Abstract

The conditions to observe and excite electromagnetic surface modes at the interface between a two-dimensional (2D) photonic crystal (PC) and bulk metal are studied. It is shown that these modes can exist in the region where bandgaps of the PC overlap with the region below the plasma frequency of a metal in the dispersion diagram in both polarizations. The dispersion relation of these electromagnetic surface modes is determined numerically by considering a system of a thin metallic layer in contact with a finite PC of some periods. The reflectance is computed by using the finite-difference time-domain (FDTD) method. With this method, it is shown that these modes can be excited and observed even under normal incidence from a vacuum. For the studied system, the cell in contact with the metallic layer must be truncated in order to observe the interface mode. It is shown that we can select the frequency of the mode inside the bandgaps by properly choosing the truncation parameter.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30, 2575–2577 (2005).
    [CrossRef]
  2. A. Femius Koenderink and W. L. Vos, “Optical properties of real photonic crystals,” J. Opt. Soc. Am. B 22, 1075–1084 (2005).
    [CrossRef]
  3. L. Florescu, K. Busch, and S. John, “Semiclasical theory of lasing in photonic crystals,” J. Opt. Soc. Am. B 19, 2215–2223 (2002).
    [CrossRef]
  4. P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
    [CrossRef]
  5. J. Li, W. Huang, and Y. Han, “Tunable photonic crystals by mixed liquids,” Colloids Surf. 279, 213–217 (2006).
    [CrossRef]
  6. T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006).
    [CrossRef]
  7. S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostruct. 4, 103–115 (2006).
    [CrossRef]
  8. M. Mengens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, “Light sources inside photonic crystals,” J. Opt. Soc. Am. B 16, 1403–1408 (1999).
    [CrossRef]
  9. F. Yuntuan, S. Haijin, and S. Tinggen, “New evidences of negative refraction in photonic crystals,” Opt. Mater. 28, 1156–1159 (2006).
    [CrossRef]
  10. B. Momeni and A. Adibi, “Systematic design of superprism-based photonic crystal demultiplexers,” IEEE J. Sel. Areas Comm. 23, 1355–1364 (2005).
    [CrossRef]
  11. N. C. Panoiu, M. Bahl, and R. M. Osgood, “Optically tunable superprism effect in nonlinear photonic crystals,” Opt. Lett. 28, 2503–2505 (2003).
    [CrossRef]
  12. M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003).
    [CrossRef]
  13. C. C. Cheng, A. Scherer, R.-C. Tyan, Y. u. Fainman, G. Witzgail, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. 15, 2764–2767 (1997).
    [CrossRef]
  14. V. Ramanan, E. Elson, A. Brezezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
    [CrossRef]
  15. D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography,” Appl. Phys. Lett. 94, 011101 (2009).
    [CrossRef]
  16. E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455–481 (2006).
    [CrossRef]
  17. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett. 31, 3104–3106 (2006).
    [CrossRef]
  18. M. Charboneau-Lefort, E. Istrate, M. Allard, J. Poon, and E. H. Sargent, “Photonic heterostructures: waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65, 125318 (2002).
    [CrossRef]
  19. F. Ramos-Mendieta and P. Halevi, “Surface electromagnetic two-dimensional photonic crystals: effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999).
    [CrossRef]
  20. J. A. Gaspar-Armenta and F. Villa, “Photonic surface-wave excitation: photonic crystal-metal interface,” J. Opt. Soc. Am. B 20, 2349–2354 (2003).
    [CrossRef]
  21. Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
    [CrossRef]
  22. B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: gold film terminated opals,” Phys. Rev. B 82, 035119 (2010).
    [CrossRef]
  23. B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Gold film-terminated 3-dimensional photonic crystals,” Appl. Phys. A 103, 889–894 (2011).
    [CrossRef]
  24. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23, 2515–2533 (2011).
    [CrossRef]
  25. L. Zhengqi, H. Jinting, J. Chen, Z. Yan, C. Tang, Z. Chen, and P. Zhang, “Optical transmission of corrugated metal films on a two-dimensional hetero-colloidal crystal,” Opt. Express 20, 9215–9225 (2012).
    [CrossRef]
  26. F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Rios, “Photonic crystal sensor based on surface waves for thin film characterization,” Opt. Lett. 27, 646–648 (2002).
    [CrossRef]
  27. X. Chun-Hua, J. Hai-Tao, and C. Hong, “Nonlinear resonance-enhanced excitation of surface plasmon polaritons,” Opt. Lett. 36, 855–857 (2011).
    [CrossRef]
  28. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic medium,” IEEE Trans. Antennas Propag. 17, 585–589 (1966).
    [CrossRef]
  29. D. M. Sullivan, Electromagnetic Simulations Using the FDTD Method (IEEE, 2000).
  30. J. Manzanares-Martinez and J. A. Gaspar-Armenta, “Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique,” J. Electromagn. Waves Appl. 21, 2297–2310 (2007).
    [CrossRef]
  31. C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
    [CrossRef]

