Abstract

Gold nanoparticle embedded ZnO thin films have been studied at the fundamental and second harmonic wavelengths of a picosecond laser by Z-scan technique. The films exhibit the effect of saturable absorption and self-defocusing. Large value third order nonlinear susceptibility (108esu) has been observed at 1064 nm. Fast relaxation time measurements have been performed with the diffraction of the probe beam with laser-induced transient grating technique. Figure of merit values for optical switching applications have been obtained. One of the samples has been tested for passive mode-locking applications in combination with the standard saturable absorber, IR26.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Seo, Q. G. Yang, W. J. Kim, J. H. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi, and D. Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag core shells,” Opt. Lett. 34, 307–309 (2009).
    [CrossRef]
  2. Y. H. Lee, Y. Yan, L. Polavarapu, and Q. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95, 023105 (2009).
    [CrossRef]
  3. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
    [CrossRef]
  4. G. Bisker, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “Controlled release of Rituximab from gold nanoparticles phototherapy of malignant cells,” J. Controlled Release 162, 303–309 (2012).
    [CrossRef]
  5. L. Minai, D. Yeheskely-Hayon, L. Golan, G. Bisker, E. J. Dann, and D. Yelin, “Nanomedicine: optical nanomanipulations of malignant cells: controlled cell damage and fusion,” Small 8, 1626 (2012).
    [CrossRef]
  6. S. O. Obare, R. E. Hollowell, and C. J. Murphy, “Sensing strategy for lithium ion based on gold nanoparticles,” Langmuir 18, 10407–10410 (2002).
    [CrossRef]
  7. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Multiphoton plasmon-resonance microscopy,” Opt. Express 11, 1385–1391 (2003).
    [CrossRef]
  8. E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348–350 (1972).
    [CrossRef]
  9. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [CrossRef]
  10. G. Li, B. Q. Yao, P. B. Meng, W. Wang, Y. L. Ju, and Y. Z. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched mode-locking of Tm, Ho:YVO4 laser,” Laser Phys. Lett. 8, 42–45 (2011).
    [CrossRef]
  11. D. V. Khudyakov, A. S. Lobach, and V. A. Nadtochenko, “Nonlinear optical absorption of single-wall carbon nanotubes in carboxymethylcellulose thin polymerfilm and its application as a saturable absorber for mode-locking in pulsed Nd:glass laser,” Appl. Opt. 48, 1624–1627 (2009).
    [CrossRef]
  12. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [CrossRef]
  13. W. Ma, B. Feng, Y. Ren, Q. Zeng, Z. Niu, J. Li, X. Zhang, H. Dong, W. Zhou, and S. Xie, “Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films,” J. Nanosci. Nanotechnol. 10, 7333–7335 (2010).
    [CrossRef]
  14. S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys. 111, 1255–1264 (1999).
    [CrossRef]
  15. H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, and Y. Lu, “Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity,” J. Am. Chem. Soc. 129, 4538–4539 (2007).
    [CrossRef]
  16. T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO,” J. Phys. D 40, 6705–6708 (2007).
    [CrossRef]
  17. A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun. 273, 538–543 (2007).
    [CrossRef]
  18. T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Nonlinear optical properties of Au/ZnO nanoparticle arrays,” Appl. Surf. Sci. 254, 1900–1903 (2008).
    [CrossRef]
  19. A. Patra, A. Manivannan, and S. Kasiviswanathan, “Spectral response of nanocrystalline ZnO films embedded with Au nanoparticles,” J. Opt. Soc. Am. B 29, 3317–3324 (2012).
    [CrossRef]
  20. M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70, 587–591 (2000).
    [CrossRef]
  21. B. S. Kalanoor, P. B. Bisht, S. Akbar Ali, T. T. Baby, and S. Ramaprabhu, “Optical nonlinearity of silver-decorated grapheme,” J. Opt. Soc. Am. B 29, 669–675 (2012).
    [CrossRef]
  22. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  23. U. Tripathy and P. B. Bisht, “Influence of pulsed and cw pumping on optical nonlinear parameters of laser dyes probed by a closed-aperture Z-scan technique,” J. Opt. Soc. Am. B 24, 2147–2156 (2007).
    [CrossRef]
  24. H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, “Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Phys. Rev. B 57, 11334–11340 (1998).
    [CrossRef]
  25. B. S. Kalanoor and P. B. Bisht, “Wavelength dependent resonant nonlinearities in a standard saturable absorber IR26 on picosecond time scale,” Opt. Commun. 283, 4059–4063 (2010).
    [CrossRef]
  26. F. Cui, C. Feng, R. Xie, Z. Hua, X. Cui, J. Zhou, C. Wei, H. Ohtsuka, Y. Sakkad, and J. Shi, “Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment,” J. Mater. Chem. 20, 8399–8404 (2010).
    [CrossRef]
  27. Q. Lu, F. Cui, C. Dong, Z. Hua, and J. Shi, “Gold nanoparticles incorporated mesoporous silica thin films of varied gold contents and their well-tuned third-order optical nonlinearities,” Opt. Mater. 33, 1266–1271 (2011).
    [CrossRef]
  28. H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett. 5, 379–382 (2005).
    [CrossRef]
  29. H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274–4277 (2006).
    [CrossRef]
  30. G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111, 3858–3887 (2011).
    [CrossRef]
  31. R. A. Ganeev, R. I. Tugushev, and T. Usmanov, “Application of the nonlinear optical properties of platinum nanoparticles for the mode locking of Nd:glass laser,” Appl. Phys. B 94, 647–651 (2009).
    [CrossRef]
  32. G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
    [CrossRef]
  33. R. J. Rajesh and P. B. Bisht, “Theoretical and experimental studies on laser-induced transient gratings in laser dyes,” J. Lumin. 99, 301–309 (2002).
    [CrossRef]

