

H. Haken and H. C. Wolf, Molecular Physics and Elements of Quantum Chemistry (Springer-Verlag, 1995).

Hartsuiker, L.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

Herek, J. L.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

Hu, S.

H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106, 238106 (2011).

Huang, Y.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[CrossRef]

Jurna, M.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

Kalugin, N. G.

N. G. Kalugin, L. Wang, Z. E. Sariyanni, Y. V. Rostovtsev, and M. O. Scully, “Multi-phonon absorption spectra of dipicolinic acid,” Chem. Phys. Lett. 417, 261–265 (2006).
[CrossRef]

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

Kattawar, G. W.

C. H. Raymond Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72, 023807 (2005).
[CrossRef]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994–11001 (2002).
[CrossRef]

Katz, O.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Kiefer, W.

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

Kocharovsky, V.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef]

Kolomenskii, A. A.

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

Kulatilaka, W. D.

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
[CrossRef]

Lehmann, K.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef]

Lozovoy, V. V.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
[CrossRef]

Lucht, R.

H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106, 238106 (2011).

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef]

Lucht, R. P.

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
[CrossRef]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994–11001 (2002).
[CrossRef]

Miles, R.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef]

Mukamel, S.

S. Rahav and S. Mukamel, “Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double-slit interference of two-photon Stokes pathways,” Proc. Natl. Acad. Sci. USA 107, 4825–4829 (2010).
[CrossRef]

Murawski, R.

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

Murawski, R. K.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[CrossRef]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[CrossRef]

Natan, A.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Noojin, G. D.

V. V. Yakovlev, H. F. Zhang, G. D. Noojin, M. L. Denton, R. J. Thomas, and M. O. Scully, “Stimulated Raman photoacoustic imaging,” Proc. Natl. Acad. Sci. USA 107, 20335–20339 (2010).
[CrossRef]

Offerhaus, H. L.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

Opatrny, T.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994–11001 (2002).
[CrossRef]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002).
[CrossRef]

Otto, C.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

Paulus, G. G.

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

Pestov, D.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-Stokes Raman spectroscopy,” J. Appl. Phys. 103, 036103 (2008).
[CrossRef]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[CrossRef]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[CrossRef]

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

Petrov, G.

Petrov, G. I.

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776–7779 (2007).
[CrossRef]

Pilloff, H.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994–11001 (2002).
[CrossRef]

Portnov, A.

A. Portnov, I. Bar, and S. Rosenwaks, “Highly sensitive standoff detection of explosives via backward coherent anti-Stokes Raman scattering,” Appl. Phys. B 98, 529–535 (2010).

Rahav, S.

S. Rahav and S. Mukamel, “Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double-slit interference of two-photon Stokes pathways,” Proc. Natl. Acad. Sci. USA 107, 4825–4829 (2010).
[CrossRef]

Raymond Ooi, C. H.

C. H. Raymond Ooi, “Near-field and particle size effects in coherent Raman scattering,” Prog. Electromagn. Res. 117, 479–494 (2011).

C. H. Raymond Ooi, “Theory of coherent anti-Stokes Raman scattering for mesoscopic particle with complex molecules: angular-dependent spectrum,” J. Raman Spectrosc. 40, 714–725 (2009).
[CrossRef]

C. H. Raymond Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72, 023807 (2005).
[CrossRef]

Rebane, A.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994–11001 (2002).
[CrossRef]

Reintjes, J. F.

C. H. Raymond Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72, 023807 (2005).
[CrossRef]

Richardson, D. R.

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
[CrossRef]

Rosenwaks, S.

A. Portnov, I. Bar, and S. Rosenwaks, “Highly sensitive standoff detection of explosives via backward coherent anti-Stokes Raman scattering,” Appl. Phys. B 98, 529–535 (2010).

