Abstract

In this study, molecule fluorescence modified by slit-based nanoantennas surrounded with metal gratings was investigated by employing the finite-difference time-domain method. We quantified the relative contribution of excitation and emission gains to the total fluorescence enhancement. The simulation results show that the asymmetric dual-grating (DG) antenna provides an efficient way to control the local excitation enhancement, the collection efficiency, and the quantum efficiency separately for bright emission and beaming light. We also investigated the dependence of fluorescence enhancement on the geometric parameters of the antenna, such as the nano-slit width and number of grooves. The asymmetric DG structure greatly improves the flexibility of the nanostructure design to further optimize the plasmonic enhancement effect and provides a promising route to manipulate single-molecule fluorescence emission.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).
    [CrossRef]
  2. B. McNally, A. Singer, Z. Yu, Y. Sun, Z. Weng, and A. Meller, “Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays,” Nano Lett. 10, 2237–2244 (2010).
    [CrossRef]
  3. X. Cui, K. Tawa, H. Hori, and J. Nishii, “Tailored plasmonic gratings for enhanced fluorescence detection and microscopic imaging,” Adv. Funct. Mater. 20, 546–553 (2010).
    [CrossRef]
  4. T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009).
    [CrossRef]
  5. F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6, 10156–10167 (2012).
    [CrossRef]
  6. J. Kim, V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express 20, 8100–8116 (2012).
    [CrossRef]
  7. P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source,” Opt. Express 20, 19474–19483 (2012).
    [CrossRef]
  8. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [CrossRef]
  9. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
    [CrossRef]
  10. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [CrossRef]
  11. R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 26802 (2010).
    [CrossRef]
  12. M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12, 4385–4391 (2012).
    [CrossRef]
  13. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
    [CrossRef]
  14. H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6, 10147–10155 (2012).
    [CrossRef]
  15. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
    [CrossRef]
  16. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef]
  17. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [CrossRef]
  18. X. Chen, S. Gotzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett. 36, 3545–3547 (2011).
    [CrossRef]
  19. T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
    [CrossRef]
  20. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef]
  21. E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. F. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
    [CrossRef]
  22. G. D. Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Al, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B 28, 253–264 (2011).
    [CrossRef]
  23. L. Guangyuan, X. Feng, L. Kun, K. Alameh, and X. Anshi, “Theory, figures of merit, and design recipe of the plasmonic structure composed of a nano-slit aperture surrounded by surface corrugations,” J. Lightwave Technol. 30, 2405–2414 (2012).
    [CrossRef]
  24. C. Wang, C. Du, and X. Luo, “Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film,” Phys. Rev. B 74, 245403 (2006).
    [CrossRef]
  25. H. Caglayan, I. Bulu, and E. Ozbay, “Beaming of electromagnetic waves emitted through a subwavelength annular aperture,” J. Opt. Soc. Am. B 23, 419–422 (2006).
    [CrossRef]
  26. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
    [CrossRef]
  27. Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
    [CrossRef]
  28. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11, 2400–2406 (2011).
    [CrossRef]
  29. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations,” Opt. Express 19, 13056–13062 (2011).
    [CrossRef]
  30. S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35, 2597–2599 (2010).
    [CrossRef]
  31. J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photon. Nanostr. Fundam. Appl. 1, 55–62 (2003).
    [CrossRef]
  32. J. Zhang and G. P. Wang, “Dual-wavelength light beaming from a metal nanoslit flanked by dielectric gratings,” J. Opt. Soc. Am. B 25, 1356–1361 (2008).
    [CrossRef]
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  34. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  35. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef]
  36. C. Girard, O. J. F. Martin, G. Lévèque, G. C. des Francs, and A. Dereux, “Generalized Bloch equations for optical interactions in confined geometries,” Chem. Phys. Lett. 404, 44–48 (2005).
    [CrossRef]
  37. K. C. Y. Huang, Y. C. Jun, M. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express 19, 19084–19092 (2011).
    [CrossRef]
  38. C. Li, Y. Zhou, H. Wang, and F. Wang, “Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit,” J. Opt. Soc. Am. B 27, 59–64 (2010).
    [CrossRef]
  39. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef]
  40. D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express 13, 7760–7771 (2005).
    [CrossRef]
  41. E. Popov and N. Bonod, “Physics of extraordinary transmission through subwavelength hole arrays,” in Structured Surfaces as Optical Metamaterials, A. Maradudin, ed. (Cambridge, 2011), Chap. 1, pp. 1–27.
  42. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
    [CrossRef]
  43. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  44. S. Kim, S. Kim, and Y. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
    [CrossRef]
  45. V. V. Klimov, “Spontaneous emission of an atom placed near the aperture of a scanning microscope,” JETP Lett. 78, 471–475 (2003).
    [CrossRef]
  46. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
    [CrossRef]
  47. G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. USA 107, 9043–9048 (2010).
    [CrossRef]
  48. J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
    [CrossRef]

2012 (6)

2011 (8)

G. D. Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Al, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B 28, 253–264 (2011).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations,” Opt. Express 19, 13056–13062 (2011).
[CrossRef]

X. Chen, S. Gotzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett. 36, 3545–3547 (2011).
[CrossRef]

K. C. Y. Huang, Y. C. Jun, M. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express 19, 19084–19092 (2011).
[CrossRef]

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef]

2010 (9)

E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. F. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

B. McNally, A. Singer, Z. Yu, Y. Sun, Z. Weng, and A. Meller, “Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays,” Nano Lett. 10, 2237–2244 (2010).
[CrossRef]

X. Cui, K. Tawa, H. Hori, and J. Nishii, “Tailored plasmonic gratings for enhanced fluorescence detection and microscopic imaging,” Adv. Funct. Mater. 20, 546–553 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 26802 (2010).
[CrossRef]

G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. USA 107, 9043–9048 (2010).
[CrossRef]

C. Li, Y. Zhou, H. Wang, and F. Wang, “Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit,” J. Opt. Soc. Am. B 27, 59–64 (2010).
[CrossRef]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35, 2597–2599 (2010).
[CrossRef]

2009 (3)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009).
[CrossRef]

2008 (3)

2007 (1)

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef]

2006 (6)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, “Beaming of electromagnetic waves emitted through a subwavelength annular aperture,” J. Opt. Soc. Am. B 23, 419–422 (2006).
[CrossRef]

C. Wang, C. Du, and X. Luo, “Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film,” Phys. Rev. B 74, 245403 (2006).
[CrossRef]

S. Kim, S. Kim, and Y. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

2005 (3)

C. Girard, O. J. F. Martin, G. Lévèque, G. C. des Francs, and A. Dereux, “Generalized Bloch equations for optical interactions in confined geometries,” Chem. Phys. Lett. 404, 44–48 (2005).
[CrossRef]

D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express 13, 7760–7771 (2005).
[CrossRef]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

2003 (4)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photon. Nanostr. Fundam. Appl. 1, 55–62 (2003).
[CrossRef]

V. V. Klimov, “Spontaneous emission of an atom placed near the aperture of a scanning microscope,” JETP Lett. 78, 471–475 (2003).
[CrossRef]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

2001 (1)

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Afanasiev, A. E.

Aguanno, G. D.

Al, A.

Alameh, K.

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

Anshi, X.

Aouani, H.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations,” Opt. Express 19, 13056–13062 (2011).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

Balykin, V. I.

Bao, K.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef]

Baturin, A. S.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Bernal Arango, F.

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6, 10156–10167 (2012).
[CrossRef]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

Bloemer, M. J.

Boltasseva, A.

Bonod, N.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[CrossRef]

E. Popov and N. Bonod, “Physics of extraordinary transmission through subwavelength hole arrays,” in Structured Surfaces as Optical Metamaterials, A. Maradudin, ed. (Cambridge, 2011), Chap. 1, pp. 1–27.

Bravo-Abad, J.

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photon. Nanostr. Fundam. Appl. 1, 55–62 (2003).
[CrossRef]

Brongersma, M. L.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[CrossRef]

K. C. Y. Huang, Y. C. Jun, M. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express 19, 19084–19092 (2011).
[CrossRef]

Bulu, I.

Caglayan, H.

Cakmakyapan, S.

Chen, X.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

Crouse, D.

Cui, X.

X. Cui, K. Tawa, H. Hori, and J. Nishii, “Tailored plasmonic gratings for enhanced fluorescence detection and microscopic imaging,” Adv. Funct. Mater. 20, 546–553 (2010).
[CrossRef]

G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. USA 107, 9043–9048 (2010).
[CrossRef]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

de Ceglia, D.

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Dereux, A.

C. Girard, O. J. F. Martin, G. Lévèque, G. C. des Francs, and A. Dereux, “Generalized Bloch equations for optical interactions in confined geometries,” Chem. Phys. Lett. 404, 44–48 (2005).
[CrossRef]

des Francs, G. C.

