Abstract

The luminescence properties of osthole in the presence of spherical silver nanoparticles (AgNPs) with sizes ranging from 5 to 25 nm were investigated by means of fluorescence and absorption spectroscopic experiments, as well as time-resolved fluorescence experiments. Quenching of the fluorescence of osthole has been found to increase with a reduction in the sizes of the silver nanoparticles. Using the Gersten–Nitzan model, the theoretical and experimental results were compared, and the results are in good unity. Stern–Volmer quenching constants have also been calculated. Both dynamic quenching and static quenching mechanisms exist between osthole molecules and silver nanoparticles.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, J. Kusba, Y. B. Shen, J. Malicka, S. D’Auria, Z. Gryczynski, and I. Gryczynski, “Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA,” J. Fluoresc. 13, 69–77 (2003).
    [CrossRef]
  2. J. Zhang, Y. Fu, and J. R. Lakowicz, “Enhanced Forster resonance energy transfer (FRET) on a single metal particle,” J. Phys. Chem. C 111, 50–56 (2007).
    [CrossRef]
  3. J. Malicka, I. Gryczynski, J. Y. Fang, J. Kusba, and J. R. Lakowicz, “Increased resonance energy transfer between fluorophores bound to DNA in proximity to metallic silver particles,” Anal. Biochem. 315, 160–169 (2003).
    [CrossRef]
  4. S. Garabagiu, “A spectroscopic study on the interaction between gold nanoparticles and hemoglobin,” Mater. Res. Bull. 46, 2474–2477 (2011).
    [CrossRef]
  5. Y. H. Ding, Z. Q. Chen, J. Xie, and R. Guo, “Comparative studies on adsorption behavior of thionine on gold nanoparticles with different sizes,” J. Colloid Interface Sci. 327, 243–250 (2008).
    [CrossRef]
  6. Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
    [CrossRef]
  7. M. P. Singh and G. F. Strouse, “Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanoparticle,” J. Am. Chem. Soc. 132, 9383–9391 (2010).
    [CrossRef]
  8. X. Li, J. Qian, L. Jiang, and S. L. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94, 063111 (2009).
    [CrossRef]
  9. E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5, 585–589 (2005).
    [CrossRef]
  10. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  11. J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59, 1413–1416 (2005).
    [CrossRef]
  12. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light emitting device structure: cathode structure for plasmonic application,” Appl. Phys. Lett. 94, 173301 (2009).
    [CrossRef]
  13. S. J. Zhuo, M. W. Shao, L. Cheng, R. H. Que, S. J. Zhuo, D. D. D. Ma, and S. T. Lee, “Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure,” Appl. Phys. Lett. 96, 103108 (2010).
    [CrossRef]
  14. L. Shang and S. J. Dong, “Sensitive detection of cysteine based on fluorescent silver clusters,” Biosens. Bioelectron. 24, 1569–1573 (2009).
    [CrossRef]
  15. R. Wilson, “The use of gold nanoparticles in diagnostics and detection,” Chem. Soc. Rev. 37, 2028–2045 (2008).
    [CrossRef]
  16. W. J. Wang, C. L. Chen, M. X. Qian, and X. S. Zhao, “Aptamer biosensor for protein detection using gold nanoparticles,” Anal. Biochem. 373, 213–219 (2008).
    [CrossRef]
  17. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
    [CrossRef]
  18. T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, and J. Feldmann, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano. Lett. 7, 1941–1946 (2007).
  19. M. Umadevi, P. Vanelle, T. Terme, B. J. M. Rajkumar, and V. Ramakrishnan, “Fluorescence quenching of 1, 4-dihydroxy-2, 3-dimethyl-9, 10-anthraquinone by silver nanoparticles: size effect,” J. Fluoresc. 19, 3–10 (2009).
    [CrossRef]
  20. J. Mariam, P. M. Dongre, and D. C. Kothari, “Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy,” J. Fluoresc. 21, 2193–2199 (2011).
    [CrossRef]
  21. L. Q. Guo, J. H. Zhong, J. M. Wu, F. F. Fu, G. N. Chen, Y. X. Chen, X. Y. Zheng, and S. Lin, “Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer,” Analyst 136, 1659–1663 (2011).
    [CrossRef]
  22. X. X. Mao, W. Yin, M. F. Liu, M. Z. Ye, P. Q. Liu, J. X. Liu, Q. S. Lian, S. W. Xu, and R. B. Pi, “Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats,” Brain Res. 1385, 275–280 (2011).
  23. J. J. Zhang, J. Xue, H. B. Wang, Y. Zhang, and M. L. Xie, “Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress,” Phytother. Res. 25, 638–643 (2011).
  24. M. Zimecki, J. Artym, W. Cisowski, I. Mazol, M. Wlodarczyk, and M. Glensk, “Immunomodulatory and anti-inflammatory activity of selected osthole derivatives,” Z. Naturforsch., B 64, 361–368 (2009).
  25. X. H. Chen, R. B. Pi, Y. Zou, M. Liu, X. M. Ma, Y. Jiang, X. X. Mao, and X. Q. Hu, “Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole-a natural coumarin,” Eur. J. Pharmacol. 629, 40–46 (2010).
    [CrossRef]
  26. H. Y. Wang, D. L. Chen, Y. J. Wei, Y. F. Chang, and J. L. Zhao, “A simple and sensitive assay of gallic acid based on localized surface plasmon resonance light scattering of silver nanoparticles through modified Tollens process,” Anal. Sci. 27, 937–941 (2011).
    [CrossRef]
  27. M. C. Liu, Surface-Enhanced Fluorescence of Acridine Orange Molecules in the System of Silver Nanoparticles (Shanxi Normal University, 2011).
  28. J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles—appendix,” J. Chem. Phys. 75, 1139–1192 (1981).
    [CrossRef]
  29. C. G. Khoury, S. J. Norton, and T. Vo-Dinh, “Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method,” Nanotechnology 21, 315203 (2010).
    [CrossRef]
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  31. M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. N. Xia, “Surface-enhanced Raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
    [CrossRef]
  32. M. H. Kim, X. M. Lu, B. Wiley, E. P. Lee, and Y. N. Xia, “Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HauCl4,” J. Phys. Chem. C 112, 7872–7876 (2008).
    [CrossRef]
  33. X. X. Li, Fluorescent Property of Osthol and its Application in the Analysis of Traditional Chinese Medicines (Hebei Normal University, 2009).
  34. G. Z. Chen, Z. X. Huang, and Z. Z. Zheng, Fluorescence Analysis (Science, 1990).
  35. H. A. Benes and J. H. Hildebrand, “A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons,” J. Am. Chem. Soc. 71, 2703–2707 (1949).
    [CrossRef]

2011

S. Garabagiu, “A spectroscopic study on the interaction between gold nanoparticles and hemoglobin,” Mater. Res. Bull. 46, 2474–2477 (2011).
[CrossRef]

J. Mariam, P. M. Dongre, and D. C. Kothari, “Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy,” J. Fluoresc. 21, 2193–2199 (2011).
[CrossRef]

L. Q. Guo, J. H. Zhong, J. M. Wu, F. F. Fu, G. N. Chen, Y. X. Chen, X. Y. Zheng, and S. Lin, “Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer,” Analyst 136, 1659–1663 (2011).
[CrossRef]

X. X. Mao, W. Yin, M. F. Liu, M. Z. Ye, P. Q. Liu, J. X. Liu, Q. S. Lian, S. W. Xu, and R. B. Pi, “Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats,” Brain Res. 1385, 275–280 (2011).

J. J. Zhang, J. Xue, H. B. Wang, Y. Zhang, and M. L. Xie, “Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress,” Phytother. Res. 25, 638–643 (2011).

H. Y. Wang, D. L. Chen, Y. J. Wei, Y. F. Chang, and J. L. Zhao, “A simple and sensitive assay of gallic acid based on localized surface plasmon resonance light scattering of silver nanoparticles through modified Tollens process,” Anal. Sci. 27, 937–941 (2011).
[CrossRef]

2010

C. G. Khoury, S. J. Norton, and T. Vo-Dinh, “Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method,” Nanotechnology 21, 315203 (2010).
[CrossRef]

X. H. Chen, R. B. Pi, Y. Zou, M. Liu, X. M. Ma, Y. Jiang, X. X. Mao, and X. Q. Hu, “Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole-a natural coumarin,” Eur. J. Pharmacol. 629, 40–46 (2010).
[CrossRef]

M. P. Singh and G. F. Strouse, “Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanoparticle,” J. Am. Chem. Soc. 132, 9383–9391 (2010).
[CrossRef]

S. J. Zhuo, M. W. Shao, L. Cheng, R. H. Que, S. J. Zhuo, D. D. D. Ma, and S. T. Lee, “Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure,” Appl. Phys. Lett. 96, 103108 (2010).
[CrossRef]

2009

L. Shang and S. J. Dong, “Sensitive detection of cysteine based on fluorescent silver clusters,” Biosens. Bioelectron. 24, 1569–1573 (2009).
[CrossRef]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light emitting device structure: cathode structure for plasmonic application,” Appl. Phys. Lett. 94, 173301 (2009).
[CrossRef]

M. Umadevi, P. Vanelle, T. Terme, B. J. M. Rajkumar, and V. Ramakrishnan, “Fluorescence quenching of 1, 4-dihydroxy-2, 3-dimethyl-9, 10-anthraquinone by silver nanoparticles: size effect,” J. Fluoresc. 19, 3–10 (2009).
[CrossRef]

X. Li, J. Qian, L. Jiang, and S. L. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94, 063111 (2009).
[CrossRef]

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. N. Xia, “Surface-enhanced Raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[CrossRef]

M. Zimecki, J. Artym, W. Cisowski, I. Mazol, M. Wlodarczyk, and M. Glensk, “Immunomodulatory and anti-inflammatory activity of selected osthole derivatives,” Z. Naturforsch., B 64, 361–368 (2009).

2008

M. H. Kim, X. M. Lu, B. Wiley, E. P. Lee, and Y. N. Xia, “Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HauCl4,” J. Phys. Chem. C 112, 7872–7876 (2008).
[CrossRef]

Y. H. Ding, Z. Q. Chen, J. Xie, and R. Guo, “Comparative studies on adsorption behavior of thionine on gold nanoparticles with different sizes,” J. Colloid Interface Sci. 327, 243–250 (2008).
[CrossRef]

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

R. Wilson, “The use of gold nanoparticles in diagnostics and detection,” Chem. Soc. Rev. 37, 2028–2045 (2008).
[CrossRef]

W. J. Wang, C. L. Chen, M. X. Qian, and X. S. Zhao, “Aptamer biosensor for protein detection using gold nanoparticles,” Anal. Biochem. 373, 213–219 (2008).
[CrossRef]

2007

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, and J. Feldmann, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano. Lett. 7, 1941–1946 (2007).

J. Zhang, Y. Fu, and J. R. Lakowicz, “Enhanced Forster resonance energy transfer (FRET) on a single metal particle,” J. Phys. Chem. C 111, 50–56 (2007).
[CrossRef]

2005

E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5, 585–589 (2005).
[CrossRef]

J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59, 1413–1416 (2005).
[CrossRef]

2003

J. Malicka, I. Gryczynski, J. Y. Fang, J. Kusba, and J. R. Lakowicz, “Increased resonance energy transfer between fluorophores bound to DNA in proximity to metallic silver particles,” Anal. Biochem. 315, 160–169 (2003).
[CrossRef]

J. R. Lakowicz, J. Kusba, Y. B. Shen, J. Malicka, S. D’Auria, Z. Gryczynski, and I. Gryczynski, “Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA,” J. Fluoresc. 13, 69–77 (2003).
[CrossRef]

2002

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef]

1981

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles—appendix,” J. Chem. Phys. 75, 1139–1192 (1981).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1949

H. A. Benes and J. H. Hildebrand, “A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons,” J. Am. Chem. Soc. 71, 2703–2707 (1949).
[CrossRef]

Ahn, C. W.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light emitting device structure: cathode structure for plasmonic application,” Appl. Phys. Lett. 94, 173301 (2009).
[CrossRef]

Artym, J.