2012

G. Bisker, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “Controlled release of Rituximab from gold nanoparticles phototherapy of malignant cells,” J. Controlled Release 162, 303–309 (2012).
[CrossRef]

L. Minai, D. Yeheskely-Hayon, L. Golan, G. Bisker, E. J. Dann, and D. Yelin, “Nanomedicine: optical nanomanipulations of malignant cells: controlled cell damage and fusion,” Small 8, 1626 (2012).
[CrossRef]

A. Patra, A. Manivannan, and S. Kasiviswanathan, “Spectral response of nanocrystalline ZnO films embedded with Au nanoparticles,” J. Opt. Soc. Am. B 29, 3317–3324 (2012).
[CrossRef]

B. S. Kalanoor, P. B. Bisht, S. Akbar Ali, T. T. Baby, and S. Ramaprabhu, “Optical nonlinearity of silver-decorated grapheme,” J. Opt. Soc. Am. B 29, 669–675 (2012).
[CrossRef]

2011

Q. Lu, F. Cui, C. Dong, Z. Hua, and J. Shi, “Gold nanoparticles incorporated mesoporous silica thin films of varied gold contents and their well-tuned third-order optical nonlinearities,” Opt. Mater. 33, 1266–1271 (2011).
[CrossRef]

G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111, 3858–3887 (2011).
[CrossRef]

G. Li, B. Q. Yao, P. B. Meng, W. Wang, Y. L. Ju, and Y. Z. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched mode-locking of Tm, Ho:YVO4 laser,” Laser Phys. Lett. 8, 42–45 (2011).
[CrossRef]

2010

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef]

W. Ma, B. Feng, Y. Ren, Q. Zeng, Z. Niu, J. Li, X. Zhang, H. Dong, W. Zhou, and S. Xie, “Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films,” J. Nanosci. Nanotechnol. 10, 7333–7335 (2010).
[CrossRef]

B. S. Kalanoor and P. B. Bisht, “Wavelength dependent resonant nonlinearities in a standard saturable absorber IR26 on picosecond time scale,” Opt. Commun. 283, 4059–4063 (2010).
[CrossRef]

F. Cui, C. Feng, R. Xie, Z. Hua, X. Cui, J. Zhou, C. Wei, H. Ohtsuka, Y. Sakkad, and J. Shi, “Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment,” J. Mater. Chem. 20, 8399–8404 (2010).
[CrossRef]

2009

R. A. Ganeev, R. I. Tugushev, and T. Usmanov, “Application of the nonlinear optical properties of platinum nanoparticles for the mode locking of Nd:glass laser,” Appl. Phys. B 94, 647–651 (2009).
[CrossRef]

D. V. Khudyakov, A. S. Lobach, and V. A. Nadtochenko, “Nonlinear optical absorption of single-wall carbon nanotubes in carboxymethylcellulose thin polymerfilm and its application as a saturable absorber for mode-locking in pulsed Nd:glass laser,” Appl. Opt. 48, 1624–1627 (2009).
[CrossRef]

J. T. Seo, Q. G. Yang, W. J. Kim, J. H. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi, and D. Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag core shells,” Opt. Lett. 34, 307–309 (2009).
[CrossRef]

Y. H. Lee, Y. Yan, L. Polavarapu, and Q. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95, 023105 (2009).
[CrossRef]

2008

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Nonlinear optical properties of Au/ZnO nanoparticle arrays,” Appl. Surf. Sci. 254, 1900–1903 (2008).
[CrossRef]

2007

H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, and Y. Lu, “Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity,” J. Am. Chem. Soc. 129, 4538–4539 (2007).
[CrossRef]

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO,” J. Phys. D 40, 6705–6708 (2007).
[CrossRef]

A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun. 273, 538–543 (2007).
[CrossRef]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

U. Tripathy and P. B. Bisht, “Influence of pulsed and cw pumping on optical nonlinear parameters of laser dyes probed by a closed-aperture Z-scan technique,” J. Opt. Soc. Am. B 24, 2147–2156 (2007).
[CrossRef]