C. Girard, O. J. F. Martin, G. Lévèque, G. C. des Francs, and A. Dereux, “Generalized Bloch equations for optical interactions in confined geometries,” Chem. Phys. Lett. 404, 44–48 (2005).
[CrossRef]

Deutsch, B.

Devaux, E.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations,” Opt. Express 19, 13056–13062 (2011).
[CrossRef]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Dintinger, J.

Drachev, V. P.

Du, C.

C. Wang, C. Du, and X. Luo, “Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film,” Phys. Rev. B 74, 245403 (2006).
[CrossRef]

Duan, H.

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6, 10147–10155 (2012).
[CrossRef]

Ebbesen, T. W.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations,” Opt. Express 19, 13056–13062 (2011).
[CrossRef]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Esteban, R.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 26802 (2010).
[CrossRef]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

Feldmann, J.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef]

Feng, X.

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

Gaiduk, A.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12, 4385–4391 (2012).
[CrossRef]

Garcia-Vidal, F. J.

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photon. Nanostr. Fundam. Appl. 1, 55–62 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

Gerard, D.

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef]

Girard, C.

C. Girard, O. J. F. Martin, G. Lévèque, G. C. des Francs, and A. Dereux, “Generalized Bloch equations for optical interactions in confined geometries,” Chem. Phys. Lett. 404, 44–48 (2005).
[CrossRef]

Gómez Rivas, J.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef]

Gotzinger, S.

Greffet, J. J.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 26802 (2010).
[CrossRef]

Guangyuan, L.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Hori, H.

X. Cui, K. Tawa, H. Hori, and J. Nishii, “Tailored plasmonic gratings for enhanced fluorescence detection and microscopic imaging,” Adv. Funct. Mater. 20, 546–553 (2010).
[CrossRef]

Hu, H.

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6, 10147–10155 (2012).
[CrossRef]

Huang, K. C. Y.

K. C. Y. Huang, Y. C. Jun, M. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express 19, 19084–19092 (2011).
[CrossRef]

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Jacob, Z.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johansson, P.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Jun, Y. C.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[CrossRef]

K. C. Y. Huang, Y. C. Jun, M. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Opt. Express 19, 19084–19092 (2011).
[CrossRef]

Kall, M.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef]

T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009).
[CrossRef]

Keshavareddy, P.

Khatua, S.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12, 4385–4391 (2012).
[CrossRef]

Kim, J.

Kim, S.

S. Kim, S. Kim, and Y. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[CrossRef]

S. Kim, S. Kim, and Y. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[CrossRef]

Kim, T. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

Kinzel, E. C.

E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. F. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
[CrossRef]

Klar, T. A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef]

Klimov, V. V.

V. V. Klimov, “Spontaneous emission of an atom placed near the aperture of a scanning microscope,” JETP Lett. 78, 471–475 (2003).
[CrossRef]

Koenderink, A. F.

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6, 10156–10167 (2012).
[CrossRef]

Konstantinova, T. V.

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Kun, L.

Kürzinger, K.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef]

Kuzin, A. A.

Kwadrin, A.

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6, 10156–10167 (2012).
[CrossRef]

Lee, Y.

S. Kim, S. Kim, and Y. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[CrossRef]

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

Lévèque, G.

C. Girard, O. J. F. Martin, G. Lévèque, G. C. des Francs, and A. Dereux, “Generalized Bloch equations for optical interactions in confined geometries,” Chem. Phys. Lett. 404, 44–48 (2005).
[CrossRef]

Lezec, H. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Li, C.

Li, Y.

E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. F. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Luo, X.

C. Wang, C. Du, and X. Luo, “Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film,” Phys. Rev. B 74, 245403 (2006).
[CrossRef]

Mahboub, O.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations,” Opt. Express 19, 13056–13062 (2011).
[CrossRef]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

C. Girard, O. J. F. Martin, G. Lévèque, G. C. des Francs, and A. Dereux, “Generalized Bloch equations for optical interactions in confined geometries,” Chem. Phys. Lett. 404, 44–48 (2005).
[CrossRef]

Martin-Moreno, L.

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photon. Nanostr. Fundam. Appl. 1, 55–62 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Martín-Moreno, L.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

Mattiucci, N.

McNally, B.

B. McNally, A. Singer, Z. Yu, Y. Sun, Z. Weng, and A. Meller, “Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays,” Nano Lett. 10, 2237–2244 (2010).
[CrossRef]

Melentiev, P. N.

