Abstract

The thin structures of stimulated Brillouin scattering (SBS) and stimulated temperature scattering (STS) spectral components caused by two-photon heating are analyzed theoretically. In contrast to the linear (single photon) case for two-photon heating, a Stokes SBS component exhibits the spectral shift depending on the pump intensity. Emergence of an anti-Stokes SBS component is possible when the pump intensity is sufficiently high so that the positive two-photon thermal gain may compensate for the negative electrostrictive gain. The spectral components of STS caused by linear or two-photon absorption (essentially different linear or two-photon STS-2) possess the same thin structures.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kielich, Molecular Nonlinear Optics (PWN, 1977; Nauka, 1981).
  2. S. A. Akhmanov and N. I. Koroteev, Methods of Nonlinear Optics in Spectroscopy of Light Scattering (Nauka, 1981) [in Russian].
  3. D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated thermal Rayleigh scattering,” Phys. Rev. Lett. 19, 828–830 (1967).
    [CrossRef]
  4. V. S. Starunov and I. L. Fabelinskii, “Stimulated Mandel’shtam–Brillouin scattering and stimulated entropy (temperature) scattering of light,” Usp. Fiz. Nauk 98, 441–491 (1969) [Sov. Phys. Usp. 12, 463–489 (1970)].
  5. V. B. Karpov and V. V. Korobkin, “Stimulated thermal scattering induced by two-photon absorption and experimental observation of genuine stimulated Brillouin scattering in the near-ultraviolet region,” Phys. Rev. A 77, 063812 (2008).
    [CrossRef]
  6. B. J. Feldman, R. A. Fisher, A. Robert, and S. L. Shapiro, “Ultraviolet phase conjugation,” Opt. Lett. 6, 84–86 (1981).
    [CrossRef]
  7. R. G. Caro and M. C. Gower, “Phase conjugation of KrF laser radiation,” Opt. Lett. 6, 557–559 (1981).
    [CrossRef]
  8. M. C. Gower and R. G. Caro, “KrF laser with a phase-conjugate Brillouin mirror,” Opt. Lett. 7, 162–164 (1982).
    [CrossRef]
  9. M. C. Gower, “KrF laser amplifier with phase-conjugate Brillouin retroreflectors,” Opt. Lett. 7, 423–425 (1982).
    [CrossRef]
  10. E. Armandillo and D. Proch, “Highly efficient, high-quality phase-conjugate reflection at 308 nm using stimulated Brillouin scattering,” Opt. Lett. 8, 523–525 (1983).
    [CrossRef]
  11. M. C. Gower, “Phase conjugation at 193 nm,” Opt. Lett. 8, 70–72 (1983).
    [CrossRef]
  12. G. M. Davis and M. C. Gower, “Stimulated Brillouin scattering of a KrF laser,” IEEE J. Quantum Electron. 27, 496–501 (1991).
    [CrossRef]
  13. S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. S. Nersisian, A. Z. Obidin, and A. M. Prokhorov, “Line narrowing and wavefront reversal of radiation of an XeCl laser,” Kratk. Soobshch. Fiz. No.  12, 11–13 (1989) [Sov. Phys. Lebedev Inst. Rep. No.  12, 12–15 (1989)].
  14. S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, B. I. Kusakin, S. V. Lihanckii, and A. Z. Obidin, “Line narrowing and wavefront reversal of radiation of an KrF laser,” Kvantovaya Elektron. (Moscow) 18, 89–90 (1991) [Quantum Electron. 21, 80–81 (1991)].
  15. B. Ya. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer, 1985; Nauka, 1985).
  16. V. G. Dmitriev, Nonlinear Optics and Phase Conjugation (Fizmatlit, 2003) [in Russian].
  17. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984; Nauka, 1989).
  18. B. Ya. Zel’dovich and I. I. Sobel’man, “Stimulated light scattering induced by absorption,” Usp. Fiz. Nauk 101, 3–20 (1970) [Sov. Phys. Usp. 13, 307–317 (1970)].
    [CrossRef]
  19. N. M. Kroll, “Excitation of hypersonic vibrations by means of photoelastic coupling of high-intensity light waves to elastic waves,” J. Appl. Phys. 36, 34–44 (1965).
    [CrossRef]
  20. C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2956 (1966).
    [CrossRef]
  21. I. L. Fabelinskii, Molecular Scattering of Light (Plenum, 1968; Nauka, 1965).
  22. N. Bloembergen, Nonlinear Optics (W. A. Benjamin Inc., 1965; Mir, 1966).
  23. R. M. Herman and M. A. Gray, “Theoretical prediction of the stimulated thermal Rayleigh scattering in liquids,” Phys. Rev. Lett. 19, 824–828 (1967).
    [CrossRef]
  24. M. A. Gray and R. M. Herman, “Nonlinear thermal Rayleigh scattering in gases,” Phys. Rev. 181, 374–379 (1969).
    [CrossRef]
  25. R. N. Enns and I. P. Batra, “Stimulated thermal scattering in the second-sound regime,” Phys. Rev. 180, 227–232 (1969).
    [CrossRef]
  26. J. M. Vaughan, “Correlation analysis and interoferometry in laser spectroscopy of scattering,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins and E. R. Pike, eds. (Plenum, 1974; Mir, 1978), pp. 432–458.
  27. E. R. Pike, “Theory of light scattering,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins and E. R. Pike, eds. (Plenum, 1974; Mir, 1978), pp. 17–45.
  28. L. D. Landau and E. M. Lifshitz, Mechanics Vol. 1 of Course of Theoretical Physics (Pergamon, 1976; Nauka, 1988).
  29. L. G. Loitsianskii, Mechanics of Liquids and Gases (Pergamon, 1966; Drofa, 2003).
  30. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Vol. 7 of Course of Theoretical Physics (Pergamon, 1986; Nauka, 1987).
  31. J. Lamb, “Thermal relaxation in liquids,” in Physical Acoustics Principles and Methods, W. P. Mason, ed., Vol. IIPart A, Properties of Gases, Liquids and Solutions (Academic, 1965; Mir, 1968), pp. 222–297.
  32. A. Bambini, R. Vallauri, and M. Zoppi, “Nonlinear spectroscopy of Rayleigh and Mandel’stan-Brillouin scattering in liquids,” in Nonlinear Spectroscopy, N. Bloembergen, ed. (North-Holland, 1977; Mir, 1979), pp. 569–582.
  33. V. E. Gusev and A. A. Karabutov, Laser Optical Acoustics (Nauka, 1991) [in Russian].
  34. I. G. Mikhailov, V. A. Solov’ev, and Yu. P. Syrnikov, Fundamentals of Molecular Acoustics (Nauka, 1964) [in Russian].
  35. L. D. Landau and E. M. Lifshitz, Hydrodynamics, Vol. 6 ofCourse of Theoretical Physics (Pergamon, 1984; Nauka, 1986).
  36. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Vol. 8 of Course of Theoretical Physics (Pergamon, 1984; Nauka, 1982).
  37. S. A. Akhmanov and R. V. Khokhlov, Problems of Nonlinear Optics 1962-1963 (VINITI, 1964) [in Russian].
  38. V. F. Nozdrev, The Use of Ultrasonics in Molecular Physics (Pergamon, 1965; Fizmatlit, 1958).
  39. M. I. Shakhparonov, Methods for Studying Heat Motion of Molecules and Structure of Liquids (Moscow State University, 1963) [in Russian].