2006

H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274–4277 (2006).
[CrossRef]

2005

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett. 5, 379–382 (2005).
[CrossRef]

2003

2002

S. O. Obare, R. E. Hollowell, and C. J. Murphy, “Sensing strategy for lithium ion based on gold nanoparticles,” Langmuir 18, 10407–10410 (2002).
[CrossRef]

R. J. Rajesh and P. B. Bisht, “Theoretical and experimental studies on laser-induced transient gratings in laser dyes,” J. Lumin. 99, 301–309 (2002).
[CrossRef]

2000

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70, 587–591 (2000).
[CrossRef]

1999

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys. 111, 1255–1264 (1999).
[CrossRef]

1998

H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, “Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Phys. Rev. B 57, 11334–11340 (1998).
[CrossRef]

1996

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

1993

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
[CrossRef]

1990

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1972

E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348–350 (1972).
[CrossRef]

Akbar Ali, S.

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Austin, J.

Baby, T. T.

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef]

Bian, Z.

H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, and Y. Lu, “Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity,” J. Am. Chem. Soc. 129, 4538–4539 (2007).
[CrossRef]

Bisht, P. B.

B. S. Kalanoor, P. B. Bisht, S. Akbar Ali, T. T. Baby, and S. Ramaprabhu, “Optical nonlinearity of silver-decorated grapheme,” J. Opt. Soc. Am. B 29, 669–675 (2012).
[CrossRef]

B. S. Kalanoor and P. B. Bisht, “Wavelength dependent resonant nonlinearities in a standard saturable absorber IR26 on picosecond time scale,” Opt. Commun. 283, 4059–4063 (2010).
[CrossRef]

U. Tripathy and P. B. Bisht, “Influence of pulsed and cw pumping on optical nonlinear parameters of laser dyes probed by a closed-aperture Z-scan technique,” J. Opt. Soc. Am. B 24, 2147–2156 (2007).
[CrossRef]

R. J. Rajesh and P. B. Bisht, “Theoretical and experimental studies on laser-induced transient gratings in laser dyes,” J. Lumin. 99, 301–309 (2002).
[CrossRef]

Bisker, G.

G. Bisker, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “Controlled release of Rituximab from gold nanoparticles phototherapy of malignant cells,” J. Controlled Release 162, 303–309 (2012).
[CrossRef]

L. Minai, D. Yeheskely-Hayon, L. Golan, G. Bisker, E. J. Dann, and D. Yelin, “Nanomedicine: optical nanomanipulations of malignant cells: controlled cell damage and fusion,” Small 8, 1626 (2012).
[CrossRef]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Burda, C.

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys. 111, 1255–1264 (1999).
[CrossRef]

Cao, L.

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Nonlinear optical properties of Au/ZnO nanoparticle arrays,” Appl. Surf. Sci. 254, 1900–1903 (2008).
[CrossRef]

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO,” J. Phys. D 40, 6705–6708 (2007).
[CrossRef]

Chen, M.

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett. 5, 379–382 (2005).
[CrossRef]

Chen, Z.

H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274–4277 (2006).
[CrossRef]

Cheng, B.

H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274–4277 (2006).
[CrossRef]

Cui, F.

Q. Lu, F. Cui, C. Dong, Z. Hua, and J. Shi, “Gold nanoparticles incorporated mesoporous silica thin films of varied gold contents and their well-tuned third-order optical nonlinearities,” Opt. Mater. 33, 1266–1271 (2011).
[CrossRef]

F. Cui, C. Feng, R. Xie, Z. Hua, X. Cui, J. Zhou, C. Wei, H. Ohtsuka, Y. Sakkad, and J. Shi, “Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment,” J. Mater. Chem. 20, 8399–8404 (2010).
[CrossRef]

Cui, X.

F. Cui, C. Feng, R. Xie, Z. Hua, X. Cui, J. Zhou, C. Wei, H. Ohtsuka, Y. Sakkad, and J. Shi, “Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment,” J. Mater. Chem. 20, 8399–8404 (2010).
[CrossRef]

Dann, E. J.

L. Minai, D. Yeheskely-Hayon, L. Golan, G. Bisker, E. J. Dann, and D. Yelin, “Nanomedicine: optical nanomanipulations of malignant cells: controlled cell damage and fusion,” Small 8, 1626 (2012).
[CrossRef]

Debrus, S.

A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun. 273, 538–543 (2007).
[CrossRef]

Dienes, A.

E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348–350 (1972).
[CrossRef]

Dong, C.

Q. Lu, F. Cui, C. Dong, Z. Hua, and J. Shi, “Gold nanoparticles incorporated mesoporous silica thin films of varied gold contents and their well-tuned third-order optical nonlinearities,” Opt. Mater. 33, 1266–1271 (2011).
[CrossRef]

Dong, H.

W. Ma, B. Feng, Y. Ren, Q. Zeng, Z. Niu, J. Li, X. Zhang, H. Dong, W. Zhou, and S. Xie, “Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films,” J. Nanosci. Nanotechnol. 10, 7333–7335 (2010).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys. 111, 1255–1264 (1999).
[CrossRef]

Feng, B.

W. Ma, B. Feng, Y. Ren, Q. Zeng, Z. Niu, J. Li, X. Zhang, H. Dong, W. Zhou, and S. Xie, “Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films,” J. Nanosci. Nanotechnol. 10, 7333–7335 (2010).
[CrossRef]

Feng, C.

F. Cui, C. Feng, R. Xie, Z. Hua, X. Cui, J. Zhou, C. Wei, H. Ohtsuka, Y. Sakkad, and J. Shi, “Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment,” J. Mater. Chem. 20, 8399–8404 (2010).
[CrossRef]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, R. I. Tugushev, and T. Usmanov, “Application of the nonlinear optical properties of platinum nanoparticles for the mode locking of Nd:glass laser,” Appl. Phys. B 94, 647–651 (2009).
[CrossRef]

Golan, L.

L. Minai, D. Yeheskely-Hayon, L. Golan, G. Bisker, E. J. Dann, and D. Yelin, “Nanomedicine: optical nanomanipulations of malignant cells: controlled cell damage and fusion,” Small 8, 1626 (2012).
[CrossRef]

Guan, D.

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Nonlinear optical properties of Au/ZnO nanoparticle arrays,” Appl. Surf. Sci. 254, 1900–1903 (2008).
[CrossRef]

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO,” J. Phys. D 40, 6705–6708 (2007).
[CrossRef]

H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274–4277 (2006).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Han, S. W.

Hartland, G. V.

G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111, 3858–3887 (2011).
[CrossRef]

Hasan, T.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef]

Heo, J. H.

Hirao, K.

H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, “Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Phys. Rev. B 57, 11334–11340 (1998).
[CrossRef]

Hollowell, R. E.

S. O. Obare, R. E. Hollowell, and C. J. Murphy, “Sensing strategy for lithium ion based on gold nanoparticles,” Langmuir 18, 10407–10410 (2002).
[CrossRef]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Hua, Z.

Q. Lu, F. Cui, C. Dong, Z. Hua, and J. Shi, “Gold nanoparticles incorporated mesoporous silica thin films of varied gold contents and their well-tuned third-order optical nonlinearities,” Opt. Mater. 33, 1266–1271 (2011).
[CrossRef]

F. Cui, C. Feng, R. Xie, Z. Hua, X. Cui, J. Zhou, C. Wei, H. Ohtsuka, Y. Sakkad, and J. Shi, “Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment,” J. Mater. Chem. 20, 8399–8404 (2010).
[CrossRef]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

Huo, Y.

H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, and Y. Lu, “Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity,” J. Am. Chem. Soc. 129, 4538–4539 (2007).
[CrossRef]

Inouye, H.

H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, “Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Phys. Rev. B 57, 11334–11340 (1998).
[CrossRef]

Ippen, E. P.

E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348–350 (1972).
[CrossRef]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

Ji, W.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70, 587–591 (2000).
[CrossRef]

Ju, Y. L.

G. Li, B. Q. Yao, P. B. Meng, W. Wang, Y. L. Ju, and Y. Z. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched mode-locking of Tm, Ho:YVO4 laser,” Laser Phys. Lett. 8, 42–45 (2011).
[CrossRef]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Jung, S. S.

Kalanoor, B. S.

B. S. Kalanoor, P. B. Bisht, S. Akbar Ali, T. T. Baby, and S. Ramaprabhu, “Optical nonlinearity of silver-decorated grapheme,” J. Opt. Soc. Am. B 29, 669–675 (2012).
[CrossRef]

B. S. Kalanoor and P. B. Bisht, “Wavelength dependent resonant nonlinearities in a standard saturable absorber IR26 on picosecond time scale,” Opt. Commun. 283, 4059–4063 (2010).
[CrossRef]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kasiviswanathan, S.

Keller, U.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Khudyakov, D. V.

Kim, W. J.

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Lee, Y. H.

Y. H. Lee, Y. Yan, L. Polavarapu, and Q. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95, 023105 (2009).
[CrossRef]

Li, G.

G. Li, B. Q. Yao, P. B. Meng, W. Wang, Y. L. Ju, and Y. Z. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched mode-locking of Tm, Ho:YVO4 laser,” Laser Phys. Lett. 8, 42–45 (2011).
[CrossRef]

Li, H.

H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, and Y. Lu, “Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity,” J. Am. Chem. Soc. 129, 4538–4539 (2007).
[CrossRef]

H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, and Y. Lu, “Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity,” J. Am. Chem. Soc. 129, 4538–4539 (2007).
[CrossRef]

Li, H. P.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70, 587–591 (2000).
[CrossRef]

Li, J.