M. Zimecki, J. Artym, W. Cisowski, I. Mazol, M. Wlodarczyk, and M. Glensk, “Immunomodulatory and anti-inflammatory activity of selected osthole derivatives,” Z. Naturforsch., B 64, 361–368 (2009).

Benes, H. A.

H. A. Benes and J. H. Hildebrand, “A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons,” J. Am. Chem. Soc. 71, 2703–2707 (1949).
[CrossRef]

Camargo, P. H. C.

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. N. Xia, “Surface-enhanced Raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[CrossRef]

Chang, Y. F.

H. Y. Wang, D. L. Chen, Y. J. Wei, Y. F. Chang, and J. L. Zhao, “A simple and sensitive assay of gallic acid based on localized surface plasmon resonance light scattering of silver nanoparticles through modified Tollens process,” Anal. Sci. 27, 937–941 (2011).
[CrossRef]

Chen, C. L.

W. J. Wang, C. L. Chen, M. X. Qian, and X. S. Zhao, “Aptamer biosensor for protein detection using gold nanoparticles,” Anal. Biochem. 373, 213–219 (2008).
[CrossRef]

Chen, D. L.

H. Y. Wang, D. L. Chen, Y. J. Wei, Y. F. Chang, and J. L. Zhao, “A simple and sensitive assay of gallic acid based on localized surface plasmon resonance light scattering of silver nanoparticles through modified Tollens process,” Anal. Sci. 27, 937–941 (2011).
[CrossRef]

Chen, G. N.

L. Q. Guo, J. H. Zhong, J. M. Wu, F. F. Fu, G. N. Chen, Y. X. Chen, X. Y. Zheng, and S. Lin, “Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer,” Analyst 136, 1659–1663 (2011).
[CrossRef]

Chen, G. Z.

G. Z. Chen, Z. X. Huang, and Z. Z. Zheng, Fluorescence Analysis (Science, 1990).

Chen, X. H.

X. H. Chen, R. B. Pi, Y. Zou, M. Liu, X. M. Ma, Y. Jiang, X. X. Mao, and X. Q. Hu, “Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole-a natural coumarin,” Eur. J. Pharmacol. 629, 40–46 (2010).
[CrossRef]

Chen, Y. C.

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Chen, Y. X.

L. Q. Guo, J. H. Zhong, J. M. Wu, F. F. Fu, G. N. Chen, Y. X. Chen, X. Y. Zheng, and S. Lin, “Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer,” Analyst 136, 1659–1663 (2011).
[CrossRef]

Chen, Z. Q.

Y. H. Ding, Z. Q. Chen, J. Xie, and R. Guo, “Comparative studies on adsorption behavior of thionine on gold nanoparticles with different sizes,” J. Colloid Interface Sci. 327, 243–250 (2008).
[CrossRef]

Cheng, L.

S. J. Zhuo, M. W. Shao, L. Cheng, R. H. Que, S. J. Zhuo, D. D. D. Ma, and S. T. Lee, “Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure,” Appl. Phys. Lett. 96, 103108 (2010).
[CrossRef]

Choi, K. C.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light emitting device structure: cathode structure for plasmonic application,” Appl. Phys. Lett. 94, 173301 (2009).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cisowski, W.

M. Zimecki, J. Artym, W. Cisowski, I. Mazol, M. Wlodarczyk, and M. Glensk, “Immunomodulatory and anti-inflammatory activity of selected osthole derivatives,” Z. Naturforsch., B 64, 361–368 (2009).

Cobley, C.

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. N. Xia, “Surface-enhanced Raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[CrossRef]

D’Auria, S.

J. R. Lakowicz, J. Kusba, Y. B. Shen, J. Malicka, S. D’Auria, Z. Gryczynski, and I. Gryczynski, “Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA,” J. Fluoresc. 13, 69–77 (2003).
[CrossRef]

Ding, Y. H.

Y. H. Ding, Z. Q. Chen, J. Xie, and R. Guo, “Comparative studies on adsorption behavior of thionine on gold nanoparticles with different sizes,” J. Colloid Interface Sci. 327, 243–250 (2008).
[CrossRef]

Dong, S. J.

L. Shang and S. J. Dong, “Sensitive detection of cysteine based on fluorescent silver clusters,” Biosens. Bioelectron. 24, 1569–1573 (2009).
[CrossRef]

Dongre, P. M.

J. Mariam, P. M. Dongre, and D. C. Kothari, “Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy,” J. Fluoresc. 21, 2193–2199 (2011).
[CrossRef]

Dulkeith, E.

E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5, 585–589 (2005).
[CrossRef]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef]

Fang, J. Y.

J. Malicka, I. Gryczynski, J. Y. Fang, J. Kusba, and J. R. Lakowicz, “Increased resonance energy transfer between fluorophores bound to DNA in proximity to metallic silver particles,” Anal. Biochem. 315, 160–169 (2003).
[CrossRef]

Feldmann, J.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, and J. Feldmann, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano. Lett. 7, 1941–1946 (2007).

E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5, 585–589 (2005).
[CrossRef]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef]

Fu, F. F.

L. Q. Guo, J. H. Zhong, J. M. Wu, F. F. Fu, G. N. Chen, Y. X. Chen, X. Y. Zheng, and S. Lin, “Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer,” Analyst 136, 1659–1663 (2011).
[CrossRef]

Fu, Y.