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Rostovtsev, Y.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef]

C. H. Raymond Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72, 023807 (2005).
[CrossRef]

Rostovtsev, Y. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[CrossRef]

N. G. Kalugin, L. Wang, Z. E. Sariyanni, Y. V. Rostovtsev, and M. O. Scully, “Multi-phonon absorption spectra of dipicolinic acid,” Chem. Phys. Lett. 417, 261–265 (2006).
[CrossRef]

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

V. A. Sautenkov, C. Y. Ye, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Enhancement of field generation via maximal atomic coherence prepared by fast adiabatic passage in Rb vapor,” Phys. Rev. A 70, 033406 (2004).
[CrossRef]

Roy, S.

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
[CrossRef]

Sariyanni, Z. E.

N. G. Kalugin, L. Wang, Z. E. Sariyanni, Y. V. Rostovtsev, and M. O. Scully, “Multi-phonon absorption spectra of dipicolinic acid,” Chem. Phys. Lett. 417, 261–265 (2006).
[CrossRef]

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

Sautenkov, V. A.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[CrossRef]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[CrossRef]

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

V. A. Sautenkov, C. Y. Ye, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Enhancement of field generation via maximal atomic coherence prepared by fast adiabatic passage in Rb vapor,” Phys. Rev. A 70, 033406 (2004).
[CrossRef]

Schuessler, H.

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

Scully, M.

Scully, M. O.

V. V. Yakovlev, H. F. Zhang, G. D. Noojin, M. L. Denton, R. J. Thomas, and M. O. Scully, “Stimulated Raman photoacoustic imaging,” Proc. Natl. Acad. Sci. USA 107, 20335–20339 (2010).
[CrossRef]

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-Stokes Raman spectroscopy,” J. Appl. Phys. 103, 036103 (2008).
[CrossRef]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[CrossRef]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[CrossRef]

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776–7779 (2007).
[CrossRef]

N. G. Kalugin, L. Wang, Z. E. Sariyanni, Y. V. Rostovtsev, and M. O. Scully, “Multi-phonon absorption spectra of dipicolinic acid,” Chem. Phys. Lett. 417, 261–265 (2006).
[CrossRef]

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef]

C. H. Raymond Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72, 023807 (2005).
[CrossRef]

V. A. Sautenkov, C. Y. Ye, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Enhancement of field generation via maximal atomic coherence prepared by fast adiabatic passage in Rb vapor,” Phys. Rev. A 70, 033406 (2004).
[CrossRef]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994–11001 (2002).
[CrossRef]

Siebert, T.

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

Silberberg, Y.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef]

Sokolov, A.

Sokolov, A. V.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-Stokes Raman spectroscopy,” J. Appl. Phys. 103, 036103 (2008).
[CrossRef]

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776–7779 (2007).
[CrossRef]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[CrossRef]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[CrossRef]

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994–11001 (2002).
[CrossRef]

Sturek, M.

H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106, 238106 (2011).

Thomas, R. J.

V. V. Yakovlev, H. F. Zhang, G. D. Noojin, M. L. Denton, R. J. Thomas, and M. O. Scully, “Stimulated Raman photoacoustic imaging,” Proc. Natl. Acad. Sci. USA 107, 20335–20339 (2010).
[CrossRef]

Umulis, D.

H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106, 238106 (2011).

Volkmer, A.

Wang, H.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

Wang, H. W.

H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106, 238106 (2011).

Wang, L.

N. G. Kalugin, L. Wang, Z. E. Sariyanni, Y. V. Rostovtsev, and M. O. Scully, “Multi-phonon absorption spectra of dipicolinic acid,” Chem. Phys. Lett. 417, 261–265 (2006).
[CrossRef]

Wang, L. V.

H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106, 238106 (2011).

Wang, P.

H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106, 238106 (2011).

Wang, X.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776–7779 (2007).
[CrossRef]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[CrossRef]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[CrossRef]

Warren, W.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef]

Welch, G. R.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef]

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

V. A. Sautenkov, C. Y. Ye, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Enhancement of field generation via maximal atomic coherence prepared by fast adiabatic passage in Rb vapor,” Phys. Rev. A 70, 033406 (2004).
[CrossRef]

Wolf, H. C.

