Abstract

We use time-resolved photoluminescence (PL) kinetics and PL intensity measurements to study the decay of photoexcitations in colloidal CdSe/ZnS nanocrystals grafted on SiO2Si substrates with a wide range of the SiO2 spacer layer thicknesses. The salient features of experimental observations are found to be in good agreement with theoretical expectations within the framework of modification of spontaneous decay of electric-dipole excitons by their environment. Analysis of the experimental data reveals that energy transfer (ET) from nanocrystals into Si is a major enabler of substantial variations in decay rates, where we quantitatively distinguish contributions from nonradiative and radiative ET channels. We demonstrate that time-resolved PL kinetics provides a more direct assessment of ET, while PL intensity measurements are also affected by the specifics of the generation and emission processes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  2. Y. Sun, H. Wallrabe, S. Seo, and A. Periasamy, “FRET microscopy in 2010: the legacy of Theodor Förster on the 100th anniversary of his birth,” ChemPhysChem 12, 462–474 (2011).
    [CrossRef]
  3. A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7, 47–57 (2006).
    [CrossRef]
  4. V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, 2004).
  5. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  6. R. F. Oulton, N. Takada, J. Koe, P. N. Stavrinou, and D. D. C. Bradley, “Strong coupling in organic semiconductor microcavities,” Semicond. Sci. Technol. 18, S419–S427 (2003).
    [CrossRef]
  7. V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chem. Rev. 111, 5179–5214 (2011).
    [CrossRef]
  8. S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
    [CrossRef]
  9. S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
    [CrossRef]
  10. H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
    [CrossRef]
  11. H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
    [CrossRef]
  12. M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: Further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
    [CrossRef]
  13. L. Gaudreau, K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Osmond, F. J. G. de Abajo, and F. H. L. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
    [CrossRef]
  14. D. L. Dexter, “Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells,” J. Lumin. 18/19, 779–784 (1979).
    [CrossRef]
  15. A. L. Rogach, T. A. Klar, J. M. Lupton, A. Meijerink, and J. Feldman, “Energy transfer with semiconductor nanocrystals,” J. Mater. Chem. 19, 1208–1221 (2009).
    [CrossRef]
  16. M. Stavola, D. L. Dexter, and R. S. Knox, “Electron-hole pair excitation in semiconductors via energy transfer from an external sensitizer,” Phys. Rev. B 31, 2277–2289 (1985).
    [CrossRef]
  17. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, S. A. Rice and I. Prigogine, eds. (Wiley, 1978), Vol. 37, pp. 1–65.
  18. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Elsevier, 1982).
  19. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
    [CrossRef]
  20. A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor surfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
    [CrossRef]
  21. L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
    [CrossRef]
  22. O. Seitz, M. Dai, F. S. Aguirre-Tostado, R. M. Wallace, and Y. J. Chabal, “Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices,” J. Am. Chem. Soc. 131, 18159–18167 (2009).
    [CrossRef]
  23. D. Aureau, Y. Varin, K. Roodenko, O. Seitz, O. Pluchery, and Y. J. Chabal, “Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces,” J. Phys. Chem. C 114, 14180–14186 (2010).
    [CrossRef]
  24. O. Seitz, P. G. Fernandez, G. A. Mahmud, H.-C. Wen, H. J. Stiegler, R. A. Chapman, E. M. Vogel, and Y. J. Chabal, “One-step selective chemistry for silicon-on-insulator sensor geometries,” Langmuir 27, 7337–7340 (2011).
    [CrossRef]
  25. A. Sommerfeld, “Über die ausbreitung der wellen inder drahtlosen telegraphie,” Ann. Phys. Lpz. 81, 1135–1153 (1926).
  26. A. Sommerfeld, Partial Differential Equations in Physics (Academic, 1964).
  27. D. H. Waldeck, A. P. Alivisatos, and C. B. Harris, “Nonradiative damping of molecular electronic excited states by metal surfaces,” Surf. Sci. 158, 103–125 (1985).
    [CrossRef]
  28. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495–1503 (1979).
    [CrossRef]
  29. L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric subspace,” Appl. Phys. Lett. 89, 031119 (2006).
    [CrossRef]
  30. L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
    [CrossRef]
  31. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
    [CrossRef]

2013

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: Further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

L. Gaudreau, K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Osmond, F. J. G. de Abajo, and F. H. L. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[CrossRef]

2012

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

2011

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

Y. Sun, H. Wallrabe, S. Seo, and A. Periasamy, “FRET microscopy in 2010: the legacy of Theodor Förster on the 100th anniversary of his birth,” ChemPhysChem 12, 462–474 (2011).
[CrossRef]

V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chem. Rev. 111, 5179–5214 (2011).
[CrossRef]

O. Seitz, P. G. Fernandez, G. A. Mahmud, H.-C. Wen, H. J. Stiegler, R. A. Chapman, E. M. Vogel, and Y. J. Chabal, “One-step selective chemistry for silicon-on-insulator sensor geometries,” Langmuir 27, 7337–7340 (2011).
[CrossRef]

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

2010

D. Aureau, Y. Varin, K. Roodenko, O. Seitz, O. Pluchery, and Y. J. Chabal, “Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces,” J. Phys. Chem. C 114, 14180–14186 (2010).
[CrossRef]

2009

O. Seitz, M. Dai, F. S. Aguirre-Tostado, R. M. Wallace, and Y. J. Chabal, “Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices,” J. Am. Chem. Soc. 131, 18159–18167 (2009).
[CrossRef]

A. L. Rogach, T. A. Klar, J. M. Lupton, A. Meijerink, and J. Feldman, “Energy transfer with semiconductor nanocrystals,” J. Mater. Chem. 19, 1208–1221 (2009).
[CrossRef]

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
[CrossRef]

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

2006

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7, 47–57 (2006).
[CrossRef]

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric subspace,” Appl. Phys. Lett. 89, 031119 (2006).
[CrossRef]

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[CrossRef]

2004

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

2003

R. F. Oulton, N. Takada, J. Koe, P. N. Stavrinou, and D. D. C. Bradley, “Strong coupling in organic semiconductor microcavities,” Semicond. Sci. Technol. 18, S419–S427 (2003).
[CrossRef]

1987

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor surfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
[CrossRef]

1985

M. Stavola, D. L. Dexter, and R. S. Knox, “Electron-hole pair excitation in semiconductors via energy transfer from an external sensitizer,” Phys. Rev. B 31, 2277–2289 (1985).
[CrossRef]

D. H. Waldeck, A. P. Alivisatos, and C. B. Harris, “Nonradiative damping of molecular electronic excited states by metal surfaces,” Surf. Sci. 158, 103–125 (1985).
[CrossRef]

1983

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

1979

D. L. Dexter, “Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells,” J. Lumin. 18/19, 779–784 (1979).
[CrossRef]

W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495–1503 (1979).
[CrossRef]

1926

A. Sommerfeld, “Über die ausbreitung der wellen inder drahtlosen telegraphie,” Ann. Phys. Lpz. 81, 1135–1153 (1926).

Agranovich, V. M.

V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chem. Rev. 111, 5179–5214 (2011).
[CrossRef]

V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Elsevier, 1982).

Aguirre-Tostado, F. S.

O. Seitz, M. Dai, F. S. Aguirre-Tostado, R. M. Wallace, and Y. J. Chabal, “Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices,” J. Am. Chem. Soc. 131, 18159–18167 (2009).
[CrossRef]

Alivisatos, A. P.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor surfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
[CrossRef]

D. H. Waldeck, A. P. Alivisatos, and C. B. Harris, “Nonradiative damping of molecular electronic excited states by metal surfaces,” Surf. Sci. 158, 103–125 (1985).
[CrossRef]

Arndt, M. F.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor surfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
[CrossRef]

Asano, T.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Aureau, D.

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

D. Aureau, Y. Varin, K. Roodenko, O. Seitz, O. Pluchery, and Y. J. Chabal, “Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces,” J. Phys. Chem. C 114, 14180–14186 (2010).
[CrossRef]

Barwicz, T.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

Blanco, L. A.

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Bradley, D. D. C.

