Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Molecule fluorescence modified by a slit-based nanoantenna with dual gratings

Not Accessible

Your library or personal account may give you access

Abstract

In this study, molecule fluorescence modified by slit-based nanoantennas surrounded with metal gratings was investigated by employing the finite-difference time-domain method. We quantified the relative contribution of excitation and emission gains to the total fluorescence enhancement. The simulation results show that the asymmetric dual-grating (DG) antenna provides an efficient way to control the local excitation enhancement, the collection efficiency, and the quantum efficiency separately for bright emission and beaming light. We also investigated the dependence of fluorescence enhancement on the geometric parameters of the antenna, such as the nano-slit width and number of grooves. The asymmetric DG structure greatly improves the flexibility of the nanostructure design to further optimize the plasmonic enhancement effect and provides a promising route to manipulate single-molecule fluorescence emission.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations

Heykel Aouani, Oussama Mahboub, Eloïse Devaux, Hervé Rigneault, Thomas W. Ebbesen, and Jérôme Wenger
Opt. Express 19(14) 13056-13062 (2011)

Analysis and design of a cross dipole nanoantenna for fluorescence-sensing applications

J. L. Stokes, Y. Yu, Z. H. Yuan, J. R. Pugh, M. Lopez-Garcia, N. Ahmad, and M. J. Cryan
J. Opt. Soc. Am. B 31(2) 302-310 (2014)

Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence

Vincenzo Giannini, José A. Sánchez-Gil, Otto L. Muskens, and Jaime Gómez Rivas
J. Opt. Soc. Am. B 26(8) 1569-1577 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved