Abstract

We present a nonlinear optical (NLO) probe technique, wavelength-dependent Z-scan nonlinear spectroscopy (WDZNS), which can be utilized for assessing broadband NLO properties of materials. Unlike typical Z-scans, WDZNS can spectrally monitor the frequency-doubled output as a function of wavelength λ as well as input intensity I. Based on WDZNS we have investigated the strong impact of two-photon absorption (TPA) on second-harmonic generation in CdTe over a broad TPA range. This complicated NLO effect is characterized by the λ-dependent TPA coefficient, which is consistent with a simple two-band model. The relative second-order NLO dispersion derived from WDZNS is also consistent with previous measurements.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980–1993 (1981).
    [CrossRef]
  2. H. M. Gibbs, Optical Bistability (Academic, 1985).
  3. G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53(9), 30–36 (2000).
    [CrossRef]
  4. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005), and references therein.
  5. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
    [CrossRef]
  6. S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
    [CrossRef]
  7. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  8. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
    [CrossRef]
  9. M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
    [CrossRef]
  10. M. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006).
    [CrossRef]
  11. D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
    [CrossRef]
  12. V. A. Serebryakov, E. V. Boiko, N. N. Petrishchev, and A. V. Yan, “Medical applications of mid-IR lasers: problems and prospects,” J. Opt. Technol. 77, 6–17 (2010).
    [CrossRef]
  13. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).
    [CrossRef]
  14. M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “White-light continuum Z-scan technique for nonlinear materials characterization,” Opt. Express 12, 3820–3826 (2004).
    [CrossRef]
  15. M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan,” Opt. Express 13, 3594–3599 (2005).
    [CrossRef]
  16. M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25, 159–165 (2008).
    [CrossRef]
  17. M. J. Soileau, W. E. Williams, E. W. Van Stryland, and M. A. Woodall, “Laser-induced damage measurements in CdTe and other II-VI materials,” Appl. Opt. 21, 4059–4062 (1982).
    [CrossRef]
  18. J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13, 3515–3522 (1975).
    [CrossRef]
  19. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985).
    [CrossRef]
  20. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
    [CrossRef]
  21. J. P. Wolfe, J. L. Lin, and D. W. Snoke, “Bose-Einstein condensation of a nearly ideal gas: excitons in Cu2O,” in Bose-Einstein Condensation, A. Griffin, D. W. Snoke, and S. Stringari, eds. (Cambridge University, 1995), pp. 281–329.
  22. S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435–3441 (1993).
    [CrossRef]
  23. S. Mani, J. I. Jang, and J. B. Ketterson, “Nonlinear optical processes at quadrupole polariton resonance in Cu2O as probed by a Z-scan technique,” Phys. Rev. B 82, 113203 (2010).
    [CrossRef]
  24. C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc. 134, 20733–20744 (2012).
    [CrossRef]
  25. Y. R. Shen, The Principle of Nonlinear Optics (Wiley-Interscience, 1984).
  26. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  27. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
    [CrossRef]
  28. K. E. O’Hara, J. R. Gullingsrud, and J. P. Wolfe, “Auger decay of excitons in Cu2O,” Phys. Rev. B 60, 10872–10885 (1999).
    [CrossRef]
  29. P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
    [CrossRef]
  30. J.-H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B 79, 245203 (2009).
    [CrossRef]

2012

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc. 134, 20733–20744 (2012).
[CrossRef]

2010

S. Mani, J. I. Jang, and J. B. Ketterson, “Nonlinear optical processes at quadrupole polariton resonance in Cu2O as probed by a Z-scan technique,” Phys. Rev. B 82, 113203 (2010).
[CrossRef]

V. A. Serebryakov, E. V. Boiko, N. N. Petrishchev, and A. V. Yan, “Medical applications of mid-IR lasers: problems and prospects,” J. Opt. Technol. 77, 6–17 (2010).
[CrossRef]

2009

J.-H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B 79, 245203 (2009).
[CrossRef]

2008

M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25, 159–165 (2008).
[CrossRef]

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

2007

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

2006

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
[CrossRef]

M. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

2005

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan,” Opt. Express 13, 3594–3599 (2005).
[CrossRef]

2004

2000

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53(9), 30–36 (2000).
[CrossRef]

1999

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

K. E. O’Hara, J. R. Gullingsrud, and J. P. Wolfe, “Auger decay of excitons in Cu2O,” Phys. Rev. B 60, 10872–10885 (1999).
[CrossRef]

1997

1993

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435–3441 (1993).
[CrossRef]

1992

1991

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

1990

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1985

1982

1981

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980–1993 (1981).
[CrossRef]

1975

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13, 3515–3522 (1975).
[CrossRef]

1968

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
[CrossRef]

1962

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Ackerman, D. A.

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53(9), 30–36 (2000).
[CrossRef]

Adachi, S.

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435–3441 (1993).
[CrossRef]

Agrawal, G. P.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

Ariunbold, G. O.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

Balu, M.

Barlow, S.

Bechtel, J. H.