2012 (1)

2011 (3)

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Gold film-terminated 3-dimensional photonic crystals,” Appl. Phys. A 103, 889–894 (2011).
[CrossRef]

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23, 2515–2533 (2011).
[CrossRef]

X. Chun-Hua, J. Hai-Tao, and C. Hong, “Nonlinear resonance-enhanced excitation of surface plasmon polaritons,” Opt. Lett. 36, 855–857 (2011).
[CrossRef]

2010 (1)

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: gold film terminated opals,” Phys. Rev. B 82, 035119 (2010).
[CrossRef]

2009 (1)

D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography,” Appl. Phys. Lett. 94, 011101 (2009).
[CrossRef]

2008 (2)

Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

V. Ramanan, E. Elson, A. Brezezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
[CrossRef]

2007 (1)

J. Manzanares-Martinez and J. A. Gaspar-Armenta, “Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique,” J. Electromagn. Waves Appl. 21, 2297–2310 (2007).
[CrossRef]

2006 (6)

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455–481 (2006).
[CrossRef]

E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett. 31, 3104–3106 (2006).
[CrossRef]

F. Yuntuan, S. Haijin, and S. Tinggen, “New evidences of negative refraction in photonic crystals,” Opt. Mater. 28, 1156–1159 (2006).
[CrossRef]

J. Li, W. Huang, and Y. Han, “Tunable photonic crystals by mixed liquids,” Colloids Surf. 279, 213–217 (2006).
[CrossRef]

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006).
[CrossRef]

S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostruct. 4, 103–115 (2006).
[CrossRef]

2005 (3)

2003 (3)

2002 (3)

2001 (1)

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

1999 (2)

M. Mengens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, “Light sources inside photonic crystals,” J. Opt. Soc. Am. B 16, 1403–1408 (1999).
[CrossRef]

F. Ramos-Mendieta and P. Halevi, “Surface electromagnetic two-dimensional photonic crystals: effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999).
[CrossRef]

1997 (1)

C. C. Cheng, A. Scherer, R.-C. Tyan, Y. u. Fainman, G. Witzgail, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. 15, 2764–2767 (1997).
[CrossRef]

1995 (1)

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic medium,” IEEE Trans. Antennas Propag. 17, 585–589 (1966).
[CrossRef]

Adibi, A.

B. Momeni and A. Adibi, “Systematic design of superprism-based photonic crystal demultiplexers,” IEEE J. Sel. Areas Comm. 23, 1355–1364 (2005).
[CrossRef]

Agio, M.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Allard, M.

M. Charboneau-Lefort, E. Istrate, M. Allard, J. Poon, and E. H. Sargent, “Photonic heterostructures: waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65, 125318 (2002).
[CrossRef]

Bahl, M.

Birner, A.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Bogart, K. H. A.

D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography,” Appl. Phys. Lett. 94, 011101 (2009).
[CrossRef]

Braun, P. V.

D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography,” Appl. Phys. Lett. 94, 011101 (2009).
[CrossRef]

V. Ramanan, E. Elson, A. Brezezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
[CrossRef]

Brezezinski, A.

V. Ramanan, E. Elson, A. Brezezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
[CrossRef]

Brzezinski, A.

D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography,” Appl. Phys. Lett. 94, 011101 (2009).
[CrossRef]

Busch, K.

Cao, Z.

Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

Chan, C. T.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

Charboneau-Lefort, M.

M. Charboneau-Lefort, E. Istrate, M. Allard, J. Poon, and E. H. Sargent, “Photonic heterostructures: waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65, 125318 (2002).
[CrossRef]

Chen, J.

Chen, Y. C.

D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography,” Appl. Phys. Lett. 94, 011101 (2009).
[CrossRef]

Chen, Z.

Cheng, C. C.

C. C. Cheng, A. Scherer, R.-C. Tyan, Y. u. Fainman, G. Witzgail, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. 15, 2764–2767 (1997).
[CrossRef]

Chun-Hua, X.

Cingolani, R.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006).
[CrossRef]

de Sario, M.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006).
[CrossRef]

de Vittorio, M.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006).
[CrossRef]

Ding, B.

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Gold film-terminated 3-dimensional photonic crystals,” Appl. Phys. A 103, 889–894 (2011).
[CrossRef]

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: gold film terminated opals,” Phys. Rev. B 82, 035119 (2010).
[CrossRef]

Dorazio, A.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006).
[CrossRef]

Elson, E.

V. Ramanan, E. Elson, A. Brezezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
[CrossRef]

Errico, V.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006).
[CrossRef]

Fainman, Y. u.

C. C. Cheng, A. Scherer, R.-C. Tyan, Y. u. Fainman, G. Witzgail, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. 15, 2764–2767 (1997).
[CrossRef]

Fan, S.

Florescu, L.

Gaspar-Armenta, J.

Gaspar-Armenta, J. A.

J. Manzanares-Martinez and J. A. Gaspar-Armenta, “Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique,” J. Electromagn. Waves Appl. 21, 2297–2310 (2007).
[CrossRef]

J. A. Gaspar-Armenta and F. Villa, “Photonic surface-wave excitation: photonic crystal-metal interface,” J. Opt. Soc. Am. B 20, 2349–2354 (2003).
[CrossRef]

Gösele, U.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Haijin, S.

F. Yuntuan, S. Haijin, and S. Tinggen, “New evidences of negative refraction in photonic crystals,” Opt. Mater. 28, 1156–1159 (2006).
[CrossRef]

Hai-Tao, J.

Halevi, P.

F. Ramos-Mendieta and P. Halevi, “Surface electromagnetic two-dimensional photonic crystals: effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999).
[CrossRef]

Han, Y.

J. Li, W. Huang, and Y. Han, “Tunable photonic crystals by mixed liquids,” Colloids Surf. 279, 213–217 (2006).
[CrossRef]

Ho, K. M.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

Hong, C.

Huang, W.

J. Li, W. Huang, and Y. Han, “Tunable photonic crystals by mixed liquids,” Colloids Surf. 279, 213–217 (2006).
[CrossRef]

Istrate, E.

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455–481 (2006).
[CrossRef]

M. Charboneau-Lefort, E. Istrate, M. Allard, J. Poon, and E. H. Sargent, “Photonic heterostructures: waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65, 125318 (2002).
[CrossRef]

Jinting, H.

Joannopoulos, J. D.

John, S.

Koenderink, A. Femius

Korovin, A. V.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23, 2515–2533 (2011).
[CrossRef]

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Gold film-terminated 3-dimensional photonic crystals,” Appl. Phys. A 103, 889–894 (2011).
[CrossRef]

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: gold film terminated opals,” Phys. Rev. B 82, 035119 (2010).
[CrossRef]

Kramper, P.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Kuramochi, E.