J. Zhang, Y. Fu, and J. R. Lakowicz, “Enhanced Forster resonance energy transfer (FRET) on a single metal particle,” J. Phys. Chem. C 111, 50–56 (2007).
[CrossRef]

Garabagiu, S.

S. Garabagiu, “A spectroscopic study on the interaction between gold nanoparticles and hemoglobin,” Mater. Res. Bull. 46, 2474–2477 (2011).
[CrossRef]

Gersten, J.

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles—appendix,” J. Chem. Phys. 75, 1139–1192 (1981).
[CrossRef]

Ginger, D. S.

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Glensk, M.

M. Zimecki, J. Artym, W. Cisowski, I. Mazol, M. Wlodarczyk, and M. Glensk, “Immunomodulatory and anti-inflammatory activity of selected osthole derivatives,” Z. Naturforsch., B 64, 361–368 (2009).

Gryczynski, I.

J. R. Lakowicz, J. Kusba, Y. B. Shen, J. Malicka, S. D’Auria, Z. Gryczynski, and I. Gryczynski, “Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA,” J. Fluoresc. 13, 69–77 (2003).
[CrossRef]

J. Malicka, I. Gryczynski, J. Y. Fang, J. Kusba, and J. R. Lakowicz, “Increased resonance energy transfer between fluorophores bound to DNA in proximity to metallic silver particles,” Anal. Biochem. 315, 160–169 (2003).
[CrossRef]

Gryczynski, Z.

J. R. Lakowicz, J. Kusba, Y. B. Shen, J. Malicka, S. D’Auria, Z. Gryczynski, and I. Gryczynski, “Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA,” J. Fluoresc. 13, 69–77 (2003).
[CrossRef]

Guo, L. Q.

L. Q. Guo, J. H. Zhong, J. M. Wu, F. F. Fu, G. N. Chen, Y. X. Chen, X. Y. Zheng, and S. Lin, “Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer,” Analyst 136, 1659–1663 (2011).
[CrossRef]

Guo, R.

Y. H. Ding, Z. Q. Chen, J. Xie, and R. Guo, “Comparative studies on adsorption behavior of thionine on gold nanoparticles with different sizes,” J. Colloid Interface Sci. 327, 243–250 (2008).
[CrossRef]

He, S. L.

X. Li, J. Qian, L. Jiang, and S. L. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94, 063111 (2009).
[CrossRef]

Hildebrand, J. H.

H. A. Benes and J. H. Hildebrand, “A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons,” J. Am. Chem. Soc. 71, 2703–2707 (1949).
[CrossRef]

Hu, X. Q.

X. H. Chen, R. B. Pi, Y. Zou, M. Liu, X. M. Ma, Y. Jiang, X. X. Mao, and X. Q. Hu, “Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole-a natural coumarin,” Eur. J. Pharmacol. 629, 40–46 (2010).
[CrossRef]

Huang, Z. X.

G. Z. Chen, Z. X. Huang, and Z. Z. Zheng, Fluorescence Analysis (Science, 1990).

Jen-La Plante, I.

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Jiang, L.

X. Li, J. Qian, L. Jiang, and S. L. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94, 063111 (2009).
[CrossRef]

Jiang, Y.

X. H. Chen, R. B. Pi, Y. Zou, M. Liu, X. M. Ma, Y. Jiang, X. X. Mao, and X. Q. Hu, “Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole-a natural coumarin,” Eur. J. Pharmacol. 629, 40–46 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Khoury, C. G.

C. G. Khoury, S. J. Norton, and T. Vo-Dinh, “Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method,” Nanotechnology 21, 315203 (2010).
[CrossRef]

Kim, M. H.

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. N. Xia, “Surface-enhanced Raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[CrossRef]

M. H. Kim, X. M. Lu, B. Wiley, E. P. Lee, and Y. N. Xia, “Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HauCl4,” J. Phys. Chem. C 112, 7872–7876 (2008).
[CrossRef]

Klar, T. A.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, and J. Feldmann, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano. Lett. 7, 1941–1946 (2007).

E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5, 585–589 (2005).
[CrossRef]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef]

Kothari, D. C.

J. Mariam, P. M. Dongre, and D. C. Kothari, “Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy,” J. Fluoresc. 21, 2193–2199 (2011).
[CrossRef]

Kusba, J.

J. R. Lakowicz, J. Kusba, Y. B. Shen, J. Malicka, S. D’Auria, Z. Gryczynski, and I. Gryczynski, “Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA,” J. Fluoresc. 13, 69–77 (2003).
[CrossRef]

J. Malicka, I. Gryczynski, J. Y. Fang, J. Kusba, and J. R. Lakowicz, “Increased resonance energy transfer between fluorophores bound to DNA in proximity to metallic silver particles,” Anal. Biochem. 315, 160–169 (2003).
[CrossRef]

Lakowicz, J. R.

J. Zhang, Y. Fu, and J. R. Lakowicz, “Enhanced Forster resonance energy transfer (FRET) on a single metal particle,” J. Phys. Chem. C 111, 50–56 (2007).
[CrossRef]

J. Malicka, I. Gryczynski, J. Y. Fang, J. Kusba, and J. R. Lakowicz, “Increased resonance energy transfer between fluorophores bound to DNA in proximity to metallic silver particles,” Anal. Biochem. 315, 160–169 (2003).
[CrossRef]

J. R. Lakowicz, J. Kusba, Y. B. Shen, J. Malicka, S. D’Auria, Z. Gryczynski, and I. Gryczynski, “Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA,” J. Fluoresc. 13, 69–77 (2003).
[CrossRef]

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Lee, E. P.

M. H. Kim, X. M. Lu, B. Wiley, E. P. Lee, and Y. N. Xia, “Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HauCl4,” J. Phys. Chem. C 112, 7872–7876 (2008).
[CrossRef]

Lee, S. T.