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13, 3515–3522 (1975).
[CrossRef]

Belfield, K.

Bera, T. K.

J.-H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B 79, 245203 (2009).
[CrossRef]

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Boiko, E. V.

Boyd, R. W.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

Chung, I.

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc. 134, 20733–20744 (2012).
[CrossRef]

J.-H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B 79, 245203 (2009).
[CrossRef]

Clark, D. J.

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc. 134, 20733–20744 (2012).
[CrossRef]

Cooper, S. L.

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53(9), 30–36 (2000).
[CrossRef]

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Dogariu, A.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

Downer, M. C.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Dunayevskiy, I. G.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
[CrossRef]

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Fauchet, P. M.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

Figliozzi, P.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Freeman, A. J.

J.-H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B 79, 245203 (2009).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, Optical Bistability (Academic, 1985).

Go, R.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
[CrossRef]

Gullingsrud, J. R.

K. E. O’Hara, J. R. Gullingsrud, and J. P. Wolfe, “Auger decay of excitons in Cu2O,” Phys. Rev. B 60, 10872–10885 (1999).
[CrossRef]

Hagan, D. J.

Hales, J.

Harrison, C. M.

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc. 134, 20733–20744 (2012).
[CrossRef]

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Ito, R.

Jang, J. I.

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc. 134, 20733–20744 (2012).
[CrossRef]

S. Mani, J. I. Jang, and J. B. Ketterson, “Nonlinear optical processes at quadrupole polariton resonance in Cu2O as probed by a Z-scan technique,” Phys. Rev. B 82, 113203 (2010).
[CrossRef]

Jiang, Y.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Kanatzidis, M. G.

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc. 134, 20733–20744 (2012).
[CrossRef]

J.-H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B 79, 245203 (2009).
[CrossRef]

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Ketterson, J. B.

S. Mani, J. I. Jang, and J. B. Ketterson, “Nonlinear optical processes at quadrupole polariton resonance in Cu2O as probed by a Z-scan technique,” Phys. Rev. B 82, 113203 (2010).
[CrossRef]

Kimura, T.

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435–3441 (1993).
[CrossRef]

Kitamoto, A.

Kondo, T.

Kurtz, S. K.

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
[CrossRef]

Lin, J. L.

J. P. Wolfe, J. L. Lin, and D. W. Snoke, “Bose-Einstein condensation of a nearly ideal gas: excitons in Cu2O,” in Bose-Einstein Condensation, A. Griffin, D. W. Snoke, and S. Stringari, eds. (Cambridge University, 1995), pp. 281–329.

Lin, Q.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

Macdonald, T.

M. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

Maker, P. D.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Mani, S.

S. Mani, J. I. Jang, and J. B. Ketterson, “Nonlinear optical processes at quadrupole polariton resonance in Cu2O as probed by a Z-scan technique,” Phys. Rev. B 82, 113203 (2010).
[CrossRef]

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Marder, S.

Matlis, N.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Mattern, B.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Mendoza, B. S.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Mochan, W. L.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Morris, C. D.

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc. 134, 20733–20744 (2012).
[CrossRef]

Mostowski, J.

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980–1993 (1981).
[CrossRef]

Murawski, R. K.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005), and references therein.

Nisenoff, M.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

O’Hara, K. E.

K. E. O’Hara, J. R. Gullingsrud, and J. P. Wolfe, “Auger decay of excitons in Cu2O,” Phys. Rev. B 60, 10872–10885 (1999).
[CrossRef]

Padilha, L. A.

Park, S.

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc. 134, 20733–20744 (2012).
[CrossRef]

Patel, C. K. N.

M. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
[CrossRef]

Perry, T. T.

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
[CrossRef]

Pestov, D.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

Petrishchev, N. N.

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Piredda, G.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Prucnal, P. R.

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53(9), 30–36 (2000).
[CrossRef]

Pushkarsky, M.

M. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
[CrossRef]

Raymer, M. G.

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980–1993 (1981).
[CrossRef]

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Said, A. A.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Sautenkov, V. A.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

Savage, C. M.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Scully, M. O.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

Serebryakov, V. A.

Sheik-Bahae, M.

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principle of Nonlinear Optics (Wiley-Interscience, 1984).

Shirane, M.

Shoji, I.

Smith, W. L.

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13, 3515–3522 (1975).
[CrossRef]

Snoke, D. W.

J. P. Wolfe, J. L. Lin, and D. W. Snoke, “Bose-Einstein condensation of a nearly ideal gas: excitons in Cu2O,” in Bose-Einstein Condensation, A. Griffin, D. W. Snoke, and S. Stringari, eds. (Cambridge University, 1995), pp. 281–329.

Soileau, M. J.

Sokolov, A. V.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

Song, J.-H.

J.-H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B 79, 245203 (2009).
[CrossRef]

Sun, L.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Suzuki, N.

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435–3441 (1993).
[CrossRef]

Terhune, R. W.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Thomas, G. A.

