Abstract

We have previously reported the results of plasmonic behavior of an Au nanodisk array in the far-field coupling regime under oblique illumination with transverse electric polarization. In this paper, those results are studied in more detail. Here, results for transverse magnetic polarization are also presented and discussed. In addition to the far-field coupling regime, the results for the near-field coupling regime are also reported. Effects of different parameters, such as substrate thickness and array periodicity on the shape of plasmon spectra are discussed. It will be shown that in the far-field coupling regime, the diffractive grating orders can have a major role in the behavior of the structure.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhoa, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine 1, 219–228 (2006).
    [CrossRef]
  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef]
  3. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 956–958 (2010).
    [CrossRef]
  4. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
    [CrossRef]
  5. J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17, 8669–8675 (2009).
    [CrossRef]
  6. J. Petschulat, D. Cialla, N. Janunts, C. Rockstuh, U. Hübner, R. Möller, H. Schneidewind, R. Mattheis, J. Popp, A. Tünnermann, F. Lederer, and T. Pertsch, “Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering,” Opt. Express 18, 4184–4197 (2010).
    [CrossRef]
  7. B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115, 15318–15323 (2011).
    [CrossRef]
  8. L. D. Tuyen, A. C. Liu, C. Huang, P. Tsai, J. H. Lin, C. Wu, L. Chau, T. S. Yang, L. Q. Minh, H. Kan, and C. C. Hsu, “Doubly resonant surface-enhanced Raman scattering on gold nanorod decorated inverse opal photonic crystals,” Opt. Express 20, 29266–29275 (2012).
    [CrossRef]
  9. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
    [CrossRef]
  10. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
    [CrossRef]
  11. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
    [CrossRef]
  12. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
    [CrossRef]
  13. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
    [CrossRef]
  14. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
    [CrossRef]
  15. B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
    [CrossRef]
  16. A. G. Nikitin, A. V. Kabashin, and H. Dallaporta, “Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects,” Opt. Express 20, 27941–27952 (2012).
    [CrossRef]
  17. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
    [CrossRef]
  18. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
    [CrossRef]
  19. V. Yannopapas and I. E. Psarobas, “Ordered arrays of metal nanostrings as broadband super absorbers,” J. Phys. Chem. C 116, 15599 (2012).
    [CrossRef]
  20. A. Shahmansouri and B. Rashidian, “Comprehensive three-dimensional split-field finite difference time-domain method for analysis of periodic plasmonic nanostructures: near- and far-field formulation,” J. Opt. Soc. Am. B 28, 2690–2700 (2011).
    [CrossRef]
  21. A. Shahmansouri and B. Rashidian, “GPU implementation of split-field finite-difference time-domain method for Drude–Lorentz dispersive media,” Prog. Electromagn. Res. 125, 55–77 (2012).
    [CrossRef]
  22. M. Meier and A. Wokaun, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2, 931–949 (1985).
    [CrossRef]
  23. V. Yannopapas and N. Stefanou, “Optical excitation of coupled waveguide-particle plasmon modes: a theoretical analysis,” Phys. Rev. B 69, 012408 (2004).
    [CrossRef]
  24. G. Gantzounis, N. Stefanou, and V. Yannopapas, “Optical properties of a periodic monolayer of metallic nanospheres on a dielectric waveguide,” J. Phys. Condens. Matter 17, 1791–1802 (2005).
    [CrossRef]
  25. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
    [CrossRef]
  26. J. Zhang, L. Cai, W. Bai, and G. Song, “Hybrid waveguide-plasmon resonances in gold pillar arrays on top of a dielectric waveguide,” Opt. Lett. 35, 3408–3410 (2010).
    [CrossRef]
  27. C. Tan, J. Simonen, and T. Niemi, “Hybrid waveguide-surface plasmon polariton modes in a guided-mode resonance grating,” Opt. Commun. 285, 4381–4386 (2012).
    [CrossRef]

2012 (5)