R. F. Oulton, N. Takada, J. Koe, P. N. Stavrinou, and D. D. C. Bradley, “Strong coupling in organic semiconductor microcavities,” Semicond. Sci. Technol. 18, S419–S427 (2003).
[CrossRef]

Caillard, L.

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: Further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

Chabal, Y. J.

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: Further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

O. Seitz, P. G. Fernandez, G. A. Mahmud, H.-C. Wen, H. J. Stiegler, R. A. Chapman, E. M. Vogel, and Y. J. Chabal, “One-step selective chemistry for silicon-on-insulator sensor geometries,” Langmuir 27, 7337–7340 (2011).
[CrossRef]

D. Aureau, Y. Varin, K. Roodenko, O. Seitz, O. Pluchery, and Y. J. Chabal, “Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces,” J. Phys. Chem. C 114, 14180–14186 (2010).
[CrossRef]

O. Seitz, M. Dai, F. S. Aguirre-Tostado, R. M. Wallace, and Y. J. Chabal, “Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices,” J. Am. Chem. Soc. 131, 18159–18167 (2009).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, S. A. Rice and I. Prigogine, eds. (Wiley, 1978), Vol. 37, pp. 1–65.

Chanyawadee, S.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
[CrossRef]

Chapman, R. A.

O. Seitz, P. G. Fernandez, G. A. Mahmud, H.-C. Wen, H. J. Stiegler, R. A. Chapman, E. M. Vogel, and Y. J. Chabal, “One-step selective chemistry for silicon-on-insulator sensor geometries,” Langmuir 27, 7337–7340 (2011).
[CrossRef]

Chen, X. W.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Clapp, A. R.

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7, 47–57 (2006).
[CrossRef]

Dai, M.

O. Seitz, M. Dai, F. S. Aguirre-Tostado, R. M. Wallace, and Y. J. Chabal, “Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices,” J. Am. Chem. Soc. 131, 18159–18167 (2009).
[CrossRef]

de Abajo, F. J. G.

L. Gaudreau, K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Osmond, F. J. G. de Abajo, and F. H. L. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[CrossRef]

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

DeBenedetti, W.

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: Further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

Dexter, D. L.

M. Stavola, D. L. Dexter, and R. S. Knox, “Electron-hole pair excitation in semiconductors via energy transfer from an external sensitizer,” Phys. Rev. B 31, 2277–2289 (1985).
[CrossRef]

D. L. Dexter, “Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells,” J. Lumin. 18/19, 779–784 (1979).
[CrossRef]

Efrima, S.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor surfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
[CrossRef]

Eghlidi, H.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Feldman, J.

A. L. Rogach, T. A. Klar, J. M. Lupton, A. Meijerink, and J. Feldman, “Energy transfer with semiconductor nanocrystals,” J. Mater. Chem. 19, 1208–1221 (2009).
[CrossRef]

Fernandez, P. G.

O. Seitz, P. G. Fernandez, G. A. Mahmud, H.-C. Wen, H. J. Stiegler, R. A. Chapman, E. M. Vogel, and Y. J. Chabal, “One-step selective chemistry for silicon-on-insulator sensor geometries,” Langmuir 27, 7337–7340 (2011).
[CrossRef]

Galanin, M. D.

V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Elsevier, 1982).

Gartstein, Y. N.

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: Further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chem. Rev. 111, 5179–5214 (2011).
[CrossRef]

Gaudreau, L.

L. Gaudreau, K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Osmond, F. J. G. de Abajo, and F. H. L. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[CrossRef]

Götzinger, S.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Guha, S.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

Harley, R. T.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
[CrossRef]

Harris, C. B.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor surfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
[CrossRef]

D. H. Waldeck, A. P. Alivisatos, and C. B. Harris, “Nonradiative damping of molecular electronic excited states by metal surfaces,” Surf. Sci. 158, 103–125 (1985).
[CrossRef]

Harris, D.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Henini, M.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
[CrossRef]

Hong, Z.

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric subspace,” Appl. Phys. Lett. 89, 031119 (2006).
[CrossRef]

Ketterson, J. B.

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric subspace,” Appl. Phys. Lett. 89, 031119 (2006).
[CrossRef]

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[CrossRef]

Klar, T. A.

A. L. Rogach, T. A. Klar, J. M. Lupton, A. Meijerink, and J. Feldman, “Energy transfer with semiconductor nanocrystals,” J. Mater. Chem. 19, 1208–1221 (2009).
[CrossRef]

Knox, R. S.

M. Stavola, D. L. Dexter, and R. S. Knox, “Electron-hole pair excitation in semiconductors via energy transfer from an external sensitizer,” Phys. Rev. B 31, 2277–2289 (1985).
[CrossRef]

Koe, J.

R. F. Oulton, N. Takada, J. Koe, P. N. Stavrinou, and D. D. C. Bradley, “Strong coupling in organic semiconductor microcavities,” Semicond. Sci. Technol. 18, S419–S427 (2003).
[CrossRef]

Koppens, F. H. L.

L. Gaudreau, K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Osmond, F. J. G. de Abajo, and F. H. L. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[CrossRef]

Kühn, O.

V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, 2004).

Kukura, P.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Lagoudakis, P. G.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Lee, K. G.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Lettow, R.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Lingley, Z.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

Litinskaya, M.

V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chem. Rev. 111, 5179–5214 (2011).
[CrossRef]

Lu, S.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

Luan, L.

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[CrossRef]

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric subspace,” Appl. Phys. Lett. 89, 031119 (2006).
[CrossRef]

Lukosz, W.

Lupton, J. M.

A. L. Rogach, T. A. Klar, J. M. Lupton, A. Meijerink, and J. Feldman, “Energy transfer with semiconductor nanocrystals,” J. Mater. Chem. 19, 1208–1221 (2009).
[CrossRef]

Madhukar, A.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

Mahmud, G. A.

O. Seitz, P. G. Fernandez, G. A. Mahmud, H.-C. Wen, H. J. Stiegler, R. A. Chapman, E. M. Vogel, and Y. J. Chabal, “One-step selective chemistry for silicon-on-insulator sensor geometries,” Langmuir 27, 7337–7340 (2011).
[CrossRef]

Malko, A. V.

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: Further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

Mattoussi, H.

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7, 47–57 (2006).
[CrossRef]

May, V.

V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, 2004).

Medintz, I. L.

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7, 47–57 (2006).
[CrossRef]

Meijerink, A.

A. L. Rogach, T. A. Klar, J. M. Lupton, A. Meijerink, and J. Feldman, “Energy transfer with semiconductor nanocrystals,” J. Mater. Chem. 19, 1208–1221 (2009).
[CrossRef]

Mu, W.

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric subspace,” Appl. Phys. Lett. 89, 031119 (2006).
[CrossRef]

Nguyen, H. M.

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: Further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

Nijem, N.

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

Nimmo, M.

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: Further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Osmond, J.

L. Gaudreau, K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Osmond, F. J. G. de Abajo, and F. H. L. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[CrossRef]

Oulton, R. F.

R. F. Oulton, N. Takada, J. Koe, P. N. Stavrinou, and D. D. C. Bradley, “Strong coupling in organic semiconductor microcavities,” Semicond. Sci. Technol. 18, S419–S427 (2003).
[CrossRef]

Peng, W.

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

Periasamy, A.

Y. Sun, H. Wallrabe, S. Seo, and A. Periasamy, “FRET microscopy in 2010: the legacy of Theodor Förster on the 100th anniversary of his birth,” ChemPhysChem 12, 462–474 (2011).
[CrossRef]

Pluchery, O.

D. Aureau, Y. Varin, K. Roodenko, O. Seitz, O. Pluchery, and Y. J. Chabal, “Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces,” J. Phys. Chem. C 114, 14180–14186 (2010).
[CrossRef]

Prawiroatmodjo, G. E. D. K.

L. Gaudreau, K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Osmond, F. J. G. de Abajo, and F. H. L. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, S. A. Rice and I. Prigogine, eds. (Wiley, 1978), Vol. 37, pp. 1–65.

Renn, A.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Rogach, A. L.