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53(9), 30–36 (2000).
[CrossRef]

Tsekoun, A.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
[CrossRef]

Van Stryland, E. W.

M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25, 159–165 (2008).
[CrossRef]

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan,” Opt. Express 13, 3594–3599 (2005).
[CrossRef]

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “White-light continuum Z-scan technique for nonlinear materials characterization,” Opt. Express 12, 3820–3826 (2004).
[CrossRef]

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985).
[CrossRef]

M. J. Soileau, W. E. Williams, E. W. Van Stryland, and M. A. Woodall, “Laser-induced damage measurements in CdTe and other II-VI materials,” Appl. Opt. 21, 4059–4062 (1982).
[CrossRef]

Vanherzeele, H.

Wang, J.

Wang, X.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

Webber, M. E.

M. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wei, T. H.

White, C. W.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Williams, W. E.

Withrow, S. P.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Wolfe, J. P.

K. E. O’Hara, J. R. Gullingsrud, and J. P. Wolfe, “Auger decay of excitons in Cu2O,” Phys. Rev. B 60, 10872–10885 (1999).
[CrossRef]

J. P. Wolfe, J. L. Lin, and D. W. Snoke, “Bose-Einstein condensation of a nearly ideal gas: excitons in Cu2O,” in Bose-Einstein Condensation, A. Griffin, D. W. Snoke, and S. Stringari, eds. (Cambridge University, 1995), pp. 281–329.

Woodall, M. A.

Yan, A. V.

Yao, S.

Young, J.

Zhang, J.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

Zheng, S.

Appl. Opt.

Appl. Phys. Lett.

M. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

J. Am. Chem. Soc.

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc. 134, 20733–20744 (2012).
[CrossRef]

J. Appl. Phys.

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435–3441 (1993).
[CrossRef]

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
[CrossRef]

J. Opt. Soc. Am. B

J. Opt. Technol.

Opt. Express

Opt. Lett.

Phys. Rev. A

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980–1993 (1981).
[CrossRef]

Phys. Rev. B

S. Mani, J. I. Jang, and J. B. Ketterson, “Nonlinear optical processes at quadrupole polariton resonance in Cu2O as probed by a Z-scan technique,” Phys. Rev. B 82, 113203 (2010).
[CrossRef]

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13, 3515–3522 (1975).
[CrossRef]

K. E. O’Hara, J. R. Gullingsrud, and J. P. Wolfe, “Auger decay of excitons in Cu2O,” Phys. Rev. B 60, 10872–10885 (1999).
[CrossRef]

J.-H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B 79, 245203 (2009).
[CrossRef]

Phys. Rev. Lett.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Phys. Today

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today 53(9), 30–36 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. USA

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[CrossRef]

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
[CrossRef]

Science

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef]

Other

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005), and references therein.

H. M. Gibbs, Optical Bistability (Academic, 1985).

J. P. Wolfe, J. L. Lin, and D. W. Snoke, “Bose-Einstein condensation of a nearly ideal gas: excitons in Cu2O,” in Bose-Einstein Condensation, A. Griffin, D. W. Snoke, and S. Stringari, eds. (Cambridge University, 1995), pp. 281–329.

Y. R. Shen, The Principle of Nonlinear Optics (Wiley-Interscience, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of the experimental setup, (b) energy reading after CdTe at λ=1064nm versus recorded photon counts by the fiber-guided collection system at Z=15mm, and (c) fundamental open-aperture Z-scan at Ep=9μJ (circles). The theoretical fit (solid trace) yields β=27.0±2.0cm/GW at λ=1064nm. SPEX, spectrometer.

Fig. 2.
Fig. 2.

(a) SHG Z-scan traces (symbols) at λ=1700nm for Ep=19μJ, superimposed by TPA fits (red traces) with β=1.4cm/GW. Inset: SHG spectrum at Z=20mm. (b) Semi-log plot of the SHG Z-scans with TPA (red traces) and without TPA (dashed blue traces).

Fig. 3.
Fig. 3.

(a) Examples of λ-dependent SHG Z-scan traces for λ=10641700nm at Ep=10μJ, superimposed by TPA fits with β(λ) and(b) λ-dependent SHG spectra measured at Z=25mm, where TPA is negligible. The circles correspond to the relative SHG dispersion A(λ) at Z=0, calculated assuming no TPA.

Fig. 4.
Fig. 4.

(a) β(λ) (circles) consistent with a two-band model (solid trace) as well as the previous measurement (dot) at 1064 nm and (b) χ123(2)(λ) of CdTe from our analysis (circles) and the literature values at 1064 and 1548 nm (dots).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I(Z)=2Pπw2(Z)=2Pπw02(1+Z2/Z02).
NSHG(Z)=Aπw2(Z)ITPA2(Z),
ITPA(Z)=I(Z)1+βI(Z)d.
A(λ)|χ(2)(λ)|2λ2nλnλ/22[Δk2(λ,λ/2)+α2(λ/2)],
β(λ)=KE0n02Eg3(2x1)3/2(2x)5,

Metrics