V. Yannopapas and I. E. Psarobas, “Ordered arrays of metal nanostrings as broadband super absorbers,” J. Phys. Chem. C 116, 15599 (2012).
[CrossRef]

A. Shahmansouri and B. Rashidian, “GPU implementation of split-field finite-difference time-domain method for Drude–Lorentz dispersive media,” Prog. Electromagn. Res. 125, 55–77 (2012).
[CrossRef]

C. Tan, J. Simonen, and T. Niemi, “Hybrid waveguide-surface plasmon polariton modes in a guided-mode resonance grating,” Opt. Commun. 285, 4381–4386 (2012).
[CrossRef]

A. G. Nikitin, A. V. Kabashin, and H. Dallaporta, “Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects,” Opt. Express 20, 27941–27952 (2012).
[CrossRef]

L. D. Tuyen, A. C. Liu, C. Huang, P. Tsai, J. H. Lin, C. Wu, L. Chau, T. S. Yang, L. Q. Minh, H. Kan, and C. C. Hsu, “Doubly resonant surface-enhanced Raman scattering on gold nanorod decorated inverse opal photonic crystals,” Opt. Express 20, 29266–29275 (2012).
[CrossRef]

2011 (3)

A. Shahmansouri and B. Rashidian, “Comprehensive three-dimensional split-field finite difference time-domain method for analysis of periodic plasmonic nanostructures: near- and far-field formulation,” J. Opt. Soc. Am. B 28, 2690–2700 (2011).
[CrossRef]

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115, 15318–15323 (2011).
[CrossRef]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[CrossRef]

2010 (4)

2009 (2)

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17, 8669–8675 (2009).
[CrossRef]

2008 (4)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

2006 (1)

J. Zhoa, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine 1, 219–228 (2006).
[CrossRef]

2005 (2)

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[CrossRef]

G. Gantzounis, N. Stefanou, and V. Yannopapas, “Optical properties of a periodic monolayer of metallic nanospheres on a dielectric waveguide,” J. Phys. Condens. Matter 17, 1791–1802 (2005).
[CrossRef]

2004 (3)

V. Yannopapas and N. Stefanou, “Optical excitation of coupled waveguide-particle plasmon modes: a theoretical analysis,” Phys. Rev. B 69, 012408 (2004).
[CrossRef]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef]

2003 (1)

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

1985 (1)

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Auguié, B.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Bai, W.

Barnes, W. L.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef]

Bendaña, X. M.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[CrossRef]

Brongersma, S. H.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[CrossRef]

Cai, L.

Chau, L.

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

Cialla, D.

Crego-Calama, M.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[CrossRef]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

Dallaporta, H.

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Galarreta, B. C.

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115, 15318–15323 (2011).
[CrossRef]

Gantzounis, G.

G. Gantzounis, N. Stefanou, and V. Yannopapas, “Optical properties of a periodic monolayer of metallic nanospheres on a dielectric waveguide,” J. Phys. Condens. Matter 17, 1791–1802 (2005).
[CrossRef]

García de Abajo, F. J.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[CrossRef]

Gómez Rivas, J.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[CrossRef]

Gray, S. K.

Grigorenko, A. N.

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 956–958 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef]

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Haes, A. J.

J. Zhoa, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine 1, 219–228 (2006).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Hicks, E. M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[CrossRef]

Hsu, C. C.

Huang, C.

Hübner, U.

Imre, A.

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef]

Janunts, N.

Kabashin, A. V.

Kall, M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Kan, H.

Kasemo, B.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 956–958 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Lagugné-Labarthet, F.

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115, 15318–15323 (2011).
[CrossRef]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Lederer, F.

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Lin, J. H.

Liu, A. C.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Mattheis, R.

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Meier, M.

Minh, L. Q.

Möller, R.

Montgomery, J. M.

Niemi, T.