S. J. Zhuo, M. W. Shao, L. Cheng, R. H. Que, S. J. Zhuo, D. D. D. Ma, and S. T. Lee, “Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure,” Appl. Phys. Lett. 96, 103108 (2010).
[CrossRef]

Li, X.

X. Li, J. Qian, L. Jiang, and S. L. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94, 063111 (2009).
[CrossRef]

Li, X. X.

X. X. Li, Fluorescent Property of Osthol and its Application in the Analysis of Traditional Chinese Medicines (Hebei Normal University, 2009).

Li, Z. Y.

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. N. Xia, “Surface-enhanced Raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[CrossRef]

Lian, Q. S.

X. X. Mao, W. Yin, M. F. Liu, M. Z. Ye, P. Q. Liu, J. X. Liu, Q. S. Lian, S. W. Xu, and R. B. Pi, “Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats,” Brain Res. 1385, 275–280 (2011).

Lin, S.

L. Q. Guo, J. H. Zhong, J. M. Wu, F. F. Fu, G. N. Chen, Y. X. Chen, X. Y. Zheng, and S. Lin, “Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer,” Analyst 136, 1659–1663 (2011).
[CrossRef]

Liu, J. X.

X. X. Mao, W. Yin, M. F. Liu, M. Z. Ye, P. Q. Liu, J. X. Liu, Q. S. Lian, S. W. Xu, and R. B. Pi, “Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats,” Brain Res. 1385, 275–280 (2011).

Liu, M.

X. H. Chen, R. B. Pi, Y. Zou, M. Liu, X. M. Ma, Y. Jiang, X. X. Mao, and X. Q. Hu, “Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole-a natural coumarin,” Eur. J. Pharmacol. 629, 40–46 (2010).
[CrossRef]

Liu, M. C.

M. C. Liu, Surface-Enhanced Fluorescence of Acridine Orange Molecules in the System of Silver Nanoparticles (Shanxi Normal University, 2011).

Liu, M. F.

X. X. Mao, W. Yin, M. F. Liu, M. Z. Ye, P. Q. Liu, J. X. Liu, Q. S. Lian, S. W. Xu, and R. B. Pi, “Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats,” Brain Res. 1385, 275–280 (2011).

Liu, P. Q.

X. X. Mao, W. Yin, M. F. Liu, M. Z. Ye, P. Q. Liu, J. X. Liu, Q. S. Lian, S. W. Xu, and R. B. Pi, “Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats,” Brain Res. 1385, 275–280 (2011).

Lu, X. M.

M. H. Kim, X. M. Lu, B. Wiley, E. P. Lee, and Y. N. Xia, “Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HauCl4,” J. Phys. Chem. C 112, 7872–7876 (2008).
[CrossRef]

Ma, D. D. D.

S. J. Zhuo, M. W. Shao, L. Cheng, R. H. Que, S. J. Zhuo, D. D. D. Ma, and S. T. Lee, “Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure,” Appl. Phys. Lett. 96, 103108 (2010).
[CrossRef]

Ma, X. M.

X. H. Chen, R. B. Pi, Y. Zou, M. Liu, X. M. Ma, Y. Jiang, X. X. Mao, and X. Q. Hu, “Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole-a natural coumarin,” Eur. J. Pharmacol. 629, 40–46 (2010).
[CrossRef]

Malicka, J.

J. Malicka, I. Gryczynski, J. Y. Fang, J. Kusba, and J. R. Lakowicz, “Increased resonance energy transfer between fluorophores bound to DNA in proximity to metallic silver particles,” Anal. Biochem. 315, 160–169 (2003).
[CrossRef]

J. R. Lakowicz, J. Kusba, Y. B. Shen, J. Malicka, S. D’Auria, Z. Gryczynski, and I. Gryczynski, “Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA,” J. Fluoresc. 13, 69–77 (2003).
[CrossRef]

Mao, X. X.

X. X. Mao, W. Yin, M. F. Liu, M. Z. Ye, P. Q. Liu, J. X. Liu, Q. S. Lian, S. W. Xu, and R. B. Pi, “Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats,” Brain Res. 1385, 275–280 (2011).

X. H. Chen, R. B. Pi, Y. Zou, M. Liu, X. M. Ma, Y. Jiang, X. X. Mao, and X. Q. Hu, “Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole-a natural coumarin,” Eur. J. Pharmacol. 629, 40–46 (2010).
[CrossRef]

Mariam, J.

J. Mariam, P. M. Dongre, and D. C. Kothari, “Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy,” J. Fluoresc. 21, 2193–2199 (2011).
[CrossRef]

Mazol, I.

M. Zimecki, J. Artym, W. Cisowski, I. Mazol, M. Wlodarczyk, and M. Glensk, “Immunomodulatory and anti-inflammatory activity of selected osthole derivatives,” Z. Naturforsch., B 64, 361–368 (2009).

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef]

Munechika, K.

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Munro, A. M.

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef]

Nitzan, A.

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles—appendix,” J. Chem. Phys. 75, 1139–1192 (1981).
[CrossRef]

Norton, S. J.

C. G. Khoury, S. J. Norton, and T. Vo-Dinh, “Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method,” Nanotechnology 21, 315203 (2010).
[CrossRef]

Pi, R. B.

X. X. Mao, W. Yin, M. F. Liu, M. Z. Ye, P. Q. Liu, J. X. Liu, Q. S. Lian, S. W. Xu, and R. B. Pi, “Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats,” Brain Res. 1385, 275–280 (2011).

X. H. Chen, R. B. Pi, Y. Zou, M. Liu, X. M. Ma, Y. Jiang, X. X. Mao, and X. Q. Hu, “Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole-a natural coumarin,” Eur. J. Pharmacol. 629, 40–46 (2010).
[CrossRef]

Qian, J.

X. Li, J. Qian, L. Jiang, and S. L. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94, 063111 (2009).
[CrossRef]

Qian, M. X.

