Abstract

The static and dynamic properties of semiconductor optical parametric oscillators (SOPOs) are studied by merging the rate equations of the diode pump laser with those of the OPO while taking into account the phase and, hence, chirp performance. The static analysis of the SOPO shows two stable regimes of operation, namely, an efficient and an inefficient regime akin to the case for conventional intracavity OPO. The large signal dynamic properties of the SOPO are studied in the two static operating regimes. The study shows that there exists enormous negative and positive frequency chirp in the signal and idler in the order of a few terahertz upon large signal modulation. These characteristics are explained through the well-known properties of the nonlinear gain medium of the OPO. The limitations on using these devices in a directly modulated fashion are discussed. Such limitations are found to be determined largely by the SOPO rise time in certain bias conditions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Gibson, M. Ebrahimzadeh, M. J. Padgett, and M. H. Dunn, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4 and its application to spectroscopy,” Opt. Lett. 24, 397–399 (1999).
    [CrossRef]
  2. D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, and G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable Stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
    [CrossRef]
  3. T. Henningsen, M. Garbuny, and R. L. Byer, “Remote detection of CO by parametric tunable laser,” Appl. Phys. Lett. 24, 242–244 (1974).
    [CrossRef]
  4. A. Ngai, S. Persijn, I. Lindsay, A. Kosterev, P. Gro, C. Lee, S. Cristescu, F. Tittel, K.-J. Boller, and F. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123–128 (2007).
    [CrossRef]
  5. J. Gao, F. Cui, C. Xue, C. Xie, and P. Kunchi, “Generation and application of twin beams from an optical parametric oscillator including an α-cut KTP crystal,” Opt. Lett. 23, 870–872 (1998).
    [CrossRef]
  6. A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766 (1999).
    [CrossRef]
  7. M. Oshman and S. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. 4, 491–502 (1968).
    [CrossRef]
  8. V. I. Emel’yanov, “Phase fluctuations in a parametric light source operating inside a laser resonator,” Sov. J. Quantum Electron. 2, 524 (1973).
    [CrossRef]
  9. G. Turnbull, M. Dunn, and M. Ebrahimzadeh, “Continuous-wave, intracavity optical parametric oscillators: an analysis of power characteristics,” Appl. Phys. B 66, 701–710 (1998).
    [CrossRef]
  10. T. Debuisschert, J. Raffy, J.-P. Pocholle, and M. Papuchon, “Intracavity optical parametric oscillator: study of the dynamics in pulsed regime,” J. Opt. Soc. Am. B 13, 1569–1587 (1996).
    [CrossRef]
  11. Y. Yashkir and H. M. van Driel, “Passively Q-switched 1.57 um intracavity optical parametric oscillator,” Appl. Opt. 38, 2554–2559 (1999).
    [CrossRef]
  12. D. J. M. Stothard and M. H. Dunn, “Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators,” Opt. Express 18, 1336–1348 (2010).
    [CrossRef]
  13. J. B. Khurgin, E. Rosencher, and Y. J. Ding, “Analysis of all-semiconductor intracavity optical parametric oscillators,” J. Opt. Soc. Am. B 15, 1726–1730 (1998).
    [CrossRef]
  14. Y. Ding, J. Khurgin, and S.-J. Lee, “Transversely-pumped counter-propagating optical parametric oscillators and amplifiers: conversion efficiencies and tuning ranges,” IEEE J. Quantum Electron. 31, 1648–1658 (1995).
    [CrossRef]
  15. P. Abolghasem and A. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
    [CrossRef]
  16. B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
    [CrossRef]
  17. B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Intracavity parametric fluorescence in diode lasers,” in CLEO:2011—Laser Applications to Photonic Applications (OSA/IEEE, 2011), p. PDPA3.
  18. B. J. Bijlani and A. S. Helmy, “Design methodology for efficient frequency conversion in Bragg reflection lasers,” J. Opt. Soc. Am. B 29, 2484–2492 (2012).
    [CrossRef]
  19. R. G. Smith and J. V. Parker, “Experimental observation of and comments on optical parametric oscillation internal to the laser cavity,” J. Appl. Phys. 41, 3401–3408 (1970).
    [CrossRef]
  20. J. Cartledge, “Improved transmission performance resulting from the reduced chirp of a semiconductor laser coupled to an external high-Q resonator,” J. Lightwave Technol. 8, 716–721 (1990).
    [CrossRef]
  21. T. Saito, N. Henmi, S. Fujita, M. Yamaguchi, and M. Shikada, “Prechirp technique for dispersion compensation for a high-speed long-span transmission,” IEEE Photon. Technol. Lett. 3, 74–76 (1991).
    [CrossRef]
  22. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Kluwer Academic, 1993).
  23. S. W. C. Larry, A. Coldren, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).
  24. J. R. Dormand and P. J. Prince, “A family of embedded Runge–Kutta formulae,” J. Comput. Appl. Math. 6, 19–26 (1980).
    [CrossRef]
  25. J. Pearson, U. Ganiel, and A. Yariv, “Rise time of pulsed parametric oscillators,” IEEE J. Quantum Electron. 8, 433–440 (1972).
    [CrossRef]
  26. D. C. Paul and N. Butcher, The Elements of Nonlinear Optics (Cambridge University, 1991).