Lagendijk, A.

Li, J.

J. Li, W. Huang, and Y. Han, “Tunable photonic crystals by mixed liquids,” Colloids Surf. 279, 213–217 (2006).
[CrossRef]

Li, Y.

Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

Liao, H.

D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography,” Appl. Phys. Lett. 94, 011101 (2009).
[CrossRef]

Liu, A. Q.

S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostruct. 4, 103–115 (2006).
[CrossRef]

Lopez-Rios, T.

Luo, C.

Manzanares-Martinez, J.

J. Manzanares-Martinez and J. A. Gaspar-Armenta, “Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique,” J. Electromagn. Waves Appl. 21, 2297–2310 (2007).
[CrossRef]

Marrocco, V.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006).
[CrossRef]

Mengens, M.

Mitsugi, S.

Mlynek, J.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Momeni, B.

B. Momeni and A. Adibi, “Systematic design of superprism-based photonic crystal demultiplexers,” IEEE J. Sel. Areas Comm. 23, 1355–1364 (2005).
[CrossRef]

Müller, F.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Nelson, E. C.

D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography,” Appl. Phys. Lett. 94, 011101 (2009).
[CrossRef]

Notomi, M.

Osgood, R. M.

Panoiu, N. C.

Park, W.

Passaseo, A.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006).
[CrossRef]

Pemble, M. E.

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Gold film-terminated 3-dimensional photonic crystals,” Appl. Phys. A 103, 889–894 (2011).
[CrossRef]

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: gold film terminated opals,” Phys. Rev. B 82, 035119 (2010).
[CrossRef]

Peschel, U.

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Gold film-terminated 3-dimensional photonic crystals,” Appl. Phys. A 103, 889–894 (2011).
[CrossRef]

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23, 2515–2533 (2011).
[CrossRef]

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: gold film terminated opals,” Phys. Rev. B 82, 035119 (2010).
[CrossRef]

Petruzzelli, V.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006).
[CrossRef]

Poon, J.

M. Charboneau-Lefort, E. Istrate, M. Allard, J. Poon, and E. H. Sargent, “Photonic heterostructures: waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65, 125318 (2002).
[CrossRef]

Prudenzano, F.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006).
[CrossRef]

Ramanan, V.

V. Ramanan, E. Elson, A. Brezezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
[CrossRef]

Ramos-Mendieta, F.

F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Rios, “Photonic crystal sensor based on surface waves for thin film characterization,” Opt. Lett. 27, 646–648 (2002).
[CrossRef]

F. Ramos-Mendieta and P. Halevi, “Surface electromagnetic two-dimensional photonic crystals: effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999).
[CrossRef]

Regalado, L. E.

Regensburger, A.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23, 2515–2533 (2011).
[CrossRef]

Rogers, J. A.

D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography,” Appl. Phys. Lett. 94, 011101 (2009).
[CrossRef]

Romanov, S. G.

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Gold film-terminated 3-dimensional photonic crystals,” Appl. Phys. A 103, 889–894 (2011).
[CrossRef]

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23, 2515–2533 (2011).
[CrossRef]

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: gold film terminated opals,” Phys. Rev. B 82, 035119 (2010).
[CrossRef]

Salhi, A.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006).
[CrossRef]

Sandoghdar, V.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Sargent, E. H.

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455–481 (2006).
[CrossRef]

M. Charboneau-Lefort, E. Istrate, M. Allard, J. Poon, and E. H. Sargent, “Photonic heterostructures: waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65, 125318 (2002).
[CrossRef]

Scherer, A.

C. C. Cheng, A. Scherer, R.-C. Tyan, Y. u. Fainman, G. Witzgail, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. 15, 2764–2767 (1997).
[CrossRef]

Schonbrun, E.