H. Haken and H. C. Wolf, Molecular Physics and Elements of Quantum Chemistry (Springer-Verlag, 1995).

Wrzesinski, P. J.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
[CrossRef]

Xiao, M.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

Xie, X. S.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[CrossRef]

Yakovlev, V.

Yakovlev, V. V.

V. V. Yakovlev, H. F. Zhang, G. D. Noojin, M. L. Denton, R. J. Thomas, and M. O. Scully, “Stimulated Raman photoacoustic imaging,” Proc. Natl. Acad. Sci. USA 107, 20335–20339 (2010).
[CrossRef]

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776–7779 (2007).
[CrossRef]

Ye, C. Y.

V. A. Sautenkov, C. Y. Ye, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Enhancement of field generation via maximal atomic coherence prepared by fast adiabatic passage in Rb vapor,” Phys. Rev. A 70, 033406 (2004).
[CrossRef]

Yelin, D.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002).
[CrossRef]

Zhang, H. F.

V. V. Yakovlev, H. F. Zhang, G. D. Noojin, M. L. Denton, R. J. Thomas, and M. O. Scully, “Stimulated Raman photoacoustic imaging,” Proc. Natl. Acad. Sci. USA 107, 20335–20339 (2010).
[CrossRef]

Zhi, M.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[CrossRef]

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

Zubairy, M. S.

C. H. Raymond Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72, 023807 (2005).
[CrossRef]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994–11001 (2002).
[CrossRef]

Annu. Rev. Anal. Chem. (1)

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

Appl. Phys. B (2)

A. Portnov, I. Bar, and S. Rosenwaks, “Highly sensitive standoff detection of explosives via backward coherent anti-Stokes Raman scattering,” Appl. Phys. B 98, 529–535 (2010).

D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B 104, 699–714 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99, 101109 (2011).
[CrossRef]

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

N. G. Kalugin, L. Wang, Z. E. Sariyanni, Y. V. Rostovtsev, and M. O. Scully, “Multi-phonon absorption spectra of dipicolinic acid,” Chem. Phys. Lett. 417, 261–265 (2006).
[CrossRef]

J. Appl. Phys. (1)

A. Dogariu, A. Goltsov, D. Pestov, A. V. Sokolov, and M. O. Scully, “Real-time detection of bacterial spores using coherent anti-Stokes Raman spectroscopy,” J. Appl. Phys. 103, 036103 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Raman Spectrosc. (2)

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

C. H. Raymond Ooi, “Theory of coherent anti-Stokes Raman scattering for mesoscopic particle with complex molecules: angular-dependent spectrum,” J. Raman Spectrosc. 40, 714–725 (2009).
[CrossRef]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (3)

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Quantum control of coherent anti-Stokes Raman processes,” Phys. Rev. A 65, 043408 (2002).
[CrossRef]

V. A. Sautenkov, C. Y. Ye, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Enhancement of field generation via maximal atomic coherence prepared by fast adiabatic passage in Rb vapor,” Phys. Rev. A 70, 033406 (2004).
[CrossRef]

C. H. Raymond Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72, 023807 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106, 238106 (2011).

Proc. Natl. Acad. Sci. USA (7)

V. V. Yakovlev, H. F. Zhang, G. D. Noojin, M. L. Denton, R. J. Thomas, and M. O. Scully, “Stimulated Raman photoacoustic imaging,” Proc. Natl. Acad. Sci. USA 107, 20335–20339 (2010).
[CrossRef]

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776–7779 (2007).
[CrossRef]

S. Rahav and S. Mukamel, “Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double-slit interference of two-photon Stokes pathways,” Proc. Natl. Acad. Sci. USA 107, 4825–4829 (2010).
[CrossRef]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994–11001 (2002).
[CrossRef]

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef]

D. Pestov, M. Zhi, Z. E. Sariyanni, N. G. Kalugin, A. A. Kolomenskii, R. Murawski, G. G. Paulus, V. A. Sautenkov, H. Schuessler, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, T. Siebert, D. A. Akimov, S. Graefe, W. Kiefer, and M. O. Scully, “Visible and UV coherent Raman spectroscopy of dipicolinic acid,” Proc. Natl. Acad. Sci. USA 102, 14976–14981 (2005).
[CrossRef]

Prog. Electromagn. Res. (1)

C. H. Raymond Ooi, “Near-field and particle size effects in coherent Raman scattering,” Prog. Electromagn. Res. 117, 479–494 (2011).