2008 (1)

V. B. Karpov and V. V. Korobkin, “Stimulated thermal scattering induced by two-photon absorption and experimental observation of genuine stimulated Brillouin scattering in the near-ultraviolet region,” Phys. Rev. A 77, 063812 (2008).
[CrossRef]

1991 (2)

G. M. Davis and M. C. Gower, “Stimulated Brillouin scattering of a KrF laser,” IEEE J. Quantum Electron. 27, 496–501 (1991).
[CrossRef]

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, B. I. Kusakin, S. V. Lihanckii, and A. Z. Obidin, “Line narrowing and wavefront reversal of radiation of an KrF laser,” Kvantovaya Elektron. (Moscow) 18, 89–90 (1991) [Quantum Electron. 21, 80–81 (1991)].

1989 (1)

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. S. Nersisian, A. Z. Obidin, and A. M. Prokhorov, “Line narrowing and wavefront reversal of radiation of an XeCl laser,” Kratk. Soobshch. Fiz. No.  12, 11–13 (1989) [Sov. Phys. Lebedev Inst. Rep. No.  12, 12–15 (1989)].

1983 (2)

1982 (2)

1981 (2)

1970 (1)

B. Ya. Zel’dovich and I. I. Sobel’man, “Stimulated light scattering induced by absorption,” Usp. Fiz. Nauk 101, 3–20 (1970) [Sov. Phys. Usp. 13, 307–317 (1970)].
[CrossRef]

1969 (3)

M. A. Gray and R. M. Herman, “Nonlinear thermal Rayleigh scattering in gases,” Phys. Rev. 181, 374–379 (1969).
[CrossRef]

R. N. Enns and I. P. Batra, “Stimulated thermal scattering in the second-sound regime,” Phys. Rev. 180, 227–232 (1969).
[CrossRef]

V. S. Starunov and I. L. Fabelinskii, “Stimulated Mandel’shtam–Brillouin scattering and stimulated entropy (temperature) scattering of light,” Usp. Fiz. Nauk 98, 441–491 (1969) [Sov. Phys. Usp. 12, 463–489 (1970)].