2012

2010

2009

P. Abolghasem and A. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[CrossRef]

2007

A. Ngai, S. Persijn, I. Lindsay, A. Kosterev, P. Gro, C. Lee, S. Cristescu, F. Tittel, K.-J. Boller, and F. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123–128 (2007).
[CrossRef]

1999

1998

1996

1995

Y. Ding, J. Khurgin, and S.-J. Lee, “Transversely-pumped counter-propagating optical parametric oscillators and amplifiers: conversion efficiencies and tuning ranges,” IEEE J. Quantum Electron. 31, 1648–1658 (1995).
[CrossRef]

1992

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, and G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable Stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

1991

T. Saito, N. Henmi, S. Fujita, M. Yamaguchi, and M. Shikada, “Prechirp technique for dispersion compensation for a high-speed long-span transmission,” IEEE Photon. Technol. Lett. 3, 74–76 (1991).
[CrossRef]

1990

J. Cartledge, “Improved transmission performance resulting from the reduced chirp of a semiconductor laser coupled to an external high-Q resonator,” J. Lightwave Technol. 8, 716–721 (1990).
[CrossRef]

1980

J. R. Dormand and P. J. Prince, “A family of embedded Runge–Kutta formulae,” J. Comput. Appl. Math. 6, 19–26 (1980).
[CrossRef]

1974

T. Henningsen, M. Garbuny, and R. L. Byer, “Remote detection of CO by parametric tunable laser,” Appl. Phys. Lett. 24, 242–244 (1974).
[CrossRef]

1973

V. I. Emel’yanov, “Phase fluctuations in a parametric light source operating inside a laser resonator,” Sov. J. Quantum Electron. 2, 524 (1973).
[CrossRef]

1972

J. Pearson, U. Ganiel, and A. Yariv, “Rise time of pulsed parametric oscillators,” IEEE J. Quantum Electron. 8, 433–440 (1972).
[CrossRef]

1970

R. G. Smith and J. V. Parker, “Experimental observation of and comments on optical parametric oscillation internal to the laser cavity,” J. Appl. Phys. 41, 3401–3408 (1970).
[CrossRef]

1968

M. Oshman and S. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. 4, 491–502 (1968).
[CrossRef]

Abolghasem, P.

P. Abolghasem and A. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Intracavity parametric fluorescence in diode lasers,” in CLEO:2011—Laser Applications to Photonic Applications (OSA/IEEE, 2011), p. PDPA3.

Agrawal, G. P.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Kluwer Academic, 1993).

Bijlani, B. J.

B. J. Bijlani and A. S. Helmy, “Design methodology for efficient frequency conversion in Bragg reflection lasers,” J. Opt. Soc. Am. B 29, 2484–2492 (2012).
[CrossRef]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[CrossRef]

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Intracavity parametric fluorescence in diode lasers,” in CLEO:2011—Laser Applications to Photonic Applications (OSA/IEEE, 2011), p. PDPA3.

