Abstract

We report here the on-axis measurement of time-resolved spatial characterization of refractive fringes due to nanosecond-laser-induced shock waves in liquid water. The complex shadowgraphic fringes due to interference of multiple shock waves observed in the transverse measurements are completely avoided in the on-axis measurements due to the fact that the outermost region of the shock front acts as a radially symmetric phase object to the probe beam, refraction from which results in clean and continuous fringes observed by the intensified charge coupled detector (ICCD) detector. A detailed analysis of different types of time-resolved fringes obtained in the on-axis measurement for fixed laser pulse energy leads us to an alternate and better way to analyze the fringes to obtain the shock wave velocity and the density profile in the entire region surrounding the shock origin, which will enable 3D imaging of shock wave dynamics.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Ben-Dor, O. Igra, and T. Elperin, Handbook of Shock Waves, Vol. 1, 1st ed. (Academic, 2000).
  2. G. A. Lyzengab, T. J. Ahrens, W. J. Nellis, and A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982).
    [CrossRef]
  3. D. H. Dolan and Y. M. Gupta, “Nanosecond freezing of water under multiple shock wave compression: optical transmission and imaging measurements,” J. Chem. Phys. 121, 9050–9056 (2004).
    [CrossRef]
  4. L. Marti-Lopez, R. Ocanaa, E. Pineiroc, and A. Asensio, “Laser peening induced shock waves and cavitation bubbles in water studied by optical schlieren visualization,” Phys. Procedia 12, 442–451 (2011).
  5. A. Nath and A. Khare, “Laser-induced high-pressure and high-temperature conditions at the titanium–water interface and their implication on TiO2 nanoparticles,” J. Opt. Soc. Am. B 29, 351–356 (2012).
  6. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952–2956 (2004).
    [CrossRef]
  7. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165 (1996).
    [CrossRef]
  8. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
    [CrossRef]
  9. C. Richard and K. O. Friedrichs, Supersonic Flow and Shock Waves, 1st ed. (Interscience, 1948).
  10. L. Marti-Lopez, R. Ocana, J. A. Porro, M. Morales, and J. L. Ocana, “Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes,” Appl. Opt. 48, 3671–3680 (2009).
    [CrossRef]
  11. L. Rodriguez and R. Escalona, “Fourier transforms method for measuring thermal lens induced in diluted liquid samples,” Opt. Commun. 277, 57–62 (2007).
    [CrossRef]
  12. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach–Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46, 3352–3358 (2007).
    [CrossRef]
  13. G. S. Settles, Schlieren and Shadowgraph Techniques (Springer-Verlag, 2001).
  14. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
    [CrossRef]
  15. A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses—Part I: optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996).
    [CrossRef]
  16. M. M. Michaelis and O. Willi, “Refractive fringe diagnostics of laser produced plasmas,” Opt. Commun. 36, 153–158 (1981).
    [CrossRef]
  17. C. M. Vest, “Interferometry of strongly refracting axisymmetric phase objects,” Appl. Opt. 14, 1601–1606 (1975).
    [CrossRef]
  18. M. M. Michaelis, J. A. Waltham, and P. F. Cunningham, “Refractive fringe diagnostic of spherical shocks,” Opt. Laser Technol. 23, 283–288 (1991).
    [CrossRef]
  19. R. Benatta and C. Popovics, “Validity of spherical quantitative refractometry: application to laser-produced plasmas,” J. Appl. Phys. 54, 603–608 (1983).
    [CrossRef]
  20. M. M. Michaelis, N. Bhagwandin, and P. Cunningham, “Flame focusing of laser beams and refractive fringe formation,” Opt. Commun. 52, 371–376 (1985).
    [CrossRef]
  21. J. A. Waltham, P. F. Cunningham, M. M. Michaelis, K. N. Campbell, and M. Notcutt, “The application of the refractive fringe diagnostic to shocks in air,” Opt. Laser Technol. 19, 203–208 (1987).
    [CrossRef]
  22. S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun. 154, 319–324 (1998).
    [CrossRef]
  23. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
    [CrossRef]
  24. P. F. Cunningham, R. N. Campbell, and M. M. Michaelis, “Refractive fringe diagnostics of a ruby-laser produced plasma using a short pulse, short wavelength nitrogen laser,” J. Phys. E 19, 957–960 (1986).
    [CrossRef]
  25. R. Petkovšek, J. Mozina, and G. Mocnik, “Optodynamic characterization of the shock waves after laser-induced breakdown in water,” Opt. Express 13, 4107–4112 (2005).
    [CrossRef]

2012 (1)

2011 (1)

L. Marti-Lopez, R. Ocanaa, E. Pineiroc, and A. Asensio, “Laser peening induced shock waves and cavitation bubbles in water studied by optical schlieren visualization,” Phys. Procedia 12, 442–451 (2011).

2009 (1)

2007 (2)

G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach–Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46, 3352–3358 (2007).
[CrossRef]

L. Rodriguez and R. Escalona, “Fourier transforms method for measuring thermal lens induced in diluted liquid samples,” Opt. Commun. 277, 57–62 (2007).
[CrossRef]

2006 (1)

A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[CrossRef]

2005 (1)

2004 (2)

D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952–2956 (2004).
[CrossRef]

D. H. Dolan and Y. M. Gupta, “Nanosecond freezing of water under multiple shock wave compression: optical transmission and imaging measurements,” J. Chem. Phys. 121, 9050–9056 (2004).
[CrossRef]

1999 (2)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

1998 (1)

S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun. 154, 319–324 (1998).
[CrossRef]

1996 (2)

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses—Part I: optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165 (1996).
[CrossRef]

1991 (1)

M. M. Michaelis, J. A. Waltham, and P. F. Cunningham, “Refractive fringe diagnostic of spherical shocks,” Opt. Laser Technol. 23, 283–288 (1991).
[CrossRef]

1987 (1)

J. A. Waltham, P. F. Cunningham, M. M. Michaelis, K. N. Campbell, and M. Notcutt, “The application of the refractive fringe diagnostic to shocks in air,” Opt. Laser Technol. 19, 203–208 (1987).
[CrossRef]

1986 (1)

P. F. Cunningham, R. N. Campbell, and M. M. Michaelis, “Refractive fringe diagnostics of a ruby-laser produced plasma using a short pulse, short wavelength nitrogen laser,” J. Phys. E 19, 957–960 (1986).
[CrossRef]

1985 (1)

M. M. Michaelis, N. Bhagwandin, and P. Cunningham, “Flame focusing of laser beams and refractive fringe formation,” Opt. Commun. 52, 371–376 (1985).
[CrossRef]

1983 (1)

R. Benatta and C. Popovics, “Validity of spherical quantitative refractometry: application to laser-produced plasmas,” J. Appl. Phys. 54, 603–608 (1983).
[CrossRef]

1982 (1)

G. A. Lyzengab, T. J. Ahrens, W. J. Nellis, and A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982).
[CrossRef]

1981 (1)

M. M. Michaelis and O. Willi, “Refractive fringe diagnostics of laser produced plasmas,” Opt. Commun. 36, 153–158 (1981).
[CrossRef]

1975 (1)

Ahrens, T. J.

G. A. Lyzengab, T. J. Ahrens, W. J. Nellis, and A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982).
[CrossRef]

Asensio, A.

L. Marti-Lopez, R. Ocanaa, E. Pineiroc, and A. Asensio, “Laser peening induced shock waves and cavitation bubbles in water studied by optical schlieren visualization,” Phys. Procedia 12, 442–451 (2011).

Benatta, R.

R. Benatta and C. Popovics, “Validity of spherical quantitative refractometry: application to laser-produced plasmas,” J. Appl. Phys. 54, 603–608 (1983).
[CrossRef]

Ben-Dor, G.