W. Ma, B. Feng, Y. Ren, Q. Zeng, Z. Niu, J. Li, X. Zhang, H. Dong, W. Zhou, and S. Xie, “Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films,” J. Nanosci. Nanotechnol. 10, 7333–7335 (2010).
[CrossRef]

Link, S.

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys. 111, 1255–1264 (1999).
[CrossRef]

Lobach, A. S.

Lu, G.

H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274–4277 (2006).
[CrossRef]

Lu, H.

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Nonlinear optical properties of Au/ZnO nanoparticle arrays,” Appl. Surf. Sci. 254, 1900–1903 (2008).
[CrossRef]

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO,” J. Phys. D 40, 6705–6708 (2007).
[CrossRef]

Lu, Q.

Q. Lu, F. Cui, C. Dong, Z. Hua, and J. Shi, “Gold nanoparticles incorporated mesoporous silica thin films of varied gold contents and their well-tuned third-order optical nonlinearities,” Opt. Mater. 33, 1266–1271 (2011).
[CrossRef]

Lu, Y.

H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, and Y. Lu, “Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity,” J. Am. Chem. Soc. 129, 4538–4539 (2007).
[CrossRef]

Ma, S. M.

Ma, W.

W. Ma, B. Feng, Y. Ren, Q. Zeng, Z. Niu, J. Li, X. Zhang, H. Dong, W. Zhou, and S. Xie, “Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films,” J. Nanosci. Nanotechnol. 10, 7333–7335 (2010).
[CrossRef]

Manivannan, A.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Meng, P. B.

G. Li, B. Q. Yao, P. B. Meng, W. Wang, Y. L. Ju, and Y. Z. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched mode-locking of Tm, Ho:YVO4 laser,” Laser Phys. Lett. 8, 42–45 (2011).
[CrossRef]

Minai, L.

L. Minai, D. Yeheskely-Hayon, L. Golan, G. Bisker, E. J. Dann, and D. Yelin, “Nanomedicine: optical nanomanipulations of malignant cells: controlled cell damage and fusion,” Small 8, 1626 (2012).
[CrossRef]

G. Bisker, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “Controlled release of Rituximab from gold nanoparticles phototherapy of malignant cells,” J. Controlled Release 162, 303–309 (2012).
[CrossRef]

Moses, E.

Murphy, C. J.

S. O. Obare, R. E. Hollowell, and C. J. Murphy, “Sensing strategy for lithium ion based on gold nanoparticles,” Langmuir 18, 10407–10410 (2002).
[CrossRef]

Nadtochenko, V. A.

Ning, T.

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Nonlinear optical properties of Au/ZnO nanoparticle arrays,” Appl. Surf. Sci. 254, 1900–1903 (2008).
[CrossRef]

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO,” J. Phys. D 40, 6705–6708 (2007).
[CrossRef]

H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274–4277 (2006).
[CrossRef]

Niu, Z.

W. Ma, B. Feng, Y. Ren, Q. Zeng, Z. Niu, J. Li, X. Zhang, H. Dong, W. Zhou, and S. Xie, “Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films,” J. Nanosci. Nanotechnol. 10, 7333–7335 (2010).
[CrossRef]

Obare, S. O.

S. O. Obare, R. E. Hollowell, and C. J. Murphy, “Sensing strategy for lithium ion based on gold nanoparticles,” Langmuir 18, 10407–10410 (2002).
[CrossRef]

Ohtsuka, H.

F. Cui, C. Feng, R. Xie, Z. Hua, X. Cui, J. Zhou, C. Wei, H. Ohtsuka, Y. Sakkad, and J. Shi, “Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment,” J. Mater. Chem. 20, 8399–8404 (2010).
[CrossRef]

Oron, D.

Pal, U.

A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun. 273, 538–543 (2007).
[CrossRef]

Palpant, B.

A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun. 273, 538–543 (2007).
[CrossRef]

Patra, A.

Polavarapu, L.

Y. H. Lee, Y. Yan, L. Polavarapu, and Q. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95, 023105 (2009).
[CrossRef]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef]

Rajesh, R. J.

R. J. Rajesh and P. B. Bisht, “Theoretical and experimental studies on laser-induced transient gratings in laser dyes,” J. Lumin. 99, 301–309 (2002).
[CrossRef]

Ramaprabhu, S.

Ren, Y.

W. Ma, B. Feng, Y. Ren, Q. Zeng, Z. Niu, J. Li, X. Zhang, H. Dong, W. Zhou, and S. Xie, “Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films,” J. Nanosci. Nanotechnol. 10, 7333–7335 (2010).
[CrossRef]

Rice, P. M.

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett. 5, 379–382 (2005).
[CrossRef]

Ryasnyanskiy, A. I.

A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun. 273, 538–543 (2007).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Sakkad, Y.

F. Cui, C. Feng, R. Xie, Z. Hua, X. Cui, J. Zhou, C. Wei, H. Ohtsuka, Y. Sakkad, and J. Shi, “Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment,” J. Mater. Chem. 20, 8399–8404 (2010).
[CrossRef]

Seo, J. T.

Shank, C. V.

E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348–350 (1972).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Shen, H.

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Nonlinear optical properties of Au/ZnO nanoparticle arrays,” Appl. Surf. Sci. 254, 1900–1903 (2008).
[CrossRef]

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO,” J. Phys. D 40, 6705–6708 (2007).
[CrossRef]

H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274–4277 (2006).
[CrossRef]

Shi, J.

Q. Lu, F. Cui, C. Dong, Z. Hua, and J. Shi, “Gold nanoparticles incorporated mesoporous silica thin films of varied gold contents and their well-tuned third-order optical nonlinearities,” Opt. Mater. 33, 1266–1271 (2011).
[CrossRef]

F. Cui, C. Feng, R. Xie, Z. Hua, X. Cui, J. Zhou, C. Wei, H. Ohtsuka, Y. Sakkad, and J. Shi, “Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment,” J. Mater. Chem. 20, 8399–8404 (2010).
[CrossRef]

Silberberg, Y.

Stegeman, G. I.

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
[CrossRef]

Stepanov, A. L.

A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun. 273, 538–543 (2007).
[CrossRef]

Sun, S.

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett. 5, 379–382 (2005).
[CrossRef]

Sun, Z.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef]

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Nonlinear optical properties of Au/ZnO nanoparticle arrays,” Appl. Surf. Sci. 254, 1900–1903 (2008).
[CrossRef]

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO,” J. Phys. D 40, 6705–6708 (2007).
[CrossRef]

Tabibi, B.

Tanahashi, I.

H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, “Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Phys. Rev. B 57, 11334–11340 (1998).
[CrossRef]

Tanaka, K.

H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, “Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Phys. Rev. B 57, 11334–11340 (1998).
[CrossRef]

Tang, S. H.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70, 587–591 (2000).
[CrossRef]

Temple, D.

Thiberge, S.

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef]

Tripathy, U.

Tugushev, R. I.

R. A. Ganeev, R. I. Tugushev, and T. Usmanov, “Application of the nonlinear optical properties of platinum nanoparticles for the mode locking of Nd:glass laser,” Appl. Phys. B 94, 647–651 (2009).
[CrossRef]

Usmanov, T.

R. A. Ganeev, R. I. Tugushev, and T. Usmanov, “Application of the nonlinear optical properties of platinum nanoparticles for the mode locking of Nd:glass laser,” Appl. Phys. B 94, 647–651 (2009).
[CrossRef]

Van Stryland, W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef]

Wang, S. X.

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett. 5, 379–382 (2005).
[CrossRef]

Wang, W.

G. Li, B. Q. Yao, P. B. Meng, W. Wang, Y. L. Ju, and Y. Z. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched mode-locking of Tm, Ho:YVO4 laser,” Laser Phys. Lett. 8, 42–45 (2011).
[CrossRef]

Wang, Y. Z.

G. Li, B. Q. Yao, P. B. Meng, W. Wang, Y. L. Ju, and Y. Z. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched mode-locking of Tm, Ho:YVO4 laser,” Laser Phys. Lett. 8, 42–45 (2011).
[CrossRef]

Wang, Z. L.

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys. 111, 1255–1264 (1999).
[CrossRef]

Wei, C.

F. Cui, C. Feng, R. Xie, Z. Hua, X. Cui, J. Zhou, C. Wei, H. Ohtsuka, Y. Sakkad, and J. Shi, “Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment,” J. Mater. Chem. 20, 8399–8404 (2010).
[CrossRef]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

White, R. L.

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett. 5, 379–382 (2005).
[CrossRef]

Xie, R.

F. Cui, C. Feng, R. Xie, Z. Hua, X. Cui, J. Zhou, C. Wei, H. Ohtsuka, Y. Sakkad, and J. Shi, “Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment,” J. Mater. Chem. 20, 8399–8404 (2010).
[CrossRef]

Xie, S.

W. Ma, B. Feng, Y. Ren, Q. Zeng, Z. Niu, J. Li, X. Zhang, H. Dong, W. Zhou, and S. Xie, “Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films,” J. Nanosci. Nanotechnol. 10, 7333–7335 (2010).
[CrossRef]

Xu, Q.

Y. H. Lee, Y. Yan, L. Polavarapu, and Q. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95, 023105 (2009).
[CrossRef]

Yan, Y.

Y. H. Lee, Y. Yan, L. Polavarapu, and Q. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95, 023105 (2009).
[CrossRef]

Yang, G.

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Nonlinear optical properties of Au/ZnO nanoparticle arrays,” Appl. Surf. Sci. 254, 1900–1903 (2008).
[CrossRef]

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO,” J. Phys. D 40, 6705–6708 (2007).
[CrossRef]

Yang, Q. G.

Yao, B. Q.

G. Li, B. Q. Yao, P. B. Meng, W. Wang, Y. L. Ju, and Y. Z. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched mode-locking of Tm, Ho:YVO4 laser,” Laser Phys. Lett. 8, 42–45 (2011).
[CrossRef]

Yeheskely-Hayon, D.