1967 (2)

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated thermal Rayleigh scattering,” Phys. Rev. Lett. 19, 828–830 (1967).
[CrossRef]

R. M. Herman and M. A. Gray, “Theoretical prediction of the stimulated thermal Rayleigh scattering in liquids,” Phys. Rev. Lett. 19, 824–828 (1967).
[CrossRef]

1966 (1)

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2956 (1966).
[CrossRef]

1965 (1)

N. M. Kroll, “Excitation of hypersonic vibrations by means of photoelastic coupling of high-intensity light waves to elastic waves,” J. Appl. Phys. 36, 34–44 (1965).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov and N. I. Koroteev, Methods of Nonlinear Optics in Spectroscopy of Light Scattering (Nauka, 1981) [in Russian].

S. A. Akhmanov and R. V. Khokhlov, Problems of Nonlinear Optics 1962-1963 (VINITI, 1964) [in Russian].

Alimpiev, S. S.

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, B. I. Kusakin, S. V. Lihanckii, and A. Z. Obidin, “Line narrowing and wavefront reversal of radiation of an KrF laser,” Kvantovaya Elektron. (Moscow) 18, 89–90 (1991) [Quantum Electron. 21, 80–81 (1991)].

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. S. Nersisian, A. Z. Obidin, and A. M. Prokhorov, “Line narrowing and wavefront reversal of radiation of an XeCl laser,” Kratk. Soobshch. Fiz. No.  12, 11–13 (1989) [Sov. Phys. Lebedev Inst. Rep. No.  12, 12–15 (1989)].

Armandillo, E.

Bambini, A.

A. Bambini, R. Vallauri, and M. Zoppi, “Nonlinear spectroscopy of Rayleigh and Mandel’stan-Brillouin scattering in liquids,” in Nonlinear Spectroscopy, N. Bloembergen, ed. (North-Holland, 1977; Mir, 1979), pp. 569–582.

Batra, I. P.

R. N. Enns and I. P. Batra, “Stimulated thermal scattering in the second-sound regime,” Phys. Rev. 180, 227–232 (1969).
[CrossRef]

Bloembergen, N.

N. Bloembergen, Nonlinear Optics (W. A. Benjamin Inc., 1965; Mir, 1966).

Bukreev, V. S.

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, B. I. Kusakin, S. V. Lihanckii, and A. Z. Obidin, “Line narrowing and wavefront reversal of radiation of an KrF laser,” Kvantovaya Elektron. (Moscow) 18, 89–90 (1991) [Quantum Electron. 21, 80–81 (1991)].

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. S. Nersisian, A. Z. Obidin, and A. M. Prokhorov, “Line narrowing and wavefront reversal of radiation of an XeCl laser,” Kratk. Soobshch. Fiz. No.  12, 11–13 (1989) [Sov. Phys. Lebedev Inst. Rep. No.  12, 12–15 (1989)].

Caro, R. G.

Cho, C. W.

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated thermal Rayleigh scattering,” Phys. Rev. Lett. 19, 828–830 (1967).
[CrossRef]

Davis, G. M.

G. M. Davis and M. C. Gower, “Stimulated Brillouin scattering of a KrF laser,” IEEE J. Quantum Electron. 27, 496–501 (1991).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev, Nonlinear Optics and Phase Conjugation (Fizmatlit, 2003) [in Russian].

Enns, R. N.

R. N. Enns and I. P. Batra, “Stimulated thermal scattering in the second-sound regime,” Phys. Rev. 180, 227–232 (1969).
[CrossRef]

Fabelinskii, I. L.

V. S. Starunov and I. L. Fabelinskii, “Stimulated Mandel’shtam–Brillouin scattering and stimulated entropy (temperature) scattering of light,” Usp. Fiz. Nauk 98, 441–491 (1969) [Sov. Phys. Usp. 12, 463–489 (1970)].

I. L. Fabelinskii, Molecular Scattering of Light (Plenum, 1968; Nauka, 1965).

Feldman, B. J.

Fisher, R. A.

Foltz, N. D.

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated thermal Rayleigh scattering,” Phys. Rev. Lett. 19, 828–830 (1967).
[CrossRef]

Gower, M. C.

Gray, M. A.

M. A. Gray and R. M. Herman, “Nonlinear thermal Rayleigh scattering in gases,” Phys. Rev. 181, 374–379 (1969).
[CrossRef]

R. M. Herman and M. A. Gray, “Theoretical prediction of the stimulated thermal Rayleigh scattering in liquids,” Phys. Rev. Lett. 19, 824–828 (1967).
[CrossRef]

Gusev, V. E.

V. E. Gusev and A. A. Karabutov, Laser Optical Acoustics (Nauka, 1991) [in Russian].

Herman, R. M.

M. A. Gray and R. M. Herman, “Nonlinear thermal Rayleigh scattering in gases,” Phys. Rev. 181, 374–379 (1969).
[CrossRef]

R. M. Herman and M. A. Gray, “Theoretical prediction of the stimulated thermal Rayleigh scattering in liquids,” Phys. Rev. Lett. 19, 824–828 (1967).
[CrossRef]

Karabutov, A. A.

V. E. Gusev and A. A. Karabutov, Laser Optical Acoustics (Nauka, 1991) [in Russian].

Karpov, V. B.