Boller, K.-J.

A. Ngai, S. Persijn, I. Lindsay, A. Kosterev, P. Gro, C. Lee, S. Cristescu, F. Tittel, K.-J. Boller, and F. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123–128 (2007).
[CrossRef]

Brambilla, E.

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766 (1999).
[CrossRef]

Brüggemann, D.

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, and G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable Stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Butcher, N.

D. C. Paul and N. Butcher, The Elements of Nonlinear Optics (Cambridge University, 1991).

Byer, R. L.

T. Henningsen, M. Garbuny, and R. L. Byer, “Remote detection of CO by parametric tunable laser,” Appl. Phys. Lett. 24, 242–244 (1974).
[CrossRef]

Cartledge, J.

J. Cartledge, “Improved transmission performance resulting from the reduced chirp of a semiconductor laser coupled to an external high-Q resonator,” J. Lightwave Technol. 8, 716–721 (1990).
[CrossRef]

Coldren, A.

S. W. C. Larry, A. Coldren, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

Cristescu, S.

A. Ngai, S. Persijn, I. Lindsay, A. Kosterev, P. Gro, C. Lee, S. Cristescu, F. Tittel, K.-J. Boller, and F. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123–128 (2007).
[CrossRef]

Cui, F.

Debuisschert, T.

Ding, Y.

Y. Ding, J. Khurgin, and S.-J. Lee, “Transversely-pumped counter-propagating optical parametric oscillators and amplifiers: conversion efficiencies and tuning ranges,” IEEE J. Quantum Electron. 31, 1648–1658 (1995).
[CrossRef]

Ding, Y. J.

Dormand, J. R.

J. R. Dormand and P. J. Prince, “A family of embedded Runge–Kutta formulae,” J. Comput. Appl. Math. 6, 19–26 (1980).
[CrossRef]

Dunn, M.

G. Turnbull, M. Dunn, and M. Ebrahimzadeh, “Continuous-wave, intracavity optical parametric oscillators: an analysis of power characteristics,” Appl. Phys. B 66, 701–710 (1998).
[CrossRef]

Dunn, M. H.

Dutta, N. K.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Kluwer Academic, 1993).

Ebrahimzadeh, M.

G. M. Gibson, M. Ebrahimzadeh, M. J. Padgett, and M. H. Dunn, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4 and its application to spectroscopy,” Opt. Lett. 24, 397–399 (1999).
[CrossRef]

G. Turnbull, M. Dunn, and M. Ebrahimzadeh, “Continuous-wave, intracavity optical parametric oscillators: an analysis of power characteristics,” Appl. Phys. B 66, 701–710 (1998).
[CrossRef]

Emel’yanov, V. I.

V. I. Emel’yanov, “Phase fluctuations in a parametric light source operating inside a laser resonator,” Sov. J. Quantum Electron. 2, 524 (1973).
[CrossRef]

Fujita, S.

T. Saito, N. Henmi, S. Fujita, M. Yamaguchi, and M. Shikada, “Prechirp technique for dispersion compensation for a high-speed long-span transmission,” IEEE Photon. Technol. Lett. 3, 74–76 (1991).
[CrossRef]

Ganiel, U.

J. Pearson, U. Ganiel, and A. Yariv, “Rise time of pulsed parametric oscillators,” IEEE J. Quantum Electron. 8, 433–440 (1972).
[CrossRef]

Gao, J.

Garbuny, M.

T. Henningsen, M. Garbuny, and R. L. Byer, “Remote detection of CO by parametric tunable laser,” Appl. Phys. Lett. 24, 242–244 (1974).
[CrossRef]

Gatti, A.

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766 (1999).
[CrossRef]

Gibson, G. M.

Gro, P.

A. Ngai, S. Persijn, I. Lindsay, A. Kosterev, P. Gro, C. Lee, S. Cristescu, F. Tittel, K.-J. Boller, and F. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123–128 (2007).
[CrossRef]

Harren, F.