G. Bisker, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “Controlled release of Rituximab from gold nanoparticles phototherapy of malignant cells,” J. Controlled Release 162, 303–309 (2012).
[CrossRef]

L. Minai, D. Yeheskely-Hayon, L. Golan, G. Bisker, E. J. Dann, and D. Yelin, “Nanomedicine: optical nanomanipulations of malignant cells: controlled cell damage and fusion,” Small 8, 1626 (2012).
[CrossRef]

Yelin, D.

L. Minai, D. Yeheskely-Hayon, L. Golan, G. Bisker, E. J. Dann, and D. Yelin, “Nanomedicine: optical nanomanipulations of malignant cells: controlled cell damage and fusion,” Small 8, 1626 (2012).
[CrossRef]

G. Bisker, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “Controlled release of Rituximab from gold nanoparticles phototherapy of malignant cells,” J. Controlled Release 162, 303–309 (2012).
[CrossRef]

D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Multiphoton plasmon-resonance microscopy,” Opt. Express 11, 1385–1391 (2003).
[CrossRef]

Yin, M.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70, 587–591 (2000).
[CrossRef]

Yu, H.

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett. 5, 379–382 (2005).
[CrossRef]

Yun, W. S.

Zeng, Q.

W. Ma, B. Feng, Y. Ren, Q. Zeng, Z. Niu, J. Li, X. Zhang, H. Dong, W. Zhou, and S. Xie, “Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films,” J. Nanosci. Nanotechnol. 10, 7333–7335 (2010).
[CrossRef]

Zhang, D.

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Nonlinear optical properties of Au/ZnO nanoparticle arrays,” Appl. Surf. Sci. 254, 1900–1903 (2008).
[CrossRef]

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO,” J. Phys. D 40, 6705–6708 (2007).
[CrossRef]

Zhang, X.

W. Ma, B. Feng, Y. Ren, Q. Zeng, Z. Niu, J. Li, X. Zhang, H. Dong, W. Zhou, and S. Xie, “Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films,” J. Nanosci. Nanotechnol. 10, 7333–7335 (2010).
[CrossRef]

Zhou, J.

F. Cui, C. Feng, R. Xie, Z. Hua, X. Cui, J. Zhou, C. Wei, H. Ohtsuka, Y. Sakkad, and J. Shi, “Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment,” J. Mater. Chem. 20, 8399–8404 (2010).
[CrossRef]

Zhou, W.

W. Ma, B. Feng, Y. Ren, Q. Zeng, Z. Niu, J. Li, X. Zhang, H. Dong, W. Zhou, and S. Xie, “Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films,” J. Nanosci. Nanotechnol. 10, 7333–7335 (2010).
[CrossRef]

Zhou, Y.

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Nonlinear optical properties of Au/ZnO nanoparticle arrays,” Appl. Surf. Sci. 254, 1900–1903 (2008).
[CrossRef]

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO,” J. Phys. D 40, 6705–6708 (2007).
[CrossRef]

H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274–4277 (2006).
[CrossRef]

Zhu, J.

H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, and Y. Lu, “Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity,” J. Am. Chem. Soc. 129, 4538–4539 (2007).
[CrossRef]

ACS Nano

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. B

R. A. Ganeev, R. I. Tugushev, and T. Usmanov, “Application of the nonlinear optical properties of platinum nanoparticles for the mode locking of Nd:glass laser,” Appl. Phys. B 94, 647–651 (2009).
[CrossRef]

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70, 587–591 (2000).
[CrossRef]

Appl. Phys. Lett.

E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348–350 (1972).
[CrossRef]

Y. H. Lee, Y. Yan, L. Polavarapu, and Q. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95, 023105 (2009).
[CrossRef]

Appl. Surf. Sci.

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Nonlinear optical properties of Au/ZnO nanoparticle arrays,” Appl. Surf. Sci. 254, 1900–1903 (2008).
[CrossRef]

Chem. Rev.

G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111, 3858–3887 (2011).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

J. Am. Chem. Soc.

H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, and Y. Lu, “Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity,” J. Am. Chem. Soc. 129, 4538–4539 (2007).
[CrossRef]

J. Chem. Phys.

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys. 111, 1255–1264 (1999).
[CrossRef]

J. Controlled Release

G. Bisker, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “Controlled release of Rituximab from gold nanoparticles phototherapy of malignant cells,” J. Controlled Release 162, 303–309 (2012).
[CrossRef]

J. Lumin.

R. J. Rajesh and P. B. Bisht, “Theoretical and experimental studies on laser-induced transient gratings in laser dyes,” J. Lumin. 99, 301–309 (2002).
[CrossRef]

J. Mater. Chem.

F. Cui, C. Feng, R. Xie, Z. Hua, X. Cui, J. Zhou, C. Wei, H. Ohtsuka, Y. Sakkad, and J. Shi, “Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment,” J. Mater. Chem. 20, 8399–8404 (2010).
[CrossRef]

J. Nanosci. Nanotechnol.

W. Ma, B. Feng, Y. Ren, Q. Zeng, Z. Niu, J. Li, X. Zhang, H. Dong, W. Zhou, and S. Xie, “Large third-order optical nonlinearity in directly synthesized single-walled carbon nanotube films,” J. Nanosci. Nanotechnol. 10, 7333–7335 (2010).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

T. Ning, Y. Zhou, H. Shen, H. Lu, Z. Sun, L. Cao, D. Guan, D. Zhang, and G. Yang, “Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO,” J. Phys. D 40, 6705–6708 (2007).
[CrossRef]

Langmuir

S. O. Obare, R. E. Hollowell, and C. J. Murphy, “Sensing strategy for lithium ion based on gold nanoparticles,” Langmuir 18, 10407–10410 (2002).
[CrossRef]

Laser Phys. Lett.

G. Li, B. Q. Yao, P. B. Meng, W. Wang, Y. L. Ju, and Y. Z. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched mode-locking of Tm, Ho:YVO4 laser,” Laser Phys. Lett. 8, 42–45 (2011).
[CrossRef]

Nano Lett.

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett. 5, 379–382 (2005).
[CrossRef]

Nanotechnology

H. Shen, B. Cheng, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274–4277 (2006).
[CrossRef]

Opt. Commun.

B. S. Kalanoor and P. B. Bisht, “Wavelength dependent resonant nonlinearities in a standard saturable absorber IR26 on picosecond time scale,” Opt. Commun. 283, 4059–4063 (2010).
[CrossRef]

A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov, “Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix,” Opt. Commun. 273, 538–543 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

Q. Lu, F. Cui, C. Dong, Z. Hua, and J. Shi, “Gold nanoparticles incorporated mesoporous silica thin films of varied gold contents and their well-tuned third-order optical nonlinearities,” Opt. Mater. 33, 1266–1271 (2011).
[CrossRef]

Phys. Rev. B

H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, “Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Phys. Rev. B 57, 11334–11340 (1998).
[CrossRef]

Plasmonics

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

Proc. SPIE

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
[CrossRef]

Small

L. Minai, D. Yeheskely-Hayon, L. Golan, G. Bisker, E. J. Dann, and D. Yelin, “Nanomedicine: optical nanomanipulations of malignant cells: controlled cell damage and fusion,” Small 8, 1626 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) GXRD plot and (b) SEM micrograph of the GBX sample.

Fig. 2.
Fig. 2.

Schematic representation of the Z-scan setup. L1 and L2, convex lenses; S, sample; A, aperture; and PD, photodiode.

Fig. 3.
Fig. 3.

Absorption spectra of (a) ZnO thin film, (b) AuNPs, (c) GBX, and (d) GBY. Solid arrows indicate the excitation positions at which the experiments were done.

Fig. 4.
Fig. 4.

OA Z-scan profiles of the GBX at (a) 1064 nm and at (b) 532 nm as a function of incident intensity. The inset of (a) shows the pure CA Z-scan profile (CA/OA) at 30GW/cm2. The inset of (b) shows the transmittance of the GBX as a function of number of pulses incident on it at 24GW/cm2. (c) The OA Z-scan profile of the AuNPs at 0.2GW/cm2.

Fig. 5.
Fig. 5.

Schematic representation of the energy level band diagram of AuNPs embedded in ZnO thin films. Efm, Fermi level of AuNPs; W0, work function; Efs, Fermi level of ZnO; Ef, combined Fermi level of AuNPs/ZnO; Vm, vacuum level of AuNPs; Eg, energy gap of ZnO (3.5 eV); and Vs, vacuum level of ZnO.

Fig. 6.
Fig. 6.

Laser induced transient grating decay curve for GBX sample. Scattered points show the experimentally recorded data and the solid line shows the theoretical fitting to the data.

Fig. 7.
Fig. 7.

Photograph of the oscilloscope traces of (a) the free running mode and (b) the mode-locked regime achieved with IR26, and (c) and (d) the GBX combination with IR26 in Nd:YAG laser.

Tables (2)

Tables Icon

Table 1. Nonlinear Optical Properties of GBX, GBY, AuNPs, IR26, and PtNPs at 1064 and 532 nm

Tables Icon

Table 2. FOM Values Calculated from Stegeman Relation for AuNPs, GBX, and GBY at 532 and 1064 nm

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ΔΦ=kn2I0Lefff(t)=ΔΦ0f(t),
Δψ=βI0Lefff(t)2=Δψ0f(t),
T(z)=1+4x(x2+9)(x2+1)ΔΦ02(x2+3)(x2+9)(x2+1)ΔΨ0,
χRe(3)(esu)=cn02120π2n2,
χIm(3)(esu)=c2n02240π2ωβ,
W=Δnα0λ>1,

Metrics