V. B. Karpov and V. V. Korobkin, “Stimulated thermal scattering induced by two-photon absorption and experimental observation of genuine stimulated Brillouin scattering in the near-ultraviolet region,” Phys. Rev. A 77, 063812 (2008).
[CrossRef]

Khokhlov, R. V.

S. A. Akhmanov and R. V. Khokhlov, Problems of Nonlinear Optics 1962-1963 (VINITI, 1964) [in Russian].

Kielich, S.

S. Kielich, Molecular Nonlinear Optics (PWN, 1977; Nauka, 1981).

Korobkin, V. V.

V. B. Karpov and V. V. Korobkin, “Stimulated thermal scattering induced by two-photon absorption and experimental observation of genuine stimulated Brillouin scattering in the near-ultraviolet region,” Phys. Rev. A 77, 063812 (2008).
[CrossRef]

Koroteev, N. I.

S. A. Akhmanov and N. I. Koroteev, Methods of Nonlinear Optics in Spectroscopy of Light Scattering (Nauka, 1981) [in Russian].

Kroll, N. M.

N. M. Kroll, “Excitation of hypersonic vibrations by means of photoelastic coupling of high-intensity light waves to elastic waves,” J. Appl. Phys. 36, 34–44 (1965).
[CrossRef]

Kusakin, B. I.

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, B. I. Kusakin, S. V. Lihanckii, and A. Z. Obidin, “Line narrowing and wavefront reversal of radiation of an KrF laser,” Kvantovaya Elektron. (Moscow) 18, 89–90 (1991) [Quantum Electron. 21, 80–81 (1991)].

Lamb, J.

J. Lamb, “Thermal relaxation in liquids,” in Physical Acoustics Principles and Methods, W. P. Mason, ed., Vol. IIPart A, Properties of Gases, Liquids and Solutions (Academic, 1965; Mir, 1968), pp. 222–297.

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Mechanics Vol. 1 of Course of Theoretical Physics (Pergamon, 1976; Nauka, 1988).

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Vol. 7 of Course of Theoretical Physics (Pergamon, 1986; Nauka, 1987).

L. D. Landau and E. M. Lifshitz, Hydrodynamics, Vol. 6 ofCourse of Theoretical Physics (Pergamon, 1984; Nauka, 1986).

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Vol. 8 of Course of Theoretical Physics (Pergamon, 1984; Nauka, 1982).

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Vol. 8 of Course of Theoretical Physics (Pergamon, 1984; Nauka, 1982).

L. D. Landau and E. M. Lifshitz, Hydrodynamics, Vol. 6 ofCourse of Theoretical Physics (Pergamon, 1984; Nauka, 1986).

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Vol. 7 of Course of Theoretical Physics (Pergamon, 1986; Nauka, 1987).

L. D. Landau and E. M. Lifshitz, Mechanics Vol. 1 of Course of Theoretical Physics (Pergamon, 1976; Nauka, 1988).

Lihanckii, S. V.

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, B. I. Kusakin, S. V. Lihanckii, and A. Z. Obidin, “Line narrowing and wavefront reversal of radiation of an KrF laser,” Kvantovaya Elektron. (Moscow) 18, 89–90 (1991) [Quantum Electron. 21, 80–81 (1991)].

Loitsianskii, L. G.

L. G. Loitsianskii, Mechanics of Liquids and Gases (Pergamon, 1966; Drofa, 2003).

Mikhailov, I. G.

I. G. Mikhailov, V. A. Solov’ev, and Yu. P. Syrnikov, Fundamentals of Molecular Acoustics (Nauka, 1964) [in Russian].

Nersisian, V. S.

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. S. Nersisian, A. Z. Obidin, and A. M. Prokhorov, “Line narrowing and wavefront reversal of radiation of an XeCl laser,” Kratk. Soobshch. Fiz. No.  12, 11–13 (1989) [Sov. Phys. Lebedev Inst. Rep. No.  12, 12–15 (1989)].

Nozdrev, V. F.

V. F. Nozdrev, The Use of Ultrasonics in Molecular Physics (Pergamon, 1965; Fizmatlit, 1958).

Obidin, A. Z.

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, B. I. Kusakin, S. V. Lihanckii, and A. Z. Obidin, “Line narrowing and wavefront reversal of radiation of an KrF laser,” Kvantovaya Elektron. (Moscow) 18, 89–90 (1991) [Quantum Electron. 21, 80–81 (1991)].

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. S. Nersisian, A. Z. Obidin, and A. M. Prokhorov, “Line narrowing and wavefront reversal of radiation of an XeCl laser,” Kratk. Soobshch. Fiz. No.  12, 11–13 (1989) [Sov. Phys. Lebedev Inst. Rep. No.  12, 12–15 (1989)].

Pike, E. R.

E. R. Pike, “Theory of light scattering,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins and E. R. Pike, eds. (Plenum, 1974; Mir, 1978), pp. 17–45.

Pilipetsky, N. F.