C. Tan, J. Simonen, and T. Niemi, “Hybrid waveguide-surface plasmon polariton modes in a guided-mode resonance grating,” Opt. Commun. 285, 4381–4386 (2012).
[CrossRef]

Nikitin, A. G.

Offermans, P.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[CrossRef]

Paspalakis, E.

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

Pertsch, T.

Petschulat, J.

Popp, J.

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Psarobas, I. E.

V. Yannopapas and I. E. Psarobas, “Ordered arrays of metal nanostrings as broadband super absorbers,” J. Phys. Chem. C 116, 15599 (2012).
[CrossRef]

Rashidian, B.

A. Shahmansouri and B. Rashidian, “GPU implementation of split-field finite-difference time-domain method for Drude–Lorentz dispersive media,” Prog. Electromagn. Res. 125, 55–77 (2012).
[CrossRef]

A. Shahmansouri and B. Rashidian, “Comprehensive three-dimensional split-field finite difference time-domain method for analysis of periodic plasmonic nanostructures: near- and far-field formulation,” J. Opt. Soc. Am. B 28, 2690–2700 (2011).
[CrossRef]

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[CrossRef]

Rockstuh, C.

Rodriguez, S. R. K.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[CrossRef]

Rupar, I.

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115, 15318–15323 (2011).
[CrossRef]

Schaafsma, M. C.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[CrossRef]

Schatz, G. C.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[CrossRef]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 956–958 (2010).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Schneidewind, H.

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Shahmansouri, A.

A. Shahmansouri and B. Rashidian, “GPU implementation of split-field finite-difference time-domain method for Drude–Lorentz dispersive media,” Prog. Electromagn. Res. 125, 55–77 (2012).
[CrossRef]

A. Shahmansouri and B. Rashidian, “Comprehensive three-dimensional split-field finite difference time-domain method for analysis of periodic plasmonic nanostructures: near- and far-field formulation,” J. Opt. Soc. Am. B 28, 2690–2700 (2011).
[CrossRef]

Simonen, J.

C. Tan, J. Simonen, and T. Niemi, “Hybrid waveguide-surface plasmon polariton modes in a guided-mode resonance grating,” Opt. Commun. 285, 4381–4386 (2012).
[CrossRef]

Song, G.

Spears, K. G.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[CrossRef]

Stefanou, N.

G. Gantzounis, N. Stefanou, and V. Yannopapas, “Optical properties of a periodic monolayer of metallic nanospheres on a dielectric waveguide,” J. Phys. Condens. Matter 17, 1791–1802 (2005).
[CrossRef]

V. Yannopapas and N. Stefanou, “Optical excitation of coupled waveguide-particle plasmon modes: a theoretical analysis,” Phys. Rev. B 69, 012408 (2004).
[CrossRef]

Tan, C.

C. Tan, J. Simonen, and T. Niemi, “Hybrid waveguide-surface plasmon polariton modes in a guided-mode resonance grating,” Opt. Commun. 285, 4381–4386 (2012).
[CrossRef]

Tsai, P.

Tünnermann, A.

Tuyen, L. D.

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

J. Zhoa, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine 1, 219–228 (2006).
[CrossRef]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Vitanov, N. V.

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

Vlasko-Vlasov, V.

Welp, U.

Wokaun, A.

Wu, C.

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

Yang, T. S.

Yannopapas, V.

V. Yannopapas and I. E. Psarobas, “Ordered arrays of metal nanostrings as broadband super absorbers,” J. Phys. Chem. C 116, 15599 (2012).
[CrossRef]

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

G. Gantzounis, N. Stefanou, and V. Yannopapas, “Optical properties of a periodic monolayer of metallic nanospheres on a dielectric waveguide,” J. Phys. Condens. Matter 17, 1791–1802 (2005).
[CrossRef]

V. Yannopapas and N. Stefanou, “Optical excitation of coupled waveguide-particle plasmon modes: a theoretical analysis,” Phys. Rev. B 69, 012408 (2004).
[CrossRef]

Yonzon, C. R.