Shinya, A.

Shir, D.

D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography,” Appl. Phys. Lett. 94, 011101 (2009).
[CrossRef]

Singh, J.

S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostruct. 4, 103–115 (2006).
[CrossRef]

Soljacic, M.

Soukoulis, C. M.

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

Stomeo, T.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006).
[CrossRef]

Sullivan, D. M.

D. M. Sullivan, Electromagnetic Simulations Using the FDTD Method (IEEE, 2000).

Summers, C. J.

Sun, J.

Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

Tanabe, T.

Tang, C.

Teo, S. H. G.

S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostruct. 4, 103–115 (2006).
[CrossRef]

Tinggen, S.

F. Yuntuan, S. Haijin, and S. Tinggen, “New evidences of negative refraction in photonic crystals,” Opt. Mater. 28, 1156–1159 (2006).
[CrossRef]

Tyan, R.-C.

C. C. Cheng, A. Scherer, R.-C. Tyan, Y. u. Fainman, G. Witzgail, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. 15, 2764–2767 (1997).
[CrossRef]

Villa, F.

Vos, W. L.

Wang, L.

Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

Wang, Z.

Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

Wijnhoven, J. E. G. J.

Wiltzius, P.

D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography,” Appl. Phys. Lett. 94, 011101 (2009).
[CrossRef]

V. Ramanan, E. Elson, A. Brezezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
[CrossRef]

Witzgail, G.

C. C. Cheng, A. Scherer, R.-C. Tyan, Y. u. Fainman, G. Witzgail, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. 15, 2764–2767 (1997).
[CrossRef]

Wu, Q.

Yablonovitch, E.

C. C. Cheng, A. Scherer, R.-C. Tyan, Y. u. Fainman, G. Witzgail, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. 15, 2764–2767 (1997).
[CrossRef]

Yamashita, T.

Yan, Z.

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic medium,” IEEE Trans. Antennas Propag. 17, 585–589 (1966).
[CrossRef]

Yu, M. B.

S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostruct. 4, 103–115 (2006).
[CrossRef]

Yu, Q. L.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

Yuntuan, F.

F. Yuntuan, S. Haijin, and S. Tinggen, “New evidences of negative refraction in photonic crystals,” Opt. Mater. 28, 1156–1159 (2006).
[CrossRef]

Zhan, P.

Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

Zhang, P.

Zhengqi, L.

Adv. Mater. (1)

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. 23, 2515–2533 (2011).
[CrossRef]

Appl. Phys. A (2)

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Gold film-terminated 3-dimensional photonic crystals,” Appl. Phys. A 103, 889–894 (2011).
[CrossRef]

Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

V. Ramanan, E. Elson, A. Brezezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
[CrossRef]

D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography,” Appl. Phys. Lett. 94, 011101 (2009).
[CrossRef]

Colloids Surf. (1)

J. Li, W. Huang, and Y. Han, “Tunable photonic crystals by mixed liquids,” Colloids Surf. 279, 213–217 (2006).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

B. Momeni and A. Adibi, “Systematic design of superprism-based photonic crystal demultiplexers,” IEEE J. Sel. Areas Comm. 23, 1355–1364 (2005).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic medium,” IEEE Trans. Antennas Propag. 17, 585–589 (1966).
[CrossRef]

J. Electromagn. Waves Appl. (1)

J. Manzanares-Martinez and J. A. Gaspar-Armenta, “Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique,” J. Electromagn. Waves Appl. 21, 2297–2310 (2007).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Vac. Sci. Technol. (1)

C. C. Cheng, A. Scherer, R.-C. Tyan, Y. u. Fainman, G. Witzgail, and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. 15, 2764–2767 (1997).
[CrossRef]

Microelectron. Eng. (1)

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. Dorazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. de Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823–1825 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Opt. Mater. (1)