A. L. Rogach, T. A. Klar, J. M. Lupton, A. Meijerink, and J. Feldman, “Energy transfer with semiconductor nanocrystals,” J. Mater. Chem. 19, 1208–1221 (2009).
[CrossRef]

Roodenko, K.

D. Aureau, Y. Varin, K. Roodenko, O. Seitz, O. Pluchery, and Y. J. Chabal, “Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces,” J. Phys. Chem. C 114, 14180–14186 (2010).
[CrossRef]

Sandoghdar, V.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

Seitz, O.

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: Further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

O. Seitz, P. G. Fernandez, G. A. Mahmud, H.-C. Wen, H. J. Stiegler, R. A. Chapman, E. M. Vogel, and Y. J. Chabal, “One-step selective chemistry for silicon-on-insulator sensor geometries,” Langmuir 27, 7337–7340 (2011).
[CrossRef]

D. Aureau, Y. Varin, K. Roodenko, O. Seitz, O. Pluchery, and Y. J. Chabal, “Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces,” J. Phys. Chem. C 114, 14180–14186 (2010).
[CrossRef]

O. Seitz, M. Dai, F. S. Aguirre-Tostado, R. M. Wallace, and Y. J. Chabal, “Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices,” J. Am. Chem. Soc. 131, 18159–18167 (2009).
[CrossRef]

Seo, S.

Y. Sun, H. Wallrabe, S. Seo, and A. Periasamy, “FRET microscopy in 2010: the legacy of Theodor Förster on the 100th anniversary of his birth,” ChemPhysChem 12, 462–474 (2011).
[CrossRef]

Sievert, P. R.

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric subspace,” Appl. Phys. Lett. 89, 031119 (2006).
[CrossRef]

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[CrossRef]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, S. A. Rice and I. Prigogine, eds. (Wiley, 1978), Vol. 37, pp. 1–65.

Sommerfeld, A.

A. Sommerfeld, “Über die ausbreitung der wellen inder drahtlosen telegraphie,” Ann. Phys. Lpz. 81, 1135–1153 (1926).

A. Sommerfeld, Partial Differential Equations in Physics (Academic, 1964).

Sra, A.

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

Stavola, M.

M. Stavola, D. L. Dexter, and R. S. Knox, “Electron-hole pair excitation in semiconductors via energy transfer from an external sensitizer,” Phys. Rev. B 31, 2277–2289 (1985).
[CrossRef]

Stavrinou, P. N.

R. F. Oulton, N. Takada, J. Koe, P. N. Stavrinou, and D. D. C. Bradley, “Strong coupling in organic semiconductor microcavities,” Semicond. Sci. Technol. 18, S419–S427 (2003).
[CrossRef]

Stiegler, H. J.

O. Seitz, P. G. Fernandez, G. A. Mahmud, H.-C. Wen, H. J. Stiegler, R. A. Chapman, E. M. Vogel, and Y. J. Chabal, “One-step selective chemistry for silicon-on-insulator sensor geometries,” Langmuir 27, 7337–7340 (2011).
[CrossRef]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Sun, Y.

Y. Sun, H. Wallrabe, S. Seo, and A. Periasamy, “FRET microscopy in 2010: the legacy of Theodor Förster on the 100th anniversary of his birth,” ChemPhysChem 12, 462–474 (2011).
[CrossRef]

Takada, N.

R. F. Oulton, N. Takada, J. Koe, P. N. Stavrinou, and D. D. C. Bradley, “Strong coupling in organic semiconductor microcavities,” Semicond. Sci. Technol. 18, S419–S427 (2003).
[CrossRef]

Talapin, D. V.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
[CrossRef]

Tielrooij, K. J.

L. Gaudreau, K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Osmond, F. J. G. de Abajo, and F. H. L. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[CrossRef]

Varin, Y.

D. Aureau, Y. Varin, K. Roodenko, O. Seitz, O. Pluchery, and Y. J. Chabal, “Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces,” J. Phys. Chem. C 114, 14180–14186 (2010).
[CrossRef]

Vogel, E. M.

O. Seitz, P. G. Fernandez, G. A. Mahmud, H.-C. Wen, H. J. Stiegler, R. A. Chapman, E. M. Vogel, and Y. J. Chabal, “One-step selective chemistry for silicon-on-insulator sensor geometries,” Langmuir 27, 7337–7340 (2011).
[CrossRef]

Waldeck, D. H.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor surfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
[CrossRef]

D. H. Waldeck, A. P. Alivisatos, and C. B. Harris, “Nonradiative damping of molecular electronic excited states by metal surfaces,” Surf. Sci. 158, 103–125 (1985).
[CrossRef]

Wallace, R. M.

O. Seitz, M. Dai, F. S. Aguirre-Tostado, R. M. Wallace, and Y. J. Chabal, “Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices,” J. Am. Chem. Soc. 131, 18159–18167 (2009).
[CrossRef]

Wallrabe, H.

Y. Sun, H. Wallrabe, S. Seo, and A. Periasamy, “FRET microscopy in 2010: the legacy of Theodor Förster on the 100th anniversary of his birth,” ChemPhysChem 12, 462–474 (2011).
[CrossRef]

Watkins, B.

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric subspace,” Appl. Phys. Lett. 89, 031119 (2006).
[CrossRef]

Wen, H.-C.

O. Seitz, P. G. Fernandez, G. A. Mahmud, H.-C. Wen, H. J. Stiegler, R. A. Chapman, E. M. Vogel, and Y. J. Chabal, “One-step selective chemistry for silicon-on-insulator sensor geometries,” Langmuir 27, 7337–7340 (2011).
[CrossRef]

ACS Nano

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: Further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

Ann. Phys. Lpz.

A. Sommerfeld, “Über die ausbreitung der wellen inder drahtlosen telegraphie,” Ann. Phys. Lpz. 81, 1135–1153 (1926).

Appl. Phys. Lett.

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric subspace,” Appl. Phys. Lett. 89, 031119 (2006).
[CrossRef]

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

Chem. Rev.

V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chem. Rev. 111, 5179–5214 (2011).
[CrossRef]

ChemPhysChem

Y. Sun, H. Wallrabe, S. Seo, and A. Periasamy, “FRET microscopy in 2010: the legacy of Theodor Förster on the 100th anniversary of his birth,” ChemPhysChem 12, 462–474 (2011).
[CrossRef]

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7, 47–57 (2006).
[CrossRef]

J. Am. Chem. Soc.

O. Seitz, M. Dai, F. S. Aguirre-Tostado, R. M. Wallace, and Y. J. Chabal, “Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices,” J. Am. Chem. Soc. 131, 18159–18167 (2009).
[CrossRef]

J. Chem. Phys.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor surfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
[CrossRef]

J. Lumin.

D. L. Dexter, “Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells,” J. Lumin. 18/19, 779–784 (1979).
[CrossRef]

J. Mater. Chem.

A. L. Rogach, T. A. Klar, J. M. Lupton, A. Meijerink, and J. Feldman, “Energy transfer with semiconductor nanocrystals,” J. Mater. Chem. 19, 1208–1221 (2009).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Chem. C

D. Aureau, Y. Varin, K. Roodenko, O. Seitz, O. Pluchery, and Y. J. Chabal, “Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces,” J. Phys. Chem. C 114, 14180–14186 (2010).
[CrossRef]

Langmuir

O. Seitz, P. G. Fernandez, G. A. Mahmud, H.-C. Wen, H. J. Stiegler, R. A. Chapman, E. M. Vogel, and Y. J. Chabal, “One-step selective chemistry for silicon-on-insulator sensor geometries,” Langmuir 27, 7337–7340 (2011).
[CrossRef]

Nano Lett.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

L. Gaudreau, K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Osmond, F. J. G. de Abajo, and F. H. L. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[CrossRef]

Nat. Photonics

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[CrossRef]

New J. Phys.

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[CrossRef]

Phys. Rev. B

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

M. Stavola, D. L. Dexter, and R. S. Knox, “Electron-hole pair excitation in semiconductors via energy transfer from an external sensitizer,” Phys. Rev. B 31, 2277–2289 (1985).
[CrossRef]

Phys. Rev. Lett.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
[CrossRef]

Semicond. Sci. Technol.

R. F. Oulton, N. Takada, J. Koe, P. N. Stavrinou, and D. D. C. Bradley, “Strong coupling in organic semiconductor microcavities,” Semicond. Sci. Technol. 18, S419–S427 (2003).
[CrossRef]

Surf. Sci.

D. H. Waldeck, A. P. Alivisatos, and C. B. Harris, “Nonradiative damping of molecular electronic excited states by metal surfaces,” Surf. Sci. 158, 103–125 (1985).
[CrossRef]

Other

A. Sommerfeld, Partial Differential Equations in Physics (Academic, 1964).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, 2004).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, S. A. Rice and I. Prigogine, eds. (Wiley, 1978), Vol. 37, pp. 1–65.

V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Elsevier, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematics of the microscope-based TCSPC experiment used to study PL from NQDs on various substrates.

Fig. 2.
Fig. 2.

(a) Examples of NQD PL decays on bare Si and on SiO2Si substrates with thin spacer layers as indicated with values of their normalized thickness d/λ0. The corresponding PL lifetimes extracted from mono-exponential fits to these decay curves are shown by color-coordinated dots in the inset on panel (b). (b) Measured NQD lifetimes (black dots) as a function of the normalized thickness d/λ0 of the SiO2 layer over an extended range of thicknesses. The black dashed–dotted line shows the result of calculations as per Eq. (2) with silicon’s ϵ=0, while the red solid curve with ϵ=0.3. The inset displays an expanded view for very thin spacers where NRET contribution is significant.

Fig. 3.
Fig. 3.

Details of purely radiative decay processes for a randomly oriented NQD dipole at distance z=0.007λ0 from the surface of the SiO2 spacer layer for different thicknesses d/λ0 of the spacer. Panels (a)–(c) show the radiative emission patterns into the top [air, Eq. (8)] and bottom [Si, Eq. (9)] semi-spaces: (a) for d/λ0=0.01, (b) d/λ0=0.1, and (c) d/λ0=1. Panel (d) displays the total radiated power (black curve) and contributions to it as integrated over appropriated ranges of emission angles. The green curve shows the power emitted into the air, the cyan curve the power emitted into Si via the “allowed light,” that is, within angle θ1 from the downward vertical direction. The red curve shows the power emitted into Si via the “forbidden light,” that is, at angles beyond θ1(14.3°) from the downward direction. The latter emission corresponds to RET region shaded in blue in panels (a) and (b). Panel (e) displays proportions of the forbidden light emission in the total radiated power. The red curve corresponds to the emission into Si integrated over all angles beyond θ1 from the downward direction. The black line shows the emission integrated over angles beyond θ2(21.8°) from the downward direction (angles between θ1 and θ2 excluded).

Fig. 4.
Fig. 4.

(a) PL emission intensity from NQDs as a function of the thickness of the SiO2 spacer layer. Black dots show experimental results as collected. The green dashed–dotted line shows the variation of the emitted power per one NQD exciton following from the integration of corresponding radiation patterns in panel (b) over objective’s acceptance cone. The blue dashed line shows the variation of the intensity of the excitation laser field (λexc=400nm) at NQD positions reflecting thus the number of photogenerated excitons. The red line is a normalized product of the green and blue curves that is compared to the experimental data points. (b) PL emission patterns for several spacer thicknesses as indicated along with the collection cone of the objective used in experiments.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Γ0=k03|p|23πϵ0,
Γ/Γ0=1+I(0,),
I(a,b)=Reabsds21s2[(2s21)r(p)(s)+r(s)(s)]×exp(2ik0z1s2).
kzi2(s)=(ϵis2)k02.
1+I(0,1)
I(1,n)
I(n,)
p(θ)P0=12+|r(p)|2+|r(s)|24+12Re[(r(s)cos2θr(p))e2ik0zcosθ].
p(θ)P0=n3cos2θ4|1α|e2k0zIm(1α)×[|t(p)|2(|1α|+α)+|t(s)|2],

Metrics