J. Zhoa, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine 1, 219–228 (2006).
[CrossRef]

Young, A.

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115, 15318–15323 (2011).
[CrossRef]

Zhang, J.

Zhang, X.

J. Zhoa, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine 1, 219–228 (2006).
[CrossRef]

Zhang, Y.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Zhao, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Zhoa, J.

J. Zhoa, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine 1, 219–228 (2006).
[CrossRef]

Zou, S.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[CrossRef]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef]

ACS Nano (1)

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[CrossRef]

J. Chem. Phys. (2)

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

J. Phys. Chem. C (2)

V. Yannopapas and I. E. Psarobas, “Ordered arrays of metal nanostrings as broadband super absorbers,” J. Phys. Chem. C 116, 15599 (2012).
[CrossRef]

B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115, 15318–15323 (2011).
[CrossRef]

J. Phys. Condens. Matter (1)

G. Gantzounis, N. Stefanou, and V. Yannopapas, “Optical properties of a periodic monolayer of metallic nanospheres on a dielectric waveguide,” J. Phys. Condens. Matter 17, 1791–1802 (2005).
[CrossRef]

Nano Lett. (1)

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5, 1065–1070 (2005).
[CrossRef]

Nanomedicine (1)

J. Zhoa, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine 1, 219–228 (2006).
[CrossRef]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Opt. Commun. (1)

C. Tan, J. Simonen, and T. Niemi, “Hybrid waveguide-surface plasmon polariton modes in a guided-mode resonance grating,” Opt. Commun. 285, 4381–4386 (2012).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (3)

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[CrossRef]

V. Yannopapas and N. Stefanou, “Optical excitation of coupled waveguide-particle plasmon modes: a theoretical analysis,” Phys. Rev. B 69, 012408 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef]

Prog. Electromagn. Res. (1)

A. Shahmansouri and B. Rashidian, “GPU implementation of split-field finite-difference time-domain method for Drude–Lorentz dispersive media,” Prog. Electromagn. Res. 125, 55–77 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Array made of Au nanodisks placed on top of glass substrate coated with ITO. The two studied polarizations are shown.

Fig. 2.
Fig. 2.

Extinction spectra of nanodisk array in far-field coupling regime (Y0=Z0=540nm), glass thickness=80nm, TE polarization.

Fig. 3.
Fig. 3.

Near-field enhancement spectra of nanodisk array in far-field coupling regime (Y0=Z0=540nm), glass thickness=80nm, TE polarization.

Fig. 4.
Fig. 4.

Extinction spectra of nanodisk array in far-field coupling regime (Y0=Z0=540nm), glass thickness=80nm, TM polarization.

Fig. 5.
Fig. 5.

Extinction spectra of nanodisk array in far-field coupling regime (Y0=Z0=540nm), infinite glass thickness, TE polarization.

Fig. 6.
Fig. 6.

Extinction spectra of nanodisk array in far-field coupling regime (Y0=Z0=540nm), infinite glass thickness, TM polarization.

Fig. 7.
Fig. 7.

Near-field enhancement spectra of nanodisk array in far-field coupling regime (Y0=Z0=540nm) under normal incidence by changing the glass thickness.

Fig. 8.
Fig. 8.

Extinction spectra of nanodisk array with periodicity of 432 nm in z direction and 540 nm in y direction, infinite glass thickness, TM polarization.

Fig. 9.
Fig. 9.

Extinction spectra of nanodisk array in near-field coupling regime (Y0=Z0=252nm), TE polarization. Inset: electric field intensity profile in the cross section of a nanodisk in a unit cell.

Fig. 10.
Fig. 10.

Extinction spectra of nanodisk array in near-field coupling regime (Y0=Z0=252nm), TM polarization. Inset: electric field intensity profile in the cross section of a nanodisk in a unit cell.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k⃗=i2πY0y^+(j2πZ0+k0sinθ)z^.

Metrics