B. Ya. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer, 1985; Nauka, 1985).

Proch, D.

Prokhorov, A. M.

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. S. Nersisian, A. Z. Obidin, and A. M. Prokhorov, “Line narrowing and wavefront reversal of radiation of an XeCl laser,” Kratk. Soobshch. Fiz. No.  12, 11–13 (1989) [Sov. Phys. Lebedev Inst. Rep. No.  12, 12–15 (1989)].

Rank, D. H.

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated thermal Rayleigh scattering,” Phys. Rev. Lett. 19, 828–830 (1967).
[CrossRef]

Robert, A.

Shakhparonov, M. I.

M. I. Shakhparonov, Methods for Studying Heat Motion of Molecules and Structure of Liquids (Moscow State University, 1963) [in Russian].

Shapiro, S. L.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984; Nauka, 1989).

Shkunov, V. V.

B. Ya. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer, 1985; Nauka, 1985).

Sobel’man, I. I.

B. Ya. Zel’dovich and I. I. Sobel’man, “Stimulated light scattering induced by absorption,” Usp. Fiz. Nauk 101, 3–20 (1970) [Sov. Phys. Usp. 13, 307–317 (1970)].
[CrossRef]

Solov’ev, V. A.

I. G. Mikhailov, V. A. Solov’ev, and Yu. P. Syrnikov, Fundamentals of Molecular Acoustics (Nauka, 1964) [in Russian].

Starunov, V. S.

V. S. Starunov and I. L. Fabelinskii, “Stimulated Mandel’shtam–Brillouin scattering and stimulated entropy (temperature) scattering of light,” Usp. Fiz. Nauk 98, 441–491 (1969) [Sov. Phys. Usp. 12, 463–489 (1970)].

Syrnikov, Yu. P.

I. G. Mikhailov, V. A. Solov’ev, and Yu. P. Syrnikov, Fundamentals of Molecular Acoustics (Nauka, 1964) [in Russian].

Tang, C. L.

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2956 (1966).
[CrossRef]

Vallauri, R.

A. Bambini, R. Vallauri, and M. Zoppi, “Nonlinear spectroscopy of Rayleigh and Mandel’stan-Brillouin scattering in liquids,” in Nonlinear Spectroscopy, N. Bloembergen, ed. (North-Holland, 1977; Mir, 1979), pp. 569–582.

Vartapetov, S. K.

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, B. I. Kusakin, S. V. Lihanckii, and A. Z. Obidin, “Line narrowing and wavefront reversal of radiation of an KrF laser,” Kvantovaya Elektron. (Moscow) 18, 89–90 (1991) [Quantum Electron. 21, 80–81 (1991)].

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. S. Nersisian, A. Z. Obidin, and A. M. Prokhorov, “Line narrowing and wavefront reversal of radiation of an XeCl laser,” Kratk. Soobshch. Fiz. No.  12, 11–13 (1989) [Sov. Phys. Lebedev Inst. Rep. No.  12, 12–15 (1989)].

Vaughan, J. M.

J. M. Vaughan, “Correlation analysis and interoferometry in laser spectroscopy of scattering,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins and E. R. Pike, eds. (Plenum, 1974; Mir, 1978), pp. 432–458.

Veselovskii, I. A.

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, B. I. Kusakin, S. V. Lihanckii, and A. Z. Obidin, “Line narrowing and wavefront reversal of radiation of an KrF laser,” Kvantovaya Elektron. (Moscow) 18, 89–90 (1991) [Quantum Electron. 21, 80–81 (1991)].

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. S. Nersisian, A. Z. Obidin, and A. M. Prokhorov, “Line narrowing and wavefront reversal of radiation of an XeCl laser,” Kratk. Soobshch. Fiz. No.  12, 11–13 (1989) [Sov. Phys. Lebedev Inst. Rep. No.  12, 12–15 (1989)].

Wiggins, T. A.

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated thermal Rayleigh scattering,” Phys. Rev. Lett. 19, 828–830 (1967).
[CrossRef]

Zel’dovich, B. Ya.

B. Ya. Zel’dovich and I. I. Sobel’man, “Stimulated light scattering induced by absorption,” Usp. Fiz. Nauk 101, 3–20 (1970) [Sov. Phys. Usp. 13, 307–317 (1970)].
[CrossRef]

Zeldovich, B. Ya.

B. Ya. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer, 1985; Nauka, 1985).

Zoppi, M.

A. Bambini, R. Vallauri, and M. Zoppi, “Nonlinear spectroscopy of Rayleigh and Mandel’stan-Brillouin scattering in liquids,” in Nonlinear Spectroscopy, N. Bloembergen, ed. (North-Holland, 1977; Mir, 1979), pp. 569–582.