G. Ben-Dor, O. Igra, and T. Elperin, Handbook of Shock Waves, Vol. 1, 1st ed. (Academic, 2000).

Bhagwandin, N.

M. M. Michaelis, N. Bhagwandin, and P. Cunningham, “Flame focusing of laser beams and refractive fringe formation,” Opt. Commun. 52, 371–376 (1985).
[CrossRef]

Birngruber, R.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Brujan, A.

A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[CrossRef]

Burgholzer, P.

Busch, S.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165 (1996).
[CrossRef]

Campbell, K. N.

J. A. Waltham, P. F. Cunningham, M. M. Michaelis, K. N. Campbell, and M. Notcutt, “The application of the refractive fringe diagnostic to shocks in air,” Opt. Laser Technol. 19, 203–208 (1987).
[CrossRef]

Campbell, R. N.

P. F. Cunningham, R. N. Campbell, and M. M. Michaelis, “Refractive fringe diagnostics of a ruby-laser produced plasma using a short pulse, short wavelength nitrogen laser,” J. Phys. E 19, 957–960 (1986).
[CrossRef]

Chong, T. C.

D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952–2956 (2004).
[CrossRef]

Cunningham, P.

M. M. Michaelis, N. Bhagwandin, and P. Cunningham, “Flame focusing of laser beams and refractive fringe formation,” Opt. Commun. 52, 371–376 (1985).
[CrossRef]

Cunningham, P. F.

M. M. Michaelis, J. A. Waltham, and P. F. Cunningham, “Refractive fringe diagnostic of spherical shocks,” Opt. Laser Technol. 23, 283–288 (1991).
[CrossRef]

J. A. Waltham, P. F. Cunningham, M. M. Michaelis, K. N. Campbell, and M. Notcutt, “The application of the refractive fringe diagnostic to shocks in air,” Opt. Laser Technol. 19, 203–208 (1987).
[CrossRef]

P. F. Cunningham, R. N. Campbell, and M. M. Michaelis, “Refractive fringe diagnostics of a ruby-laser produced plasma using a short pulse, short wavelength nitrogen laser,” J. Phys. E 19, 957–960 (1986).
[CrossRef]

Dolan, D. H.

D. H. Dolan and Y. M. Gupta, “Nanosecond freezing of water under multiple shock wave compression: optical transmission and imaging measurements,” J. Chem. Phys. 121, 9050–9056 (2004).
[CrossRef]

Elperin, T.

G. Ben-Dor, O. Igra, and T. Elperin, Handbook of Shock Waves, Vol. 1, 1st ed. (Academic, 2000).

Escalona, R.

L. Rodriguez and R. Escalona, “Fourier transforms method for measuring thermal lens induced in diluted liquid samples,” Opt. Commun. 277, 57–62 (2007).
[CrossRef]

Friedrichs, K. O.

C. Richard and K. O. Friedrichs, Supersonic Flow and Shock Waves, 1st ed. (Interscience, 1948).

Gupta, Y. M.

D. H. Dolan and Y. M. Gupta, “Nanosecond freezing of water under multiple shock wave compression: optical transmission and imaging measurements,” J. Chem. Phys. 121, 9050–9056 (2004).
[CrossRef]

Haltmeier, M.

Hammer, D. X.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Hong, M. H.

D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952–2956 (2004).
[CrossRef]

Igra, O.

G. Ben-Dor, O. Igra, and T. Elperin, Handbook of Shock Waves, Vol. 1, 1st ed. (Academic, 2000).

Khare, A.

Lukyanchuk, B.

D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952–2956 (2004).
[CrossRef]

Lyzengab, G. A.

G. A. Lyzengab, T. J. Ahrens, W. J. Nellis, and A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982).
[CrossRef]

Marti-Lopez, L.

L. Marti-Lopez, R. Ocanaa, E. Pineiroc, and A. Asensio, “Laser peening induced shock waves and cavitation bubbles in water studied by optical schlieren visualization,” Phys. Procedia 12, 442–451 (2011).

L. Marti-Lopez, R. Ocana, J. A. Porro, M. Morales, and J. L. Ocana, “Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes,” Appl. Opt. 48, 3671–3680 (2009).
[CrossRef]

Michaelis, M. M.

M. M. Michaelis, J. A. Waltham, and P. F. Cunningham, “Refractive fringe diagnostic of spherical shocks,” Opt. Laser Technol. 23, 283–288 (1991).
[CrossRef]

J. A. Waltham, P. F. Cunningham, M. M. Michaelis, K. N. Campbell, and M. Notcutt, “The application of the refractive fringe diagnostic to shocks in air,” Opt. Laser Technol. 19, 203–208 (1987).
[CrossRef]

P. F. Cunningham, R. N. Campbell, and M. M. Michaelis, “Refractive fringe diagnostics of a ruby-laser produced plasma using a short pulse, short wavelength nitrogen laser,” J. Phys. E 19, 957–960 (1986).
[CrossRef]

M. M. Michaelis, N. Bhagwandin, and P. Cunningham, “Flame focusing of laser beams and refractive fringe formation,” Opt. Commun. 52, 371–376 (1985).
[CrossRef]

M. M. Michaelis and O. Willi, “Refractive fringe diagnostics of laser produced plasmas,” Opt. Commun. 36, 153–158 (1981).
[CrossRef]

Mitchell, A. C.

G. A. Lyzengab, T. J. Ahrens, W. J. Nellis, and A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982).
[CrossRef]

Mocnik, G.

Morales, M.

Mozina, J.

Nahen, K.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses—Part I: optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996).
[CrossRef]

Nath, A.

Nellis, W. J.

G. A. Lyzengab, T. J. Ahrens, W. J. Nellis, and A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses—Part I: optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996).
[CrossRef]

Noojin, G. D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Notcutt, M.

J. A. Waltham, P. F. Cunningham, M. M. Michaelis, K. N. Campbell, and M. Notcutt, “The application of the refractive fringe diagnostic to shocks in air,” Opt. Laser Technol. 19, 203–208 (1987).
[CrossRef]

Nuster, R.

Ocana, J. L.

Ocana, R.

Ocanaa, R.

L. Marti-Lopez, R. Ocanaa, E. Pineiroc, and A. Asensio, “Laser peening induced shock waves and cavitation bubbles in water studied by optical schlieren visualization,” Phys. Procedia 12, 442–451 (2011).

Pacini, G.

S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun. 154, 319–324 (1998).
[CrossRef]

Paltauf, G.

Parlitz, U.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165 (1996).
[CrossRef]

Petkovšek, R.

Pineiroc, E.

L. Marti-Lopez, R. Ocanaa, E. Pineiroc, and A. Asensio, “Laser peening induced shock waves and cavitation bubbles in water studied by optical schlieren visualization,” Phys. Procedia 12, 442–451 (2011).

Pini, R.

S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun. 154, 319–324 (1998).
[CrossRef]

Popovics, C.

R. Benatta and C. Popovics, “Validity of spherical quantitative refractometry: application to laser-produced plasmas,” J. Appl. Phys. 54, 603–608 (1983).
[CrossRef]

Porro, J. A.

Richard, C.

C. Richard and K. O. Friedrichs, Supersonic Flow and Shock Waves, 1st ed. (Interscience, 1948).

Rockwell, B. A.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Rodriguez, L.

L. Rodriguez and R. Escalona, “Fourier transforms method for measuring thermal lens induced in diluted liquid samples,” Opt. Commun. 277, 57–62 (2007).
[CrossRef]

Salimbeni, R.

S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun. 154, 319–324 (1998).
[CrossRef]

Settles, G. S.

