Abstract

Nonlinear interaction of coherent intensive optical radiation with continuous resonant photonic crystal (RPC) is analytically and numerically studied in the framework of semiclassical approach using the two-wave Maxwell–Bloch equations. The analytical solution being the gap soliton of self-induced transparency is obtained in the case of an initially unexcited continuous RPC. This solution is confirmed numerically. Influence of both initial inversion and resonant atom concentration function profile on the pulse dynamics in continuous RPC is analyzed. Suppression of the Bragg reflection and a “quasi-linear” 2π pulse propagation in the case of zero initial inversion in continuous RPC is shown. The possibility of laser pulse compression using slow spatial changing of resonant atom concentration is demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (44)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription