Abstract

A core-resonance cylindrical whispering gallery mode (WGM) laser is reported in dye-doped nematic liquid crystals (NLCs) filled in a glass capillary. This laser runs on the basis of the properties that NLC has an extraordinary refractive index much higher than that of a glass and that it plays as a good solvent for laser dye. The conditions of the WGM lasing are investigated on the basis of gain and loss of the core medium. The NLC is a material suitable for optofluidic core-resonance cylindrical WGM lasers, which are promising, from an application viewpoint, for biodevices or analytical microdevices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
    [CrossRef]
  2. K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008).
    [CrossRef]
  3. Y. Matsuhisa, R. Ozaki, M. Ozaki, and K. Yoshino, “Single-mode lasing in one-dimensional periodic structure containing helical structure as a defect,” Jpn. J. Appl. Phys. 44, L629–L632 (2005).
    [CrossRef]
  4. S. M. Morris, A. J. Ford, and H. J. Coles, “Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser,” J. Appl. Phys. 106, 023112 (2009).
    [CrossRef]
  5. H. Shirvani-Mahdavi, E. Mohajerani, and S.-T. Wu, “Circularly polarized high-efficiency cholesteric liquid crystal lasers with a tunable nematic phase retarder,” Opt. Express 18, 5021–5027 (2010).
    [CrossRef]
  6. S. Gottardo, W. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
    [CrossRef]
  7. Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89, 011111 (2006).
    [CrossRef]
  8. C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18, 2406–2412 (2010).
    [CrossRef]
  9. S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
    [CrossRef]
  10. B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Materials 31, 375–379 (2008).
    [CrossRef]
  11. S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17, 2042–2047 (2009).
    [CrossRef]
  12. C.-R. Lee, J.-D. Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Juang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Frèedericksz transition threshold,” Opt. Express 19, 2391–2400 (2011).
    [CrossRef]
  13. S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, l. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
    [CrossRef]
  14. D. Dunmur and K. Toriyama, “Optical properties,” in Physical Properties of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, eds. (Wiley-VCH, 1999), pp. 113–128.
  15. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
    [CrossRef]
  16. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
    [CrossRef]
  17. M. Humar, M. Ravnik, S. Pajk, and I. Nusevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
    [CrossRef]
  18. C. Knight, H. S. T. Driver, and G. N. Robertson, “Morphology-dependent resonances in a cylindrical dye microlaser: mode assignments, cavity Q values, and critical dye concentrations.” J. Opt. Soc. Am. B 11, 2046–2053 (1994).
    [CrossRef]
  19. H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76, 3679–3681 (2000).
    [CrossRef]
  20. H.-J. Moon and K. An, “Interferential coupling effect on the whispering-gallery mode lasing in a double-layered microcylinder,” Appl. Phys. Lett. 80, 3250–3252 (2002).
    [CrossRef]
  21. S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
    [CrossRef]
  22. J. D. Suter, Y. Sun, D. J. Howard, J. A. Viator, and X. Fan, “PDMS embedded opto-fluidic microring resonator lasers,” Opt. Express 16, 10248–10253 (2008).
    [CrossRef]
  23. A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent-wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353 (2005).
    [CrossRef]
  24. Y.-X. Zhang, X.-Y. Pu, K. Zhu, and L. Feng, “Threshold property of whispering-gallery-mode fiber lasers pumped by evanescent waves” J. Opt. Soc. Am. B 28, 2048–2056 (2011).
    [CrossRef]
  25. H. Taniguchi and S. Tanosaki, “Three-color whispering-gallery-mode dye lasers using dye-doped liquid spheres,” Jpn. J. Appl. Phys. 32L1421–L1424 (1993).
    [CrossRef]
  26. H. Cao, “Random lasers: development, features, and applications,” Opt. Photon. News 16, 24–29 (2005).
    [CrossRef]
  27. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Photonics 4, 359–367 (2008).
  28. V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
    [CrossRef]

2012 (1)

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, l. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[CrossRef]

2011 (2)

2010 (2)

2009 (3)

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17, 2042–2047 (2009).
[CrossRef]

M. Humar, M. Ravnik, S. Pajk, and I. Nusevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

S. M. Morris, A. J. Ford, and H. J. Coles, “Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser,” J. Appl. Phys. 106, 023112 (2009).
[CrossRef]

2008 (4)

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008).
[CrossRef]

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Materials 31, 375–379 (2008).
[CrossRef]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Photonics 4, 359–367 (2008).

J. D. Suter, Y. Sun, D. J. Howard, J. A. Viator, and X. Fan, “PDMS embedded opto-fluidic microring resonator lasers,” Opt. Express 16, 10248–10253 (2008).
[CrossRef]

2007 (1)

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

2006 (4)

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89, 011111 (2006).
[CrossRef]

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[CrossRef]

2005 (3)

Y. Matsuhisa, R. Ozaki, M. Ozaki, and K. Yoshino, “Single-mode lasing in one-dimensional periodic structure containing helical structure as a defect,” Jpn. J. Appl. Phys. 44, L629–L632 (2005).
[CrossRef]

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent-wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353 (2005).
[CrossRef]

H. Cao, “Random lasers: development, features, and applications,” Opt. Photon. News 16, 24–29 (2005).
[CrossRef]

2004 (1)

S. Gottardo, W. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[CrossRef]

2002 (1)

H.-J. Moon and K. An, “Interferential coupling effect on the whispering-gallery mode lasing in a double-layered microcylinder,” Appl. Phys. Lett. 80, 3250–3252 (2002).
[CrossRef]

2000 (1)

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76, 3679–3681 (2000).
[CrossRef]

1998 (2)

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[CrossRef]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
[CrossRef]

1994 (1)

1993 (1)

H. Taniguchi and S. Tanosaki, “Three-color whispering-gallery-mode dye lasers using dye-doped liquid spheres,” Jpn. J. Appl. Phys. 32L1421–L1424 (1993).
[CrossRef]

An, K.

H.-J. Moon and K. An, “Interferential coupling effect on the whispering-gallery mode lasing in a double-layered microcylinder,” Appl. Phys. Lett. 80, 3250–3252 (2002).
[CrossRef]

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76, 3679–3681 (2000).
[CrossRef]

Barna, V.

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17, 2042–2047 (2009).
[CrossRef]

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

Bartolino, R.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

Buchter, S. C.

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent-wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353 (2005).
[CrossRef]

Bulovic, V.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[CrossRef]

Cao, H.

H. Cao, “Random lasers: development, features, and applications,” Opt. Photon. News 16, 24–29 (2005).
[CrossRef]

Cavalieri, W.

S. Gottardo, W. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[CrossRef]

Chang, S.-H.

Chough, Y.-T.

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76, 3679–3681 (2000).
[CrossRef]

Chu, S.-C.

Coles, H. J.

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, l. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[CrossRef]

S. M. Morris, A. J. Ford, and H. J. Coles, “Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser,” J. Appl. Phys. 106, 023112 (2009).
[CrossRef]

De Luca, A.

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17, 2042–2047 (2009).
[CrossRef]

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

Driver, H. S. T.

Dunmur, D.

D. Dunmur and K. Toriyama, “Optical properties,” in Physical Properties of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, eds. (Wiley-VCH, 1999), pp. 113–128.

Elim, H. I.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89, 011111 (2006).
[CrossRef]

Fan, B.

Fan, X.

J. D. Suter, Y. Sun, D. J. Howard, J. A. Viator, and X. Fan, “PDMS embedded opto-fluidic microring resonator lasers,” Opt. Express 16, 10248–10253 (2008).
[CrossRef]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

Feng, L.

Ferjani, S.

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17, 2042–2047 (2009).
[CrossRef]

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

Ford, A. J.

S. M. Morris, A. J. Ford, and H. J. Coles, “Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser,” J. Appl. Phys. 106, 023112 (2009).
[CrossRef]

Forrest, S. R.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[CrossRef]

Gardiner, D. J.

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, l. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[CrossRef]

Genack, A. Z.

Gottardo, S.

S. Gottardo, W. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[CrossRef]

Guo, C.-H.

Hands, P. J. W.

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, l. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[CrossRef]

He, B.

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Materials 31, 375–379 (2008).
[CrossRef]

Howard, D. J.

Huang, B.-Y.

Huang, Y.

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Materials 31, 375–379 (2008).
[CrossRef]

Humar, M.

M. Humar, M. Ravnik, S. Pajk, and I. Nusevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[CrossRef]

Ishikawa, K.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008).
[CrossRef]

Ji, W.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89, 011111 (2006).
[CrossRef]

Juang, S.-Y.

Kaivola, M.

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent-wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353 (2005).
[CrossRef]

Khalfin, V. B.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[CrossRef]

Kim, J. B.

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76, 3679–3681 (2000).
[CrossRef]

Knight, C.

Kopp, V. I.

Kozlov, V. G.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[CrossRef]

Kuo, C.-T.

Lee, C.-R.

Lee, J.

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76, 3679–3681 (2000).
[CrossRef]

Liao, Q.

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Materials 31, 375–379 (2008).
[CrossRef]

Lin, J.-D.

Lin, S.-H.

Lindfors, K.

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent-wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353 (2005).
[CrossRef]

Liu, Y. J.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89, 011111 (2006).
[CrossRef]

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[CrossRef]

Matsuhisa, Y.

Y. Matsuhisa, R. Ozaki, M. Ozaki, and K. Yoshino, “Single-mode lasing in one-dimensional periodic structure containing helical structure as a defect,” Jpn. J. Appl. Phys. 44, L629–L632 (2005).
[CrossRef]

Mo, T.-S.

Mohajerani, E.

Moon, H.-J.

H.-J. Moon and K. An, “Interferential coupling effect on the whispering-gallery mode lasing in a double-layered microcylinder,” Appl. Phys. Lett. 80, 3250–3252 (2002).
[CrossRef]

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76, 3679–3681 (2000).
[CrossRef]

Morris, S. M.

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, l. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[CrossRef]

S. M. Morris, A. J. Ford, and H. J. Coles, “Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser,” J. Appl. Phys. 106, 023112 (2009).
[CrossRef]

Nusevic, I.

M. Humar, M. Ravnik, S. Pajk, and I. Nusevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

Ozaki, M.

Y. Matsuhisa, R. Ozaki, M. Ozaki, and K. Yoshino, “Single-mode lasing in one-dimensional periodic structure containing helical structure as a defect,” Jpn. J. Appl. Phys. 44, L629–L632 (2005).
[CrossRef]

Ozaki, R.

Y. Matsuhisa, R. Ozaki, M. Ozaki, and K. Yoshino, “Single-mode lasing in one-dimensional periodic structure containing helical structure as a defect,” Jpn. J. Appl. Phys. 44, L629–L632 (2005).
[CrossRef]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Nusevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

Pu, X.-Y.

Qasim, M. M.

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, l. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[CrossRef]

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Nusevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

Robertson, G. N.

Scaramuzza, N.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

Shevchenko, A.

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent-wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353 (2005).
[CrossRef]

Shirvani-Mahdavi, H.

Shopova, S. I.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

Sonoyama, K.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008).
[CrossRef]

Strangi, G.

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17, 2042–2047 (2009).
[CrossRef]

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

Sun, X. W.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89, 011111 (2006).
[CrossRef]

Sun, Y.

Suter, J. D.

Takanishi, Y.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008).
[CrossRef]

Takezoe, H.

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008).
[CrossRef]

Taniguchi, H.

H. Taniguchi and S. Tanosaki, “Three-color whispering-gallery-mode dye lasers using dye-doped liquid spheres,” Jpn. J. Appl. Phys. 32L1421–L1424 (1993).
[CrossRef]

Tanosaki, S.

H. Taniguchi and S. Tanosaki, “Three-color whispering-gallery-mode dye lasers using dye-doped liquid spheres,” Jpn. J. Appl. Phys. 32L1421–L1424 (1993).
[CrossRef]

Toriyama, K.

D. Dunmur and K. Toriyama, “Optical properties,” in Physical Properties of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, eds. (Wiley-VCH, 1999), pp. 113–128.

Versace, C.

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17, 2042–2047 (2009).
[CrossRef]

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

Viator, J. A.

Vithana, H. K. M.

White, l. H.

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, l. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Photonics 4, 359–367 (2008).

S. Gottardo, W. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[CrossRef]

Wilkinson, T. D.

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, l. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[CrossRef]

Wu, S.-T.

Yaroshchuk, O.

S. Gottardo, W. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[CrossRef]

Yeh, H.-C.

Yi, J.

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76, 3679–3681 (2000).
[CrossRef]

Yoshino, K.

Y. Matsuhisa, R. Ozaki, M. Ozaki, and K. Yoshino, “Single-mode lasing in one-dimensional periodic structure containing helical structure as a defect,” Jpn. J. Appl. Phys. 44, L629–L632 (2005).
[CrossRef]

Zhang, P.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

Zhang, Y.-X.

Zhou, H.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

Zhu, K.

Appl. Phys. Express (1)

K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers,” Appl. Phys. Express 1, 032002 (2008).
[CrossRef]

Appl. Phys. Lett. (6)

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, l. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[CrossRef]

H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Appl. Phys. Lett. 76, 3679–3681 (2000).
[CrossRef]

H.-J. Moon and K. An, “Interferential coupling effect on the whispering-gallery mode lasing in a double-layered microcylinder,” Appl. Phys. Lett. 80, 3250–3252 (2002).
[CrossRef]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[CrossRef]

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89, 011111 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[CrossRef]

J. Appl. Phys. (1)

S. M. Morris, A. J. Ford, and H. J. Coles, “Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser,” J. Appl. Phys. 106, 023112 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (2)

Y. Matsuhisa, R. Ozaki, M. Ozaki, and K. Yoshino, “Single-mode lasing in one-dimensional periodic structure containing helical structure as a defect,” Jpn. J. Appl. Phys. 44, L629–L632 (2005).
[CrossRef]

H. Taniguchi and S. Tanosaki, “Three-color whispering-gallery-mode dye lasers using dye-doped liquid spheres,” Jpn. J. Appl. Phys. 32L1421–L1424 (1993).
[CrossRef]

Nat. Photonics (2)

M. Humar, M. Ravnik, S. Pajk, and I. Nusevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[CrossRef]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Photonics 4, 359–367 (2008).

Opt. Commun. (1)

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent-wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353 (2005).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Opt. Materials (1)

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Materials 31, 375–379 (2008).
[CrossRef]

Opt. Photon. News (1)

H. Cao, “Random lasers: development, features, and applications,” Opt. Photon. News 16, 24–29 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

S. Gottardo, W. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[CrossRef]

Science (1)

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[CrossRef]

Other (1)

D. Dunmur and K. Toriyama, “Optical properties,” in Physical Properties of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, eds. (Wiley-VCH, 1999), pp. 113–128.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Emission spectra, (b) emission intensity and (c) bandwidth (FWHM) as a function of input intensity, and (d) emission image of sample A in the nematic phase. The inset in (a) is the optical geometry. The inset in (b) is a enlargement of the profile at low input energy. In (a), spectra A and B are taken at 1.3 and 22mJmm2pulse1, respectively. The laser threshold is indicated with arrows in (b).

Fig. 2.
Fig. 2.

(a) Emission spectra, (b) emission intensity and (c) bandwidth (FWHM) as a function of input energy, and (d) emission image of sample A in the isotropic phase. The spectra A and B are taken at 0.62 and 11.8mJmm2pulse1, respectively. The laser threshold is indicated with arrows in (b).

Fig. 3.
Fig. 3.

(a) Emission spectra, (b) emission intensity and (c) bandwidth (FWHM) as a function of input energy, and (d) emission image of sample B in the nematic phase. The laser threshold is indicated with arrows in (b).

Fig. 4.
Fig. 4.

(a) Emission spectra, (b) emission intensity and (c) bandwidth (FWHM) as a function of input energy, and (d) emission image of sample B in the isotropic phase. The laser threshold is indicated with arrows in (b).

Fig. 5.
Fig. 5.

Transmittance spectra of dye-doped LC 146 μm-thick in the nematic phase (N) and in the isotropic (Iso) phase.

Fig. 6.
Fig. 6.

Optical geometry of (a) sample A and (b) sample B. Pump light with a 80 μm diameter is incident from right to left.

Fig. 7.
Fig. 7.

Fluorescence spectra of the dye-doped LC in the nematic (N) phase and in the isotropic (Iso) phase.

Fig. 8.
Fig. 8.

Emission spectra at various core diameters (a) in the nematic phase and (b) in the isotropic phase. The vertical lines in (b) are due to the pump light that could not be removed by filters.

Tables (1)

Tables Icon

Table 1. Loss (cm1) Evaluated with Dye-doped NLC Cell

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G(λ)=g(λ)lσ(λ)L,
ΔG(σ(λ2)σ(λ1))L.

Metrics