G. S. Settles, Schlieren and Shadowgraph Techniques (Springer-Verlag, 2001).

Siano, S.

S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun. 154, 319–324 (1998).
[CrossRef]

Song, D.

D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952–2956 (2004).
[CrossRef]

Theisen, D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses—Part I: optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996).
[CrossRef]

Vest, C. M.

Vogel, A.

A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[CrossRef]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses—Part I: optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165 (1996).
[CrossRef]

Waltham, J. A.

M. M. Michaelis, J. A. Waltham, and P. F. Cunningham, “Refractive fringe diagnostic of spherical shocks,” Opt. Laser Technol. 23, 283–288 (1991).
[CrossRef]

J. A. Waltham, P. F. Cunningham, M. M. Michaelis, K. N. Campbell, and M. Notcutt, “The application of the refractive fringe diagnostic to shocks in air,” Opt. Laser Technol. 19, 203–208 (1987).
[CrossRef]

Willi, O.

M. M. Michaelis and O. Willi, “Refractive fringe diagnostics of laser produced plasmas,” Opt. Commun. 36, 153–158 (1981).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses—Part I: optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron. 2, 847–860 (1996).
[CrossRef]

J. Acoust. Soc. Am. (1)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165 (1996).
[CrossRef]

J. Appl. Phys. (2)

R. Benatta and C. Popovics, “Validity of spherical quantitative refractometry: application to laser-produced plasmas,” J. Appl. Phys. 54, 603–608 (1983).
[CrossRef]

D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952–2956 (2004).
[CrossRef]

J. Chem. Phys. (2)

G. A. Lyzengab, T. J. Ahrens, W. J. Nellis, and A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982).
[CrossRef]

D. H. Dolan and Y. M. Gupta, “Nanosecond freezing of water under multiple shock wave compression: optical transmission and imaging measurements,” J. Chem. Phys. 121, 9050–9056 (2004).
[CrossRef]

J. Fluid Mech. (1)

A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. E (1)

P. F. Cunningham, R. N. Campbell, and M. M. Michaelis, “Refractive fringe diagnostics of a ruby-laser produced plasma using a short pulse, short wavelength nitrogen laser,” J. Phys. E 19, 957–960 (1986).
[CrossRef]

Opt. Commun. (4)

S. Siano, G. Pacini, R. Pini, and R. Salimbeni, “Reliability of refractive fringe diagnostics to control plasma-mediated laser ablation,” Opt. Commun. 154, 319–324 (1998).
[CrossRef]

M. M. Michaelis and O. Willi, “Refractive fringe diagnostics of laser produced plasmas,” Opt. Commun. 36, 153–158 (1981).
[CrossRef]

L. Rodriguez and R. Escalona, “Fourier transforms method for measuring thermal lens induced in diluted liquid samples,” Opt. Commun. 277, 57–62 (2007).
[CrossRef]

M. M. Michaelis, N. Bhagwandin, and P. Cunningham, “Flame focusing of laser beams and refractive fringe formation,” Opt. Commun. 52, 371–376 (1985).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (2)

J. A. Waltham, P. F. Cunningham, M. M. Michaelis, K. N. Campbell, and M. Notcutt, “The application of the refractive fringe diagnostic to shocks in air,” Opt. Laser Technol. 19, 203–208 (1987).
[CrossRef]

M. M. Michaelis, J. A. Waltham, and P. F. Cunningham, “Refractive fringe diagnostic of spherical shocks,” Opt. Laser Technol. 23, 283–288 (1991).
[CrossRef]

Phys. Procedia (1)

L. Marti-Lopez, R. Ocanaa, E. Pineiroc, and A. Asensio, “Laser peening induced shock waves and cavitation bubbles in water studied by optical schlieren visualization,” Phys. Procedia 12, 442–451 (2011).

Other (3)

G. Ben-Dor, O. Igra, and T. Elperin, Handbook of Shock Waves, Vol. 1, 1st ed. (Academic, 2000).

C. Richard and K. O. Friedrichs, Supersonic Flow and Shock Waves, 1st ed. (Interscience, 1948).

G. S. Settles, Schlieren and Shadowgraph Techniques (Springer-Verlag, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the experimental setup for measuring shadowgraphic images of ns-laser-induced shock waves on-axis and in transverse directions. M, aluminum mirror; DM, dichroic mirror; BS, beam-splitter; L, lenses.

Fig. 2.
Fig. 2.

(a) Transverse shadowgraphic images of shock waves due to multiple shocks resulting in complex fringe structure. The pump beam is as indicated by the arrow and the capture times of the images are (i) 430 ns, (ii) 630 ns, and (iii) 2190 ns. (b) Axial view of shadowgraphic images showing refractive fringes due to the evolution of a single shock wave. The direction of the pump beam is out of the plane (as indicated by the dot mark). The times at which these images are captured are (i) 30 ns, (ii) 230 ns, (iii) 350 ns, (iv) 630 ns, (v) 750 ns, (vi) 830 ns, (vii) 950 ns, and (viii) 1470 ns. Different fringe patterns to be noted are (1) outer fringes of varying width, (2) caustic ring, (3) inner fringes of uniform width, and (4) central bright spot.

Fig. 3.
Fig. 3.

Cross-sectional view (in X Y plane) and transverse direction view (in X Z plane) of the shock region. Thick continuous ellipse represents shock wave contour seen in the transverse direction to the pump beam with shock radius R t , and the dashed line circular profile represents the shock wave as seen along the axial direction with radius R a . The approximate density profile ( ρ ) variation along the cross section of the axial direction ( D ) of the shock region is indicated as follows: SF, shock front; SR, shock rear; C, cavitation region; ρ , variation in density with respect to the ambient. Lines with arrows indicate the incident probe beam before refraction.

Fig. 4.
Fig. 4.

Probe beam incident along the axial direction interacting with the transverse shock contour ( X Z plane). Rays incident along the region “A” represent those which pass outside the shock region, rays along the region “B” are deflected by the SF at very shallow angles and meet at a point to make the ring of brightest intensity or caustic, and rays incident along the region “C” are deflected by SF at large angles and meet the undeviated rays to form the outer thin rings of varying thickness.

Fig. 5.
Fig. 5.

Intensity variation of the caustic ring (–○–) and noncaustic bright ring (--•--) as a function of time. Experimental data are fit to exponential function. Error bars represent the standard deviation of intensity calculated for a set of 225 pixels selected for measuring the average intensity value.

Fig. 6.
Fig. 6.

(a) Velocity of the shock wave measured by tracking the caustic ring with time. Open circle represents the shock velocity along the major axis, and filled squares represent the shock velocity along the minor axis. A double exponential decay function fit is carried out to estimate the decay rate. (b) Shock wave velocity measured by tracking the dark ring with time. Open squares represent the shock velocity along the major axis, and filled circle represents the velocity of shock along the minor axis. A double exponential decay function fit is carried out to estimate the decay rate.

Fig. 7.
Fig. 7.

(a) As the shock expands in time [Fig. 2(b)], the measured central spot intensity is plotted. Error bar represents the standard deviation in intensity calculated for 225 pixel values selected from the central region. (b) Schematic depicting the probe beam refracted from the shock edge ( X Y plane) toward the shock region that meets at the detector (ICCD) plane at a distance “ D ” from the breakdown region to form the central spot, which shows oscillatory behavior of intensity with time [see (a)].

Tables (1)

Tables Icon

Table 1. Shock Velocity Decay Parameters (a–d) Extracted from the Double Exponential Decay Fit to Figs. 6(a) and 6(b), Calculated by Tracking the Caustic Ring and a Dark Ring Next to it as a Function of Time (See Text for Details)

Metrics