A. Ngai, S. Persijn, I. Lindsay, A. Kosterev, P. Gro, C. Lee, S. Cristescu, F. Tittel, K.-J. Boller, and F. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123–128 (2007).
[CrossRef]

Harris, S.

M. Oshman and S. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. 4, 491–502 (1968).
[CrossRef]

Helmy, A.

P. Abolghasem and A. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

Helmy, A. S.

B. J. Bijlani and A. S. Helmy, “Design methodology for efficient frequency conversion in Bragg reflection lasers,” J. Opt. Soc. Am. B 29, 2484–2492 (2012).
[CrossRef]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[CrossRef]

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Intracavity parametric fluorescence in diode lasers,” in CLEO:2011—Laser Applications to Photonic Applications (OSA/IEEE, 2011), p. PDPA3.

Henmi, N.

T. Saito, N. Henmi, S. Fujita, M. Yamaguchi, and M. Shikada, “Prechirp technique for dispersion compensation for a high-speed long-span transmission,” IEEE Photon. Technol. Lett. 3, 74–76 (1991).
[CrossRef]

Henningsen, T.

T. Henningsen, M. Garbuny, and R. L. Byer, “Remote detection of CO by parametric tunable laser,” Appl. Phys. Lett. 24, 242–244 (1974).
[CrossRef]

Hertzberg, J.

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, and G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable Stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Herziger, G.

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, and G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable Stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Khurgin, J.

Y. Ding, J. Khurgin, and S.-J. Lee, “Transversely-pumped counter-propagating optical parametric oscillators and amplifiers: conversion efficiencies and tuning ranges,” IEEE J. Quantum Electron. 31, 1648–1658 (1995).
[CrossRef]

Khurgin, J. B.

Knoche, K.-F.

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, and G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable Stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Kolobov, M. I.

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766 (1999).
[CrossRef]

Kosterev, A.

A. Ngai, S. Persijn, I. Lindsay, A. Kosterev, P. Gro, C. Lee, S. Cristescu, F. Tittel, K.-J. Boller, and F. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123–128 (2007).
[CrossRef]

Kunchi, P.

Larry, S. W. C.

S. W. C. Larry, A. Coldren, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

Lee, C.

A. Ngai, S. Persijn, I. Lindsay, A. Kosterev, P. Gro, C. Lee, S. Cristescu, F. Tittel, K.-J. Boller, and F. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123–128 (2007).
[CrossRef]

Lee, S.-J.

Y. Ding, J. Khurgin, and S.-J. Lee, “Transversely-pumped counter-propagating optical parametric oscillators and amplifiers: conversion efficiencies and tuning ranges,” IEEE J. Quantum Electron. 31, 1648–1658 (1995).
[CrossRef]

Lindsay, I.

A. Ngai, S. Persijn, I. Lindsay, A. Kosterev, P. Gro, C. Lee, S. Cristescu, F. Tittel, K.-J. Boller, and F. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123–128 (2007).
[CrossRef]

Lugiato, L. A.

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766 (1999).
[CrossRef]

Mashanovitch, M. L.

S. W. C. Larry, A. Coldren, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

Ngai, A.

A. Ngai, S. Persijn, I. Lindsay, A. Kosterev, P. Gro, C. Lee, S. Cristescu, F. Tittel, K.-J. Boller, and F. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123–128 (2007).
[CrossRef]

Noll, R.

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, and G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable Stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Oshman, M.

M. Oshman and S. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. 4, 491–502 (1968).
[CrossRef]

Padgett, M. J.

Papuchon, M.

Parker, J. V.

R. G. Smith and J. V. Parker, “Experimental observation of and comments on optical parametric oscillation internal to the laser cavity,” J. Appl. Phys. 41, 3401–3408 (1970).
[CrossRef]

Paul, D. C.

D. C. Paul and N. Butcher, The Elements of Nonlinear Optics (Cambridge University, 1991).

Pearson, J.

J. Pearson, U. Ganiel, and A. Yariv, “Rise time of pulsed parametric oscillators,” IEEE J. Quantum Electron. 8, 433–440 (1972).
[CrossRef]

Persijn, S.

A. Ngai, S. Persijn, I. Lindsay, A. Kosterev, P. Gro, C. Lee, S. Cristescu, F. Tittel, K.-J. Boller, and F. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123–128 (2007).
[CrossRef]

Pocholle, J.-P.

Prince, P. J.

J. R. Dormand and P. J. Prince, “A family of embedded Runge–Kutta formulae,” J. Comput. Appl. Math. 6, 19–26 (1980).
[CrossRef]

Raffy, J.

Rosencher, E.

Saito, T.

T. Saito, N. Henmi, S. Fujita, M. Yamaguchi, and M. Shikada, “Prechirp technique for dispersion compensation for a high-speed long-span transmission,” IEEE Photon. Technol. Lett. 3, 74–76 (1991).
[CrossRef]

Shikada, M.

T. Saito, N. Henmi, S. Fujita, M. Yamaguchi, and M. Shikada, “Prechirp technique for dispersion compensation for a high-speed long-span transmission,” IEEE Photon. Technol. Lett. 3, 74–76 (1991).
[CrossRef]

Smith, R. G.

R. G. Smith and J. V. Parker, “Experimental observation of and comments on optical parametric oscillation internal to the laser cavity,” J. Appl. Phys. 41, 3401–3408 (1970).
[CrossRef]

Stothard, D. J. M.

Tittel, F.

A. Ngai, S. Persijn, I. Lindsay, A. Kosterev, P. Gro, C. Lee, S. Cristescu, F. Tittel, K.-J. Boller, and F. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123–128 (2007).
[CrossRef]

Turnbull, G.

G. Turnbull, M. Dunn, and M. Ebrahimzadeh, “Continuous-wave, intracavity optical parametric oscillators: an analysis of power characteristics,” Appl. Phys. B 66, 701–710 (1998).
[CrossRef]

van Driel, H. M.

Waschke, Y.

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, and G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable Stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Wies, B.

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, and G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable Stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

Xie, C.

Xue, C.

Yamaguchi, M.

T. Saito, N. Henmi, S. Fujita, M. Yamaguchi, and M. Shikada, “Prechirp technique for dispersion compensation for a high-speed long-span transmission,” IEEE Photon. Technol. Lett. 3, 74–76 (1991).
[CrossRef]

Yariv, A.

J. Pearson, U. Ganiel, and A. Yariv, “Rise time of pulsed parametric oscillators,” IEEE J. Quantum Electron. 8, 433–440 (1972).
[CrossRef]

Yashkir, Y.

Appl. Opt.

Appl. Phys. B

D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K.-F. Knoche, and G. Herziger, “Test of an optical parametric oscillator (OPO) as a compact and fast tunable Stokes source in coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Phys. B 55, 378–380 (1992).
[CrossRef]

A. Ngai, S. Persijn, I. Lindsay, A. Kosterev, P. Gro, C. Lee, S. Cristescu, F. Tittel, K.-J. Boller, and F. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123–128 (2007).
[CrossRef]

G. Turnbull, M. Dunn, and M. Ebrahimzadeh, “Continuous-wave, intracavity optical parametric oscillators: an analysis of power characteristics,” Appl. Phys. B 66, 701–710 (1998).
[CrossRef]

Appl. Phys. Lett.

T. Henningsen, M. Garbuny, and R. L. Byer, “Remote detection of CO by parametric tunable laser,” Appl. Phys. Lett. 24, 242–244 (1974).
[CrossRef]

IEEE J. Quantum Electron.