Science (1)

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[CrossRef]

Other (2)

W. Demtroder, Molecular Physics: Theoretical Principles and Experimental Methods (Wiley-VCH, 2005).

H. Haken and H. C. Wolf, Molecular Physics and Elements of Quantum Chemistry (Springer-Verlag, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) FAST CARS configuration, which consists of preparation pulses v1 and v2 that provide the maximum coherence between ground vibrational states |b and |c. Then, a time delayed probe pulse v3 interacts with this oscillating molecular configuration to produce the anti-Stokes radiation as v4. (b) Four-energy-level scheme of the system that describes the CARS process. v1 and v2 pulsed lasers involve transitions between ground states and excited level d, while v3 and v4 involve transitions between ground states and excited level a.

Fig. 2.
Fig. 2.

(a) Graphical illustration of the system, where the single particle is modeled as a spherical particle. Measurement of the scattered signal field is performed by fixing the detector at one point. The CARS signal field E4 is estimated at the observation point (R,Θ,Φ) generated from the particle into the detector. (b) Schematic drawing of particle specified in cylindrical coordinates with incident field lasers approximated as Gaussian beam.

Fig. 3.
Fig. 3.

Plot of |F| as a function of observation angle Θ for three different l values: (a) l=107m, (b) l=1μm, and (c) l=105m. Plot of intensity ratio (log scale) log|I4/I3| (blue line) and log of photon number ratio log|(n4/n3)| (green line) versus Θ for (d) l=107m, (e) l=1μm, and (f) l=105m. We use Φ=0. The distance between detector and spore R=100m; the number of molecules N=5×108; radiative decay rate γr=108s1; decoherence rates γac=2.5×1012s1, γab=γac, γbc=0.1×γac; detuning of the fields Δ3=1012s1, Δ4=Δ3, Δ2Δ1=δ=0; transition wavelengths λab=380nm, λac=370nm, λdc=1μm, and λdb=1.01μm; wavelength of the probe field λ3=λab; anti-Stokes wavelength λ4=λac; particle radius ρ0=5μm; anti-Stokes wave vector k=2π/λ; Rabi frequencies for pump beam are Ω1=7γac and for the Stokes beam are Ω2=8γac; populations ρaa=0, ρcc=0.9, ρbb=1ρaaρcc; beam waist radius w0=1.0ρ0; Rayleigh length zR=πw02/λ; polarization components a1=a2=a3=π/4 and b1=b2=b3=π/2; duration of the beams τ3=τ4; and cross-sectional area A3=A4. Here the cylinder is along the laser and z axis, i.e., ϑ=0.

Fig. 4.
Fig. 4.

3D plot of log of photon number of CARS signal over probe photon number ratio log|(n4/n3)| as a function of angle of observation Θ and radius of particle ρ0 for three values of l, which is the higher integral limit of the orientation factor |F| with respect to z, for (a) l=107m, (b) l=106m, and (c) l=105m. We use w0=5×106m for (a), (b), and (c) and w0=0.6λ/1.42ln2 for (d), (e), and (f), following [8]. Here, ϑ=0.

Fig. 5.
Fig. 5.

Photon number ratio log|(n4/n3)| as a function of angle of observation Θ and cylindrical orientation angle ϑ for three scenarios of particle radius ρ0 and length l: ρ0>l (platelike), ρ0>l and ρ0<l (rodlike). We use (a) w0=5×106m and (b) w0=0.6λ/1.42ln2, following [8].

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

E˜4(R,ω)=il,p=x·y·zl^Wlpeik4(ω)RNμ0ω2Pca,p4πR×q,r,sFqrsPab,sE3s(t)(γaciΔac)ρ¯bc(0),
Fqrs(Θ,Φ,ω)=1V0ρ0ρdρ02πdϕ0ldz×u1,q(r)u2,r*(r)u3,s(r)eik4(ω)R^·r,
R^·r=ρsinΘ(cosφcosΦ+sinφcosϑsinΦ)+zcosϑcosΘ+(ρsinφcosΘzsinΘsinΦ)sinϑ.
E˜j(ρ,φ,z)=u^jEj0w0jwj(z)eikjρ22Rj(z)eρ2wj(z)2eikj·reiςj(z)=(ujx,ujy,ujz)Ej0,
Fqrs(Θ,Φ,ω)=e1,qe2,r*e3,sF(Θ,Φ,ω),
F(Θ,Φ,ω)=1V0ρ002π0l(w0w(z))3ρeρ2(3w(z)2+ik1232R(z))eiς(z)eik123z×eik4[Cρcos(ϕη)+z(cosϑcosΘsinΘsinϑsinΦ)]dρdϕdz,
k123=k1k2+k3,
C=sin2Θcos2Φ+(cosϑsinΘsinΦ+sinϑcosΘ)2,
tanη=cosϑsinΘsinΦ+sinϑcosΘsinΘcosΦ.
F(Θ,ω)=2πV0l(w0w(z))3eiς(z)exp{iΔkz}H(z)dz,
Δk=k1k2+k3k4(cosϑcosΘsinΘsinϑsinΦ).
H(z)=0ρ0exp{Mρ2}J0(kΩρ)ρdρ,
M(z)=ik1232R(z)+3w(z)2=6zR2+ik123w02z2w02(zR2+z2),
H(z)1kΩ0ρ0exp{Mρ2}sin(kΩρ)dρiπ4kΩMekΩ24M[2erf(G0)+erf(G)+erf(G+)].
F(Θ,ω)zR3π32iVkΩ0l[2erf(G0)+erf(G)erf(G+)]M(z)(zRiz)2(zR+iz)eG02eiς(z)eiΔkzdz,
G±(z)=Mρ0±G0,G0(z)=ikΩ2M.
E˜4(R,ω)=il,p=x·y·zl^WlpPca,peik(ω)RNμ0ω24πR(γaciΔac)×F(Θ)q,r,sPr,db*Pq,dcP2E3sPab,sρ¯bc(0),
ρ¯bc(0)=(wc0Γac*+wb0Γab)Ω1Ω2*(Γbc*+δS(t)),
E˜4(R,ω)=iE30l,p=x.y.zl^WlpPca,peik(ω)R×μ0ω2N4πRΓac*F(Θ)ρ¯bc(0)×1PdcPdb*qrsp1qPac,qp2r*Pab,rp3sPab,s.
E˜4(R,ω)=iE30(pWxppWyppWzp)eik(ω)Rμ0ω2N4πRΓac*×13ε0γradλca3λab38π2λca3λab3λdc3λdb3×F(Θ)ρ¯bc(0)qrsp1qp2r*p3s.
I4(Θ,Φ)I3=(1318πNλ42R)2λca3λab3γrad2(γac2+Δac2)C(Θ,Φ)×|F(Θ)ρ¯bc(0)P|2λca3λab3λdc3λdb3
n4n3=τ4A4τ3A3(1318πNR)2λca3λab3γrad2λ3λ43(γac2+Δac2)×C(Θ,Φ)|F(Θ)ρ¯bc(0)P|2λca3λab3λdc3λdb3,
n4n3=(n4n3)PNAS(29VRλ4z)2τ4A4τ3A3C(Θ,Φ)|F(Θ)P|2λac3λab3λdc3λdb3.

Metrics