IEEE J. Quantum Electron. (1)

G. M. Davis and M. C. Gower, “Stimulated Brillouin scattering of a KrF laser,” IEEE J. Quantum Electron. 27, 496–501 (1991).
[CrossRef]

J. Appl. Phys. (2)

N. M. Kroll, “Excitation of hypersonic vibrations by means of photoelastic coupling of high-intensity light waves to elastic waves,” J. Appl. Phys. 36, 34–44 (1965).
[CrossRef]

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2956 (1966).
[CrossRef]

Kratk. Soobshch. Fiz. (1)

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. S. Nersisian, A. Z. Obidin, and A. M. Prokhorov, “Line narrowing and wavefront reversal of radiation of an XeCl laser,” Kratk. Soobshch. Fiz. No.  12, 11–13 (1989) [Sov. Phys. Lebedev Inst. Rep. No.  12, 12–15 (1989)].

Kvantovaya Elektron. (Moscow) (1)

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, B. I. Kusakin, S. V. Lihanckii, and A. Z. Obidin, “Line narrowing and wavefront reversal of radiation of an KrF laser,” Kvantovaya Elektron. (Moscow) 18, 89–90 (1991) [Quantum Electron. 21, 80–81 (1991)].

Opt. Lett. (6)

Phys. Rev. (2)

M. A. Gray and R. M. Herman, “Nonlinear thermal Rayleigh scattering in gases,” Phys. Rev. 181, 374–379 (1969).
[CrossRef]

R. N. Enns and I. P. Batra, “Stimulated thermal scattering in the second-sound regime,” Phys. Rev. 180, 227–232 (1969).
[CrossRef]

Phys. Rev. A (1)

V. B. Karpov and V. V. Korobkin, “Stimulated thermal scattering induced by two-photon absorption and experimental observation of genuine stimulated Brillouin scattering in the near-ultraviolet region,” Phys. Rev. A 77, 063812 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

R. M. Herman and M. A. Gray, “Theoretical prediction of the stimulated thermal Rayleigh scattering in liquids,” Phys. Rev. Lett. 19, 824–828 (1967).
[CrossRef]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated thermal Rayleigh scattering,” Phys. Rev. Lett. 19, 828–830 (1967).
[CrossRef]

Usp. Fiz. Nauk (2)

V. S. Starunov and I. L. Fabelinskii, “Stimulated Mandel’shtam–Brillouin scattering and stimulated entropy (temperature) scattering of light,” Usp. Fiz. Nauk 98, 441–491 (1969) [Sov. Phys. Usp. 12, 463–489 (1970)].

B. Ya. Zel’dovich and I. I. Sobel’man, “Stimulated light scattering induced by absorption,” Usp. Fiz. Nauk 101, 3–20 (1970) [Sov. Phys. Usp. 13, 307–317 (1970)].
[CrossRef]

Other (21)

S. Kielich, Molecular Nonlinear Optics (PWN, 1977; Nauka, 1981).

S. A. Akhmanov and N. I. Koroteev, Methods of Nonlinear Optics in Spectroscopy of Light Scattering (Nauka, 1981) [in Russian].

B. Ya. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer, 1985; Nauka, 1985).

V. G. Dmitriev, Nonlinear Optics and Phase Conjugation (Fizmatlit, 2003) [in Russian].

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984; Nauka, 1989).

I. L. Fabelinskii, Molecular Scattering of Light (Plenum, 1968; Nauka, 1965).

N. Bloembergen, Nonlinear Optics (W. A. Benjamin Inc., 1965; Mir, 1966).

J. M. Vaughan, “Correlation analysis and interoferometry in laser spectroscopy of scattering,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins and E. R. Pike, eds. (Plenum, 1974; Mir, 1978), pp. 432–458.

E. R. Pike, “Theory of light scattering,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins and E. R. Pike, eds. (Plenum, 1974; Mir, 1978), pp. 17–45.

L. D. Landau and E. M. Lifshitz, Mechanics Vol. 1 of Course of Theoretical Physics (Pergamon, 1976; Nauka, 1988).

L. G. Loitsianskii, Mechanics of Liquids and Gases (Pergamon, 1966; Drofa, 2003).

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Vol. 7 of Course of Theoretical Physics (Pergamon, 1986; Nauka, 1987).

J. Lamb, “Thermal relaxation in liquids,” in Physical Acoustics Principles and Methods, W. P. Mason, ed., Vol. IIPart A, Properties of Gases, Liquids and Solutions (Academic, 1965; Mir, 1968), pp. 222–297.

A. Bambini, R. Vallauri, and M. Zoppi, “Nonlinear spectroscopy of Rayleigh and Mandel’stan-Brillouin scattering in liquids,” in Nonlinear Spectroscopy, N. Bloembergen, ed. (North-Holland, 1977; Mir, 1979), pp. 569–582.

V. E. Gusev and A. A. Karabutov, Laser Optical Acoustics (Nauka, 1991) [in Russian].

I. G. Mikhailov, V. A. Solov’ev, and Yu. P. Syrnikov, Fundamentals of Molecular Acoustics (Nauka, 1964) [in Russian].

L. D. Landau and E. M. Lifshitz, Hydrodynamics, Vol. 6 ofCourse of Theoretical Physics (Pergamon, 1984; Nauka, 1986).

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Vol. 8 of Course of Theoretical Physics (Pergamon, 1984; Nauka, 1982).

S. A. Akhmanov and R. V. Khokhlov, Problems of Nonlinear Optics 1962-1963 (VINITI, 1964) [in Russian].

V. F. Nozdrev, The Use of Ultrasonics in Molecular Physics (Pergamon, 1965; Fizmatlit, 1958).

M. I. Shakhparonov, Methods for Studying Heat Motion of Molecules and Structure of Liquids (Moscow State University, 1963) [in Russian].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Gain parameter G(Ω) defined by (34) for the SBS and STS mechanisms: (a) conventional SBS and STS-1 and (b) thermal SBS and STS-2.

Fig. 2.
Fig. 2.

Three-dimensional plot of the overall Stokes SBS gain parameter for the conventional and thermal mechanisms.

Fig. 3.
Fig. 3.

Contour plot corresponding to Fig. 2. The grayscale legend is evident from Fig. 2.

Tables (1)

Tables Icon

Table 1. Two-Photon Contribution γIP to the Total Absorption Coefficient at λ1=308nm in Hexane for the Three Values of the Pump Intensity IP

Equations (59)

Equations on this page are rendered with MathJax. Learn more.

αΣ=α+(IPγ)
ρ0Vt+v2δgrad(Δρ)+v2βρ0δgrad(ΔT)η2V=γe8πgrad(E2),
t(Δρ)+ρ0div(V)=0,
(ρ0cVtλT2)(ΔT)cV(δ1)βt(Δρ)=ncαΣ4π(E2)18π(εT)p(T0t(E2)).
ΔP=v2δ(Δρ)+v2δρ0β(ΔT)
(2t2+v2δ2+ηρ0t2)(Δρ)+v2βρ0δ2(ΔT)=γe8π2(E2).
Δε=ΔSPε+ΔNLε=(ερ)TΔρ+(εT)ρΔT=(ερ)T(ΔSPρ+ΔNLρ)+(εT)ρ(ΔSPT+ΔNLT).
|(ερ)TΔNLρ||(εT)ρΔNLT|,(εT)Pβ(ρ0ερ)T.
EP=12e{E1(z,t)exp(ik1ziω1t)+c.c.},
ES=12e{E2(z,t)exp(ik2ziω2t)+c.c.}.
E=EP+ES.
DL(z,t)=ε^(ω)E(z,t),DNL(z,t)=ε^NL(ω,z,t)E(z,t),
DL(z,t)=ε(ω)E(z,t),DNL(z,t)=εNL(ω,z,t)E(z,t)(ερ)TΔNLρ(z,t)E(z,t).
PL(z,t)=ε(ω)14πE(z,t),PNL(z,t)=14πεNL(ω,z,t)E(z,t)14π(ερ)TΔNLρ(z,t)E(z,t).
[2ε(ω1)c22t2]EP=4πc22t2Pω1NL,
[2ε(ω2)c22t2]ES=4πc22t2Pω2NL
E2=(EP+ES)2=2EPES=12{E1(z)E2*(z)exp[i(ω1ω2)t+i(k1+k2)z]+c.c.},
ΔNLρ(z,t)=12{ρa(z)exp[i(ω1ω2)t+i(k1+k2)z]+c.c.},
ΔNLT(z,t)=12{Ta(z)exp[i(ω1ω2)t+i(k1+k2)z]+c.c.}.
(Ω2+v2δq2+iηρ0q2Ω)ρa+v2βρ0δq2Ta=18π(ρ0ερ)Tq2E1E2*,
iΩcV(δ1)βρa+(iρ0cVΩ+λTq2)Ta=14πncαΣE1E2*i8π(ρ0ερ)TβT0ΩE1E2*,
iΩcV(δ1)βρa+δ(iρ0cVΩ+λTq2)qv22βρ0[18π(ρ0ερ)Tq2E1E2*(Ω2+v2δq2+iηρ0q2Ω)ρa]=14π[ncαi2(ρ0ερ)TβTΩ0]E1E2*.