M. Oshman and S. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. 4, 491–502 (1968).
[CrossRef]

Y. Ding, J. Khurgin, and S.-J. Lee, “Transversely-pumped counter-propagating optical parametric oscillators and amplifiers: conversion efficiencies and tuning ranges,” IEEE J. Quantum Electron. 31, 1648–1658 (1995).
[CrossRef]

P. Abolghasem and A. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009).
[CrossRef]

J. Pearson, U. Ganiel, and A. Yariv, “Rise time of pulsed parametric oscillators,” IEEE J. Quantum Electron. 8, 433–440 (1972).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Saito, N. Henmi, S. Fujita, M. Yamaguchi, and M. Shikada, “Prechirp technique for dispersion compensation for a high-speed long-span transmission,” IEEE Photon. Technol. Lett. 3, 74–76 (1991).
[CrossRef]

J. Appl. Phys.

R. G. Smith and J. V. Parker, “Experimental observation of and comments on optical parametric oscillation internal to the laser cavity,” J. Appl. Phys. 41, 3401–3408 (1970).
[CrossRef]

J. Comput. Appl. Math.

J. R. Dormand and P. J. Prince, “A family of embedded Runge–Kutta formulae,” J. Comput. Appl. Math. 6, 19–26 (1980).
[CrossRef]

J. Lightwave Technol.

J. Cartledge, “Improved transmission performance resulting from the reduced chirp of a semiconductor laser coupled to an external high-Q resonator,” J. Lightwave Technol. 8, 716–721 (1990).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, “Quantum entangled images,” Phys. Rev. Lett. 83, 1763–1766 (1999).
[CrossRef]

Sov. J. Quantum Electron.

V. I. Emel’yanov, “Phase fluctuations in a parametric light source operating inside a laser resonator,” Sov. J. Quantum Electron. 2, 524 (1973).
[CrossRef]

Other

B. J. Bijlani, P. Abolghasem, and A. S. Helmy, “Intracavity parametric fluorescence in diode lasers,” in CLEO:2011—Laser Applications to Photonic Applications (OSA/IEEE, 2011), p. PDPA3.

D. C. Paul and N. Butcher, The Elements of Nonlinear Optics (Cambridge University, 1991).

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Kluwer Academic, 1993).

S. W. C. Larry, A. Coldren, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of a representative doubly resonant SOPO where the end facets of the diode laser are high reflection coated (HR) at pump, signal, and idler wavelengths. A scheme of a typical Bragg reflection waveguide SOPO is shown.

Fig. 2.
Fig. 2.

(a) Steady-state internal power of the pump, signal and idler and (b) adiabatic frequency chirp of the simulated SOPO plotted as functions of the injected current. The lines and circles represent the analytically and numerically calculated data, respectively. The steady-state regions of operation are separated with vertical dashed lines and are distinct from the change in the slope of the graphs.

Fig. 3.
Fig. 3.

Wavelength tuning curve of the simulated SOPO showing the variation of signal and idler wavelengths as functions of the pump wavelength. The figure shows that a shift in the pump wavelength by +2nm, results in a signal and idler wavelength drift by 18 nm and 38nm, respectively.

Fig. 4.
Fig. 4.

Build-up time and rise time shown for a step response, assuming the turn-on time to be at t=0s. Here P1=Pmin+0.1ΔP and P2=Pmin+0.9ΔP where ΔP=PmaxPmin.

Fig. 5.
Fig. 5.

(a) Pump power and (b) frequency dynamics of the un-phase-matched laser for current steps of 2Ith, 4Ith, and 6Ith. The inset shows the injected current as a function of time.

Fig. 6.
Fig. 6.

(a) Power and (b) frequency dynamics of the un-phase-matched laser for currents changing from 2IOPO,th to 10IOPO,th in steps of IOPO,th. The inset shows the injected current as a function of time.

Fig. 7.
Fig. 7.

(a) Power and (b) frequency dynamics of the SOPO under study for current steps of 2IOPO,th to 10IOPO,th in steps of IOPO,th. The inset shows the injected current as a function of time.

Fig. 8.
Fig. 8.

Dependence of signal and idler power (a) build-up times and (b) 10%–90% rise times on injected current simulated for the example SOPO. The initial current is 0 mA.

Fig. 9.
Fig. 9.

(a) Power and (b) frequency dynamics of the SOPO under study for current changing from 2IOPO,th to 10IOPO,th in steps of IOPO,th. The initial current is 1.1IOPO,th as shown in the inset.

Fig. 10.
Fig. 10.

(a) Power and (b) frequency dynamics of the SOPO under study for current changing from 2IOPO,th to 10IOPO,th in steps of IOPO,th. The initial current is 2IOPO,th as shown in the inset.

Fig. 11.
Fig. 11.

Dependence of signal and idler power (a) build-up times and (b) 10%–90% rise times on injected current simulated for the example SOPO. Solid and dashed curves show the response to initial currents of 1.1IOPO,th and 2IOPO,th, respectively.

Tables (1)

Tables Icon

Table 1. Design Parameters for the Test Structure

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

dPpdt=Ppvg;p(Γg1+βPpαp),
dϕpdt=α2vg;p(Γgαp),
dNdt=ηIqVNτgvg;pζPp1+βPp,
ζ=LωpVphvg;p.
Eσ(x,y,z,t)=12Fσ(x,y)fσ(z)Eσ(t)exp[iωσt+iϕσ(t)]+c.c.,σ{p,s,i}.
dPpdt=Ppvg;p(Γg1+βPpαp)+Kvg;pκλpPsPiPp(sin(Δϕ))sinc(ΔkL),
dϕpdt=Δωp+K2vg;pκλpPsPiPpcos(Δϕ)sinc(ΔkL),
dPsdt=Psvg;sαs+Kvg;sκλsPsPiPpsin(Δϕ)sinc(ΔkL),
dϕsdt=Δωs+K2vg;sκλsPpPiPscos(Δϕ)sinc(ΔkL),
dPidt=Pivg;iαi+Kvg;iκλiPsPiPpsin(Δϕ)sinc(ΔkL),
dϕidt=Δωi+K2vg;iκλiPpPsPicos(Δϕ)sinc(ΔkL).
κ=χeff(2)24π2nsninpϵ0cAeff(2),
χeff(2)=+Fs(x,y)Fi(x,y)Fp(x,y)χeff(2)(x,y)dxdy+Fs(x,y)Fi(x,y)Fp(x,y)dxdy,
Aeff(2)=+Fs2(x,y)dxdy+Fi2(x,y)dxdy+Fp2(x,y)dxdy(+Fs(x,y)Fi(x,y)Fp(x,y)dxdy)2.
Δωp=α2vg;p(Γgαp),
Δωs=Δωpnpng;ing;png;sng;i=γΔωp,
Δωi=ΔωpΔωs,
POPO,th=14λiλsαiαsκ2,
Pp,no-OPO=Γgvgτp1β.
Pp,ineff=gΓvg;pαivg;iαpvg;pαsvg;sβ(αsvg;s+αpvg;p+αivg;i),
Ps,ineff=Pp,ineffλp(vg;sαs+vg;iαi)λsαsvg;s,
Pi,ineff=Pp,ineffλp(αsvg;s+αivg;i)λiαivg;i,
sin2(Δϕineff)=POPO,thPp;ineff.
Pp,eff=POPO,th,
Ps,eff=Pp,eff[λpαpλsαs+gΓ1+βPpλpλsαs],
Pi,eff=Pp,eff[λpαpλiαi+gΓ1+βPpλpλiαi].
Ps,i(t)=Ps,i(0)exp(2tvg;svg;iκ2λsλiPp,fr)exp(αs,ivg;s,it).
τr;s,i=lnr2vg;svg;iκ2λsλiPp,frαs,ivg;s,i.
Δωp=Δωs+Δωi,
(ωp+Δωp)(np+Δnp)=(ωs+Δωs)(ns+Δns)+(ωi+Δωi)(ni+Δni),
Δωpnp+ωpΔωpωpvg;s/c=Δωsns+ωsΔns+Δωini+ωiΔni.
dΔϕdt=κK2[vg;pλpPsPiPpvg;sλsPpPiPsvg;iλiPsPpPi]cos(Δϕ)sinc(ΔkL).

Metrics