W. J. Wang, C. L. Chen, M. X. Qian, and X. S. Zhao, “Aptamer biosensor for protein detection using gold nanoparticles,” Anal. Biochem. 373, 213–219 (2008).
[CrossRef]

Que, R. H.

S. J. Zhuo, M. W. Shao, L. Cheng, R. H. Que, S. J. Zhuo, D. D. D. Ma, and S. T. Lee, “Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure,” Appl. Phys. Lett. 96, 103108 (2010).
[CrossRef]

Rajkumar, B. J. M.

M. Umadevi, P. Vanelle, T. Terme, B. J. M. Rajkumar, and V. Ramakrishnan, “Fluorescence quenching of 1, 4-dihydroxy-2, 3-dimethyl-9, 10-anthraquinone by silver nanoparticles: size effect,” J. Fluoresc. 19, 3–10 (2009).
[CrossRef]

Ramakrishnan, V.

M. Umadevi, P. Vanelle, T. Terme, B. J. M. Rajkumar, and V. Ramakrishnan, “Fluorescence quenching of 1, 4-dihydroxy-2, 3-dimethyl-9, 10-anthraquinone by silver nanoparticles: size effect,” J. Fluoresc. 19, 3–10 (2009).
[CrossRef]

Ringler, M.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, and J. Feldmann, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano. Lett. 7, 1941–1946 (2007).

E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5, 585–589 (2005).
[CrossRef]

Rycenga, M.

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. N. Xia, “Surface-enhanced Raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[CrossRef]

Shang, L.

L. Shang and S. J. Dong, “Sensitive detection of cysteine based on fluorescent silver clusters,” Biosens. Bioelectron. 24, 1569–1573 (2009).
[CrossRef]

Shao, M. W.

S. J. Zhuo, M. W. Shao, L. Cheng, R. H. Que, S. J. Zhuo, D. D. D. Ma, and S. T. Lee, “Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure,” Appl. Phys. Lett. 96, 103108 (2010).
[CrossRef]

Shen, Y. B.

J. R. Lakowicz, J. Kusba, Y. B. Shen, J. Malicka, S. D’Auria, Z. Gryczynski, and I. Gryczynski, “Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA,” J. Fluoresc. 13, 69–77 (2003).
[CrossRef]

Singh, M. P.

M. P. Singh and G. F. Strouse, “Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanoparticle,” J. Am. Chem. Soc. 132, 9383–9391 (2010).
[CrossRef]

Skrabalak, S. E.

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Soller, T.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, and J. Feldmann, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano. Lett. 7, 1941–1946 (2007).

Strouse, G. F.

M. P. Singh and G. F. Strouse, “Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanoparticle,” J. Am. Chem. Soc. 132, 9383–9391 (2010).
[CrossRef]

Terme, T.

M. Umadevi, P. Vanelle, T. Terme, B. J. M. Rajkumar, and V. Ramakrishnan, “Fluorescence quenching of 1, 4-dihydroxy-2, 3-dimethyl-9, 10-anthraquinone by silver nanoparticles: size effect,” J. Fluoresc. 19, 3–10 (2009).
[CrossRef]

Umadevi, M.

M. Umadevi, P. Vanelle, T. Terme, B. J. M. Rajkumar, and V. Ramakrishnan, “Fluorescence quenching of 1, 4-dihydroxy-2, 3-dimethyl-9, 10-anthraquinone by silver nanoparticles: size effect,” J. Fluoresc. 19, 3–10 (2009).
[CrossRef]

Vanelle, P.

M. Umadevi, P. Vanelle, T. Terme, B. J. M. Rajkumar, and V. Ramakrishnan, “Fluorescence quenching of 1, 4-dihydroxy-2, 3-dimethyl-9, 10-anthraquinone by silver nanoparticles: size effect,” J. Fluoresc. 19, 3–10 (2009).
[CrossRef]

Vo-Dinh, T.

C. G. Khoury, S. J. Norton, and T. Vo-Dinh, “Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method,” Nanotechnology 21, 315203 (2010).
[CrossRef]

Wang, H. B.

J. J. Zhang, J. Xue, H. B. Wang, Y. Zhang, and M. L. Xie, “Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress,” Phytother. Res. 25, 638–643 (2011).

Wang, H. Y.

H. Y. Wang, D. L. Chen, Y. J. Wei, Y. F. Chang, and J. L. Zhao, “A simple and sensitive assay of gallic acid based on localized surface plasmon resonance light scattering of silver nanoparticles through modified Tollens process,” Anal. Sci. 27, 937–941 (2011).
[CrossRef]

Wang, W. J.

W. J. Wang, C. L. Chen, M. X. Qian, and X. S. Zhao, “Aptamer biosensor for protein detection using gold nanoparticles,” Anal. Biochem. 373, 213–219 (2008).
[CrossRef]

Wei, Y. J.

H. Y. Wang, D. L. Chen, Y. J. Wei, Y. F. Chang, and J. L. Zhao, “A simple and sensitive assay of gallic acid based on localized surface plasmon resonance light scattering of silver nanoparticles through modified Tollens process,” Anal. Sci. 27, 937–941 (2011).
[CrossRef]

Wiley, B.

M. H. Kim, X. M. Lu, B. Wiley, E. P. Lee, and Y. N. Xia, “Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HauCl4,” J. Phys. Chem. C 112, 7872–7876 (2008).
[CrossRef]

Wilson, R.

R. Wilson, “The use of gold nanoparticles in diagnostics and detection,” Chem. Soc. Rev. 37, 2028–2045 (2008).
[CrossRef]

Wlodarczyk, M.

M. Zimecki, J. Artym, W. Cisowski, I. Mazol, M. Wlodarczyk, and M. Glensk, “Immunomodulatory and anti-inflammatory activity of selected osthole derivatives,” Z. Naturforsch., B 64, 361–368 (2009).