Meller, A.

B. McNally, A. Singer, Z. Yu, Y. Sun, Z. Weng, and A. Meller, “Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays,” Nano Lett. 10, 2237–2244 (2010).
[CrossRef]

Miljkovic, V. D.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef]

Naik, G. V.

Narimanov, E. E.

Nichtl, A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef]

Nishii, J.

X. Cui, K. Tawa, H. Hori, and J. Nishii, “Tailored plasmonic gratings for enhanced fluorescence detection and microscopic imaging,” Adv. Funct. Mater. 20, 546–553 (2010).
[CrossRef]

Nordlander, P.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

Ntziachristos, V.

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).
[CrossRef]

Orrit, M.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12, 4385–4391 (2012).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ozbay, E.

Pakizeh, T.

T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009).
[CrossRef]

Pendry, J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

Popov, E.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[CrossRef]

E. Popov and N. Bonod, “Physics of extraordinary transmission through subwavelength hole arrays,” in Structured Surfaces as Optical Metamaterials, A. Maradudin, ed. (Cambridge, 2011), Chap. 1, pp. 1–27.

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Raman, A.

E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. F. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
[CrossRef]

Rigneault, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations,” Opt. Express 19, 13056–13062 (2011).
[CrossRef]

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[CrossRef]

Ringler, M.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Sánchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef]

Sandoghdar, V.

X. Chen, S. Gotzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett. 36, 3545–3547 (2011).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Schwemer, A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef]

Seo, M.

Serebryannikov, A. E.

Shalaev, V. M.

Shegai, T.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef]

Shen, Z. X.

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6, 10147–10155 (2012).
[CrossRef]

Singer, A.

B. McNally, A. Singer, Z. Yu, Y. Sun, Z. Weng, and A. Meller, “Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays,” Nano Lett. 10, 2237–2244 (2010).
[CrossRef]

Srisungsitthisunti, P.

E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. F. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
[CrossRef]

Sun, Y.

B. McNally, A. Singer, Z. Yu, Y. Sun, Z. Weng, and A. Meller, “Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays,” Nano Lett. 10, 2237–2244 (2010).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Tawa, K.

X. Cui, K. Tawa, H. Hori, and J. Nishii, “Tailored plasmonic gratings for enhanced fluorescence detection and microscopic imaging,” Adv. Funct. Mater. 20, 546–553 (2010).
[CrossRef]

Teperik, T. V.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 26802 (2010).
[CrossRef]

Thio, T.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Vincenti, M. A.

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Wang, C.

C. Wang, C. Du, and X. Luo, “Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film,” Phys. Rev. B 74, 245403 (2006).
[CrossRef]

Wang, F.

Wang, G. P.

Wang, H.

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

Weng, Z.

B. McNally, A. Singer, Z. Yu, Y. Sun, Z. Weng, and A. Meller, “Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays,” Nano Lett. 10, 2237–2244 (2010).
[CrossRef]

Wenger, J.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations,” Opt. Express 19, 13056–13062 (2011).
[CrossRef]

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[CrossRef]

Wolff, P. A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Wunderlich, M.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef]

Xu, H.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef]

Xu, X. F.

E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. F. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
[CrossRef]

Yang, C.

G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. USA 107, 9043–9048 (2010).
[CrossRef]

Yang, J. K. W.

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6, 10147–10155 (2012).
[CrossRef]

Yorulmaz, M.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12, 4385–4391 (2012).
[CrossRef]

Yu, Z.

B. McNally, A. Singer, Z. Yu, Y. Sun, Z. Weng, and A. Meller, “Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays,” Nano Lett. 10, 2237–2244 (2010).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

Zhang, J.

Zheng, G.

G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. USA 107, 9043–9048 (2010).
[CrossRef]

Zhou, Y.

Zijlstra, P.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12, 4385–4391 (2012).
[CrossRef]

ACS Nano (2)

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6, 10147–10155 (2012).
[CrossRef]

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6, 10156–10167 (2012).
[CrossRef]

Adv. Funct. Mater. (1)

X. Cui, K. Tawa, H. Hori, and J. Nishii, “Tailored plasmonic gratings for enhanced fluorescence detection and microscopic imaging,” Adv. Funct. Mater. 20, 546–553 (2010).
[CrossRef]

Adv. Opt. Photon. (1)

Annu. Rev. Biomed. Eng. (1)

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. F. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
[CrossRef]

Chem. Phys. Lett. (1)

C. Girard, O. J. F. Martin, G. Lévèque, G. C. des Francs, and A. Dereux, “Generalized Bloch equations for optical interactions in confined geometries,” Chem. Phys. Lett. 404, 44–48 (2005).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (4)

JETP Lett. (1)

V. V. Klimov, “Spontaneous emission of an atom placed near the aperture of a scanning microscope,” JETP Lett. 78, 471–475 (2003).
[CrossRef]

Nano Lett. (7)

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11, 637–644 (2011).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef]

T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009).
[CrossRef]

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef]

B. McNally, A. Singer, Z. Yu, Y. Sun, Z. Weng, and A. Meller, “Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays,” Nano Lett. 10, 2237–2244 (2010).
[CrossRef]

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12, 4385–4391 (2012).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef]

Nat. Commun. (1)

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[CrossRef]

Nat. Photonics (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

Opt. Commun. (1)

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Photon. Nanostr. Fundam. Appl. (1)

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photon. Nanostr. Fundam. Appl. 1, 55–62 (2003).
[CrossRef]

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

S. Kim, S. Kim, and Y. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[CrossRef]

C. Wang, C. Du, and X. Luo, “Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film,” Phys. Rev. B 74, 245403 (2006).
[CrossRef]

Phys. Rev. Lett. (5)

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 26802 (2010).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. USA 107, 9043–9048 (2010).
[CrossRef]

Science (4)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Other (2)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

E. Popov and N. Bonod, “Physics of extraordinary transmission through subwavelength hole arrays,” in Structured Surfaces as Optical Metamaterials, A. Maradudin, ed. (Cambridge, 2011), Chap. 1, pp. 1–27.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematics of three types of plasmonic antennas studied in our simulations: (a) a bare slit without gratings, (b) a SG structure and (c) an asymmetric DG structure. The structures are illuminated with p-polarized planar continuous light under normal incidence at 633 nm. A dipole emitter with emission wavelength of 670 nm is placed at the center of the slit (oriented in the x direction). The geometric parameters that require careful optimization are defined in the figure and detailed in the text. In our 2D geometry, the slit length L is infinite.

Fig. 2.
Fig. 2.

Time-averaged field distributions |E|2 in the vicinity of the slit for the three metallic antennas: (a) a bare slit, (b) a SG and (c) a DG. Corresponding field enhancement factors normalized to the initial field |E0|2 along (d) X=0 and (e) Z=0 in the XZ plane are also plotted. The structures are under normal incidence illumination with p-polarized plane wave at 633 nm.

Fig. 3.
Fig. 3.

(a) Calculated far-field angular distributions in the XZ plane based on the NTFF method. Inset: normalized angular radiation patterns of a dipole emission in all directions for three cases: a SG structure (red line), free solution without antenna (blue line), and emission from air (black line). An electrical dipole emitter (λem=670nm), oriented in the x direction, was placed at the slit center. Note that the emissions to the bottom side are calculated and compared for the three structures. (b) Modified quantum efficiency and total decay rate (inset) as functions of wavelength are plotted for different plasmonic structures.

Fig. 4.
Fig. 4.

Local field enhancement ηexc(red) at the slit center and collection efficiency κ (black) as functions of groove number N corrugated on the upper-side and bottom-side of the DG antenna. The mesh pitch here is set to be 2 nm.

Fig. 5.
Fig. 5.

Dependence of fluorescence characteristics on the slit-to-first-groove distance g for the DG antenna. The illumination wavelength is 633 nm. As we can see, the factor of local field enhancement (a) at the slit center changes in the form of oscillation as the increase of distance g2. (b) Far-field directivities of a single dipole source (λ=670nm) inside the center of the slit cavity. We observe beaming or splitting light for g1 ranging from 200 to 600 nm. The mesh pitch here is 2 nm.

Fig. 6.
Fig. 6.

Dependence of fluorescence enhancement on the slit width W of the three antenna structures. (a) Field enhancement at the slit center under illumination of 633 nm. (b) Quantum efficiency gain and normalized total decay rate (inset) for a dipole placed at the slit center with 670 nm. (c) Collection efficiency (noted that the curve for the SG structure overlaps with the curve for the DG structure here) and (d) total fluorescence enhancement as functions of slit width. The mesh pitch here is set to be 2 nm.

Tables (1)

Tables Icon

Table 1. Relative Contribution of Excitation and Emission Gains to the Overall Fluorescence Enhancement Based on Different Metal Structures

Metrics