ρa[iΩcV(δ1)βδ(iρ0cVΩ+λTq2)qv22βρ0(Ω2+v2δq2+iηρ0q2Ω)]=E1E2*[δ(iρ0cVΩλTq2)8πqv22βρ0(ρ0ερ)Tq2+14π[ncαi2(ρ0ερ)TβTΩ0]].
8πρa[(Ω2+v2q2δ+iηq2ρ0Ω)(λTq2iρ0cVΩ)i(11δ)ρ0cVΩv2q2]=E1E2*[2βncαρ0v2q2δ+(ρ0ερ)Tq2[λTq2iρ0cVΩ+iδv2ρ0β2TΩ0]].
iδv2ρ0β2TΩ0=iδv2ΩβS(δ1)ρ02cP=i(11δ)ρ0cPΩ.
(Pω1,ω2NL(z,t))i=χijkl(3)(ω1,ω2,Ω)(E(z,t))j(E(z,t))k(E(z,t))l.
(Pω1,ω2NL)i=χixxx(3)(E)x3=χixxx(3)(EP+ES)x3=χixxx(3)[(EP)x3+3(EP)x2(ES)x+3(EP)x(ES)x2+(ES)x3].
(Pω1,ω2NL)x=χ(3)(E)x3=χ(3)(EP+ES)x3=χ(3)[(EP)x3+3(EP)x2(ES)x+3(EP)x(ES)x2+(ES)x3].
χ(3)=14πD(ρ0ερ)T116πρ0×{2βncαΣρ0v2q2δ+(ρ0ερ)Tq2[λTq2iρ0cVΩ+i(11δ)ρ0cPΩ]}×{[Ω2+v2q2δ+iηq2ρ0Ω][λTq2iρ0cVΩ]i(11δ)ρ0cVΩv2q2}1.
χ(3)Rχ(3)R1+χ(3)R2,
χ(3)R1=132π2D(ρ0ερ)T2βS(δ1)[2δ2(δ1)+iΓRΩ+iΓR],
χ(3)R2=164π2D(ρ0ερ)TαΣcnβΓRcPρ0iΓRΩ+iΓR,
ΓR=λTq2ρ0cP.
Imχ(3)R1=132π2D(ρ0ερ)T2βS(δ1)Ω/ΓR(Ω/ΓR)2+1=βReΩ/ΓR(Ω/ΓR)2+1,
Imχ(3)R2=164π2D(ρ0ερ)TαΣcnβΓRcPρ0Ω/ΓR(Ω/ΓR)2+1=βRaΩ/ΓR(Ω/ΓR)2+1.
χ(3)Bχ(3)B1+χ(3)B2,
χ(3)B1=164π2D(ρ0ερ)T2βS(2δ)ρ0vηqΓB/2|Ω|ΩB±iΓB/2,
χ(3)B2=±i32π2D(ρ0ερ)TαΣcnβΓBcPρ0ΓB/2|Ω|ΩB±iΓB/2,
ΓB=ηq2ρ0.
Imχ(3)B1=±164π2D(ρ0ερ)T2βS(2δ)ρ0vηq1[2(|Ω|ΩB)/ΓB]2+1=βBe1[2(|Ω|ΩB)/ΓB]2+1.
Imχ(3)B2=±132π2D(ρ0ερ)TαΣcnβΓBcPρ02(|Ω|ΩB)/ΓB[2(|Ω|ΩB)/ΓB]2+1=βBa2(|Ω|ΩB)/ΓB[2(|Ω|ΩB)/ΓB]2+1.
ImχMAX(3)B1=βS(2δ)ΩB64π2DΓB(ρ0ερ)T2
ImχMAX(3)B2=αΣcnβ64π2DΓBcPρ0(ρ0ερ)T
ImχMAX(3)B2ImχMAX(3)B1=αΣcnβcPρ0βS(2δ)ΩB(ρ0ερ)T1=(δ1)(2δ)αΣλ14πβT0c/vsin(θ/2)(ρ0ερ)T1,
ββS=ρ0cP(δ1)βT0;λ1=2πcω1;k1=2πnλ1;ΩB=qv=2k1vsin(θ/2)=4πvnλ1sin(θ/2).
(z+αΣ)|E1(z)|2=G|E1(z)|2|E2(z)|2(zαΣ)|E2(z)|2=G|E1(z)|2|E2(z)|2.
G(Ω)=±βBe11+(2ΔΩ/ΓB)2±βBa2ΔΩ/ΓB1+(2ΔΩ/ΓB)2+(βReβRa)Ω/ΓR1+(Ω/ΓR)2,
Ω=ω1ω2,ΔΩ=|Ω|ΩB,ΩB=(k1+k2)v,ΓB=η(k1+k2)2ρ0,ΓR=λT(k1+k2)2ρ0CP.
(βB/βBe)=11+(2ΔΩ/ΓB)2+(βBa/βBe)2ΔΩ/ΓB1+(2ΔΩ/ΓB)2.
(βB/βBe)Z,(βBa/βBe)Y,(2ΔΩ/ΓB)X,
Z(X,Y)=11+X2+YX1+X2.
Y=βBaβBe=δ12δαλ14πβT0c/vsin(θ/2)ρ0(ε/ρ)T,
Y=(const)×α.
Y=(const)×(γIP).
η2η13,k1+k22k1=4πnλ1,
ΓB=2η13ρ0(4πnλ1)2=32π2n2η13ρ0λ12.
λ13×105cm,θ=π,ρ00.66gcm3,n1.4,η13.2×103P3.2×103gcms,β1.4×103K1,T0300K,v105cms,c3×1010cms,ρ0(ερ)T1,δ=CPCV1.3.
Y=βBaβBe0.73×α,
Y=0.73×(γIP).

Metrics