F. Yuntuan, S. Haijin, and S. Tinggen, “New evidences of negative refraction in photonic crystals,” Opt. Mater. 28, 1156–1159 (2006).
[CrossRef]

Photon. Nanostruct. (1)

S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostruct. 4, 103–115 (2006).
[CrossRef]

Phys. Rev. B (5)

P. Kramper, A. Birner, M. Agio, C. M. Soukoulis, F. Müller, U. Gösele, J. Mlynek, and V. Sandoghdar, “Direct spectroscopy of a deep two-dimensional photonic crystal microresonator,” Phys. Rev. B 64, 233102 (2001).
[CrossRef]

M. Charboneau-Lefort, E. Istrate, M. Allard, J. Poon, and E. H. Sargent, “Photonic heterostructures: waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65, 125318 (2002).
[CrossRef]

F. Ramos-Mendieta and P. Halevi, “Surface electromagnetic two-dimensional photonic crystals: effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999).
[CrossRef]

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: gold film terminated opals,” Phys. Rev. B 82, 035119 (2010).
[CrossRef]

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[CrossRef]

Rev. Mod. Phys. (1)

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455–481 (2006).
[CrossRef]

Other (1)

D. M. Sullivan, Electromagnetic Simulations Using the FDTD Method (IEEE, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Unit cell of a 2DPC composed of two different materials with dielectric functions εa (inclusions) and εb (support medium).

Fig. 2.
Fig. 2.

Band structure under TE polarization of a 2DPC with square inclusions of dielectric function εa=9 embedded in air. Filling fraction f=0.3.

Fig. 3.
Fig. 3.

Excitation modeling of SW using FDTD. The metallic layer thickness was 0.375L. The PC considered had 30 periods in the x direction and nine in the y direction.

Fig. 4.
Fig. 4.

Reduced frequency versus reflectance of a PC and PC metallic layer under normal incidence. Truncation parameter τ=0.5.

Fig. 5.
Fig. 5.

Reduced frequency versus reflectance of a PC and PC metallic layer under normal incidence. Truncation parameter τ=0.3.

Fig. 6.
Fig. 6.

Projected band structure of the 2DPC given in Fig. 2.

Fig. 7.
Fig. 7.

Spectral density function as a function of frequency for three different k vectors.

Fig. 8.
Fig. 8.

Position of the SW within the bandgaps (nonshaded regions) as a function of the truncation of the period in contact with the metallic medium. In this case we considered k=0.

Fig. 9.
Fig. 9.

(a) Amplitude of the electric field in the region where the SW is excited. The vertical line represents the boundary between the metal and the PC. (b) Scheme corresponding with the system used to determine the field distribution shown in (a). Inclusions have a square cross section, but the scale in x (horizontal) is greater than in y (vertical).

Fig. 10.
Fig. 10.

Amplitude of the electric field E along a horizontal line at the center of Fig. 9(a). The vertical solid line indicates the position of the metallic surface, and the dashed vertical lines correspond with the boundary of each cell in the lattice.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

1ε(x,y)2E(x,y)=ω2c2E(x,y)
[x1ε(x,y)x+y1ε(x,y)y]H(x,y)=ω2c2H(x,y)
G⃗μG⃗G⃗|k⃗+G⃗|2EG⃗=ω2c2EG⃗,
G⃗μG⃗G⃗(k⃗+G⃗)·(k⃗+G⃗)HG⃗=ω2c2HG⃗,
1ε(r⃗)=G⃗μG⃗exp(iG⃗·r⃗),
μG⃗=1AAeiG⃗·r⃗ε(r⃗)dA
E⃗(r⃗)=G⃗EG⃗exp[i(k⃗+G⃗)·r⃗].
μG⃗=1εbsinc(GxL2)sinc(GyL2)+f(1εa1εb)sinc(Gxa2)sinc(Gya2).
εm=1ω¯p2ω¯(ω¯+iω¯Γ).

Metrics