Wu, J. M.

L. Q. Guo, J. H. Zhong, J. M. Wu, F. F. Fu, G. N. Chen, Y. X. Chen, X. Y. Zheng, and S. Lin, “Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer,” Analyst 136, 1659–1663 (2011).
[CrossRef]

Wunderlich, M.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, and J. Feldmann, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano. Lett. 7, 1941–1946 (2007).

Xia, Y. N.

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. N. Xia, “Surface-enhanced Raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[CrossRef]

M. H. Kim, X. M. Lu, B. Wiley, E. P. Lee, and Y. N. Xia, “Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HauCl4,” J. Phys. Chem. C 112, 7872–7876 (2008).
[CrossRef]

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Xie, J.

Y. H. Ding, Z. Q. Chen, J. Xie, and R. Guo, “Comparative studies on adsorption behavior of thionine on gold nanoparticles with different sizes,” J. Colloid Interface Sci. 327, 243–250 (2008).
[CrossRef]

Xie, M. L.

J. J. Zhang, J. Xue, H. B. Wang, Y. Zhang, and M. L. Xie, “Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress,” Phytother. Res. 25, 638–643 (2011).

Xu, S. W.

X. X. Mao, W. Yin, M. F. Liu, M. Z. Ye, P. Q. Liu, J. X. Liu, Q. S. Lian, S. W. Xu, and R. B. Pi, “Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats,” Brain Res. 1385, 275–280 (2011).

Xue, J.

J. J. Zhang, J. Xue, H. B. Wang, Y. Zhang, and M. L. Xie, “Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress,” Phytother. Res. 25, 638–643 (2011).

Yang, K. Y.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light emitting device structure: cathode structure for plasmonic application,” Appl. Phys. Lett. 94, 173301 (2009).
[CrossRef]

Ye, M. Z.

X. X. Mao, W. Yin, M. F. Liu, M. Z. Ye, P. Q. Liu, J. X. Liu, Q. S. Lian, S. W. Xu, and R. B. Pi, “Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats,” Brain Res. 1385, 275–280 (2011).

Yin, W.

X. X. Mao, W. Yin, M. F. Liu, M. Z. Ye, P. Q. Liu, J. X. Liu, Q. S. Lian, S. W. Xu, and R. B. Pi, “Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats,” Brain Res. 1385, 275–280 (2011).

Zhang, J.

J. Zhang, Y. Fu, and J. R. Lakowicz, “Enhanced Forster resonance energy transfer (FRET) on a single metal particle,” J. Phys. Chem. C 111, 50–56 (2007).
[CrossRef]

Zhang, J. J.

J. J. Zhang, J. Xue, H. B. Wang, Y. Zhang, and M. L. Xie, “Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress,” Phytother. Res. 25, 638–643 (2011).

Zhang, Y.

J. J. Zhang, J. Xue, H. B. Wang, Y. Zhang, and M. L. Xie, “Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress,” Phytother. Res. 25, 638–643 (2011).

Zhao, J. L.

H. Y. Wang, D. L. Chen, Y. J. Wei, Y. F. Chang, and J. L. Zhao, “A simple and sensitive assay of gallic acid based on localized surface plasmon resonance light scattering of silver nanoparticles through modified Tollens process,” Anal. Sci. 27, 937–941 (2011).
[CrossRef]

Zhao, X. S.

W. J. Wang, C. L. Chen, M. X. Qian, and X. S. Zhao, “Aptamer biosensor for protein detection using gold nanoparticles,” Anal. Biochem. 373, 213–219 (2008).
[CrossRef]

Zheng, X. Y.

L. Q. Guo, J. H. Zhong, J. M. Wu, F. F. Fu, G. N. Chen, Y. X. Chen, X. Y. Zheng, and S. Lin, “Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer,” Analyst 136, 1659–1663 (2011).
[CrossRef]

Zheng, Z. Z.

G. Z. Chen, Z. X. Huang, and Z. Z. Zheng, Fluorescence Analysis (Science, 1990).

Zhong, J. H.

L. Q. Guo, J. H. Zhong, J. M. Wu, F. F. Fu, G. N. Chen, Y. X. Chen, X. Y. Zheng, and S. Lin, “Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer,” Analyst 136, 1659–1663 (2011).
[CrossRef]

Zhu, J.

J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59, 1413–1416 (2005).
[CrossRef]

Zhuo, S. J.

S. J. Zhuo, M. W. Shao, L. Cheng, R. H. Que, S. J. Zhuo, D. D. D. Ma, and S. T. Lee, “Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure,” Appl. Phys. Lett. 96, 103108 (2010).
[CrossRef]

S. J. Zhuo, M. W. Shao, L. Cheng, R. H. Que, S. J. Zhuo, D. D. D. Ma, and S. T. Lee, “Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure,” Appl. Phys. Lett. 96, 103108 (2010).
[CrossRef]

Zimecki, M.

M. Zimecki, J. Artym, W. Cisowski, I. Mazol, M. Wlodarczyk, and M. Glensk, “Immunomodulatory and anti-inflammatory activity of selected osthole derivatives,” Z. Naturforsch., B 64, 361–368 (2009).

Zou, Y.

X. H. Chen, R. B. Pi, Y. Zou, M. Liu, X. M. Ma, Y. Jiang, X. X. Mao, and X. Q. Hu, “Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole-a natural coumarin,” Eur. J. Pharmacol. 629, 40–46 (2010).
[CrossRef]

Anal. Biochem.

J. Malicka, I. Gryczynski, J. Y. Fang, J. Kusba, and J. R. Lakowicz, “Increased resonance energy transfer between fluorophores bound to DNA in proximity to metallic silver particles,” Anal. Biochem. 315, 160–169 (2003).
[CrossRef]

W. J. Wang, C. L. Chen, M. X. Qian, and X. S. Zhao, “Aptamer biosensor for protein detection using gold nanoparticles,” Anal. Biochem. 373, 213–219 (2008).
[CrossRef]

Anal. Sci.

H. Y. Wang, D. L. Chen, Y. J. Wei, Y. F. Chang, and J. L. Zhao, “A simple and sensitive assay of gallic acid based on localized surface plasmon resonance light scattering of silver nanoparticles through modified Tollens process,” Anal. Sci. 27, 937–941 (2011).
[CrossRef]

Analyst

L. Q. Guo, J. H. Zhong, J. M. Wu, F. F. Fu, G. N. Chen, Y. X. Chen, X. Y. Zheng, and S. Lin, “Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer,” Analyst 136, 1659–1663 (2011).
[CrossRef]

Appl. Phys. Lett.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light emitting device structure: cathode structure for plasmonic application,” Appl. Phys. Lett. 94, 173301 (2009).
[CrossRef]

S. J. Zhuo, M. W. Shao, L. Cheng, R. H. Que, S. J. Zhuo, D. D. D. Ma, and S. T. Lee, “Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure,” Appl. Phys. Lett. 96, 103108 (2010).
[CrossRef]

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

X. Li, J. Qian, L. Jiang, and S. L. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94, 063111 (2009).
[CrossRef]

Biosens. Bioelectron.

L. Shang and S. J. Dong, “Sensitive detection of cysteine based on fluorescent silver clusters,” Biosens. Bioelectron. 24, 1569–1573 (2009).
[CrossRef]

Brain Res.

X. X. Mao, W. Yin, M. F. Liu, M. Z. Ye, P. Q. Liu, J. X. Liu, Q. S. Lian, S. W. Xu, and R. B. Pi, “Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats,” Brain Res. 1385, 275–280 (2011).

Chem. Soc. Rev.

R. Wilson, “The use of gold nanoparticles in diagnostics and detection,” Chem. Soc. Rev. 37, 2028–2045 (2008).
[CrossRef]

Eur. J. Pharmacol.

X. H. Chen, R. B. Pi, Y. Zou, M. Liu, X. M. Ma, Y. Jiang, X. X. Mao, and X. Q. Hu, “Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole-a natural coumarin,” Eur. J. Pharmacol. 629, 40–46 (2010).
[CrossRef]

J. Am. Chem. Soc.

M. P. Singh and G. F. Strouse, “Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanoparticle,” J. Am. Chem. Soc. 132, 9383–9391 (2010).
[CrossRef]

H. A. Benes and J. H. Hildebrand, “A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons,” J. Am. Chem. Soc. 71, 2703–2707 (1949).
[CrossRef]

J. Chem. Phys.

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles—appendix,” J. Chem. Phys. 75, 1139–1192 (1981).
[CrossRef]

J. Colloid Interface Sci.

Y. H. Ding, Z. Q. Chen, J. Xie, and R. Guo, “Comparative studies on adsorption behavior of thionine on gold nanoparticles with different sizes,” J. Colloid Interface Sci. 327, 243–250 (2008).
[CrossRef]

J. Fluoresc.

J. R. Lakowicz, J. Kusba, Y. B. Shen, J. Malicka, S. D’Auria, Z. Gryczynski, and I. Gryczynski, “Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA,” J. Fluoresc. 13, 69–77 (2003).
[CrossRef]

M. Umadevi, P. Vanelle, T. Terme, B. J. M. Rajkumar, and V. Ramakrishnan, “Fluorescence quenching of 1, 4-dihydroxy-2, 3-dimethyl-9, 10-anthraquinone by silver nanoparticles: size effect,” J. Fluoresc. 19, 3–10 (2009).
[CrossRef]

J. Mariam, P. M. Dongre, and D. C. Kothari, “Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy,” J. Fluoresc. 21, 2193–2199 (2011).
[CrossRef]

J. Phys. Chem. A

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. N. Xia, “Surface-enhanced Raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[CrossRef]

J. Phys. Chem. C

M. H. Kim, X. M. Lu, B. Wiley, E. P. Lee, and Y. N. Xia, “Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HauCl4,” J. Phys. Chem. C 112, 7872–7876 (2008).
[CrossRef]

J. Zhang, Y. Fu, and J. R. Lakowicz, “Enhanced Forster resonance energy transfer (FRET) on a single metal particle,” J. Phys. Chem. C 111, 50–56 (2007).
[CrossRef]

Mater. Lett.

J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59, 1413–1416 (2005).
[CrossRef]

Mater. Res. Bull.

S. Garabagiu, “A spectroscopic study on the interaction between gold nanoparticles and hemoglobin,” Mater. Res. Bull. 46, 2474–2477 (2011).
[CrossRef]

Nano Lett.

E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5, 585–589 (2005).
[CrossRef]

Nano. Lett.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, and J. Feldmann, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano. Lett. 7, 1941–1946 (2007).

Nanotechnology

C. G. Khoury, S. J. Norton, and T. Vo-Dinh, “Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method,” Nanotechnology 21, 315203 (2010).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef]

Phytother. Res.

J. J. Zhang, J. Xue, H. B. Wang, Y. Zhang, and M. L. Xie, “Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress,” Phytother. Res. 25, 638–643 (2011).

Z. Naturforsch., B

M. Zimecki, J. Artym, W. Cisowski, I. Mazol, M. Wlodarczyk, and M. Glensk, “Immunomodulatory and anti-inflammatory activity of selected osthole derivatives,” Z. Naturforsch., B 64, 361–368 (2009).

Other

M. C. Liu, Surface-Enhanced Fluorescence of Acridine Orange Molecules in the System of Silver Nanoparticles (Shanxi Normal University, 2011).

X. X. Li, Fluorescent Property of Osthol and its Application in the Analysis of Traditional Chinese Medicines (Hebei Normal University, 2009).

G. Z. Chen, Z. X. Huang, and Z. Z. Zheng, Fluorescence Analysis (Science, 1990).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics