Abstract

The wavefront aberration induced by turbulent flow field in liquid-convection-cooled disk laser is numerically analyzed. By using the large-eddy-simulation model, the structure of time-random turbulent eddies are described and the effects of turbulent eddies on wavefront aberration are illustrated, indicating that the wavefront aberration varies primarily with the temperature field. By integrating the thermal-induced variations of the refractive index along the laser beam path within the flowing liquid, the two-dimensional wavefront aberration is obtained, showing that the wavefront aberration occurs mainly at the thermal boundary layer, where the temperature gradient is large.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: ushering in a new age for high energy density science,” Phys. Plasmas 16, 041006 (2009).
    [CrossRef]
  2. S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.
  3. K. N. LaFortune, R. L. Hurd, S. N. Fochs, M. D. Rotter, P. H. Pax, R. L. Combs, S. S. Olivier, J. M. Brase, and R. M. Yamamoto, “Technical challenges for the future of high energy lasers,” Proc. SPIE 6454, 64540O (2007).
    [CrossRef]
  4. M. Ostermeyer, D. Mudge, P. J. Veitch, and J. Munch, “Thermally induced birefringence in Nd:YAG slab lasers,” Appl. Opt. 45, 5368–5376 (2006).
    [CrossRef]
  5. K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin-disc lasers,” IEEE J. Quantum Electron. 11, 713–720 (2005).
    [CrossRef]
  6. M. Schmid, Th. Graf, and H. P. Weber, “Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating,” J. Opt. Soc. Am. B 17, 1398–1404 (2000).
    [CrossRef]
  7. Y. Lumer, I. Moshe, A. Meir, Y. Paiken, G. Machavariani, and S. Jackel, “Effects of thermally induced aberrations on radially and azimuthally polarized beams,” J. Opt. Soc. Am. B 24, 2279–2286 (2007).
    [CrossRef]
  8. H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Nd:YAG split-disk laser amplifier for 10 J output energy,” Opt. Commun. 260, 277–281 (2006).
    [CrossRef]
  9. H. Okada, H. Yoshida, K. Sumimura, T. Sato, H. Fujita, and M. Nakatsuka, “Large-clear-aperture Nd:Cr:YAG split-disk laser amplifier,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (Optical Society of America, 2007), paper WP_015.
  10. J. Speiser, “Scaling of thin-disk lasers—influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26, 26–35 (2009).
    [CrossRef]
  11. “High energy liquid laser area defense system,” http://en.wikipedia.org/wiki/High_Energy_Liquid_Laser_Area_Defense_System .
  12. M. D. Perry, P. S. Banks, J. Zweiback, and R. W. Schleicher, “Laser containing a distributed gain medium,” U.S. Patent7,366,211 (Apr.29, 2008).
  13. A. Mandl and D. E. Klimek, “Textron’s J-HPSSL 100 kW ThinZag® laser program,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThH2.
  14. X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111, 517–521 (2013).
  15. J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26, 549–558 (2006).
    [CrossRef]
  16. J. P. Siegenthaler, “Guidelines for adaptive-optic correction based on aperture filtration,” Ph.D. disstertation (University of Notre Dame, 2009).
  17. Z. Tao, “Effect of magnetic field of light on refractive index,” Chin. Phys. 13, 1358–1364 (2004).
    [CrossRef]
  18. J. H. Ferziger and M. Perić, Solution of the Navier–Stokes Equations (Springer, 2002).
  19. P. Rollet-Miet, D. Laurence, and J. Ferziger, “LES and RANS of turbulent flow in tube bundles,” Int. J. Heat Fluid Flow 20, 241–254 (1999).
    [CrossRef]
  20. F. Felten, Y. Fautrelle, Y. du Terrail, and O. Metais, “Numerical modelling of electromagnetically-driven turbulent flows using LES methods,” Appl. Math. Model. 28, 15–27 (2004).
    [CrossRef]
  21. X. Y. Luo, J. S. Hinton, T. T. Liew, and K. K. Tan, “LES modelling of flow in a simple airway model,” Med. Eng. Phys. 26, 403–413 (2004).
    [CrossRef]

2013

X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111, 517–521 (2013).

2009

E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: ushering in a new age for high energy density science,” Phys. Plasmas 16, 041006 (2009).
[CrossRef]

J. Speiser, “Scaling of thin-disk lasers—influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26, 26–35 (2009).
[CrossRef]

2007

Y. Lumer, I. Moshe, A. Meir, Y. Paiken, G. Machavariani, and S. Jackel, “Effects of thermally induced aberrations on radially and azimuthally polarized beams,” J. Opt. Soc. Am. B 24, 2279–2286 (2007).
[CrossRef]

K. N. LaFortune, R. L. Hurd, S. N. Fochs, M. D. Rotter, P. H. Pax, R. L. Combs, S. S. Olivier, J. M. Brase, and R. M. Yamamoto, “Technical challenges for the future of high energy lasers,” Proc. SPIE 6454, 64540O (2007).
[CrossRef]

2006

M. Ostermeyer, D. Mudge, P. J. Veitch, and J. Munch, “Thermally induced birefringence in Nd:YAG slab lasers,” Appl. Opt. 45, 5368–5376 (2006).
[CrossRef]

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26, 549–558 (2006).
[CrossRef]

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Nd:YAG split-disk laser amplifier for 10 J output energy,” Opt. Commun. 260, 277–281 (2006).
[CrossRef]

2005

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin-disc lasers,” IEEE J. Quantum Electron. 11, 713–720 (2005).
[CrossRef]

2004

Z. Tao, “Effect of magnetic field of light on refractive index,” Chin. Phys. 13, 1358–1364 (2004).
[CrossRef]

F. Felten, Y. Fautrelle, Y. du Terrail, and O. Metais, “Numerical modelling of electromagnetically-driven turbulent flows using LES methods,” Appl. Math. Model. 28, 15–27 (2004).
[CrossRef]

X. Y. Luo, J. S. Hinton, T. T. Liew, and K. K. Tan, “LES modelling of flow in a simple airway model,” Med. Eng. Phys. 26, 403–413 (2004).
[CrossRef]

2000

1999

P. Rollet-Miet, D. Laurence, and J. Ferziger, “LES and RANS of turbulent flow in tube bundles,” Int. J. Heat Fluid Flow 20, 241–254 (1999).
[CrossRef]

Al-Ayat, R.

E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: ushering in a new age for high energy density science,” Phys. Plasmas 16, 041006 (2009).
[CrossRef]

Asman, C. P.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

Banks, P. S.

M. D. Perry, P. S. Banks, J. Zweiback, and R. W. Schleicher, “Laser containing a distributed gain medium,” U.S. Patent7,366,211 (Apr.29, 2008).

Berry, P. A.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin-disc lasers,” IEEE J. Quantum Electron. 11, 713–720 (2005).
[CrossRef]

Boyd, R. N.

E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: ushering in a new age for high energy density science,” Phys. Plasmas 16, 041006 (2009).
[CrossRef]

Brase, J. M.

K. N. LaFortune, R. L. Hurd, S. N. Fochs, M. D. Rotter, P. H. Pax, R. L. Combs, S. S. Olivier, J. M. Brase, and R. M. Yamamoto, “Technical challenges for the future of high energy lasers,” Proc. SPIE 6454, 64540O (2007).
[CrossRef]

Combs, R. L.

K. N. LaFortune, R. L. Hurd, S. N. Fochs, M. D. Rotter, P. H. Pax, R. L. Combs, S. S. Olivier, J. M. Brase, and R. M. Yamamoto, “Technical challenges for the future of high energy lasers,” Proc. SPIE 6454, 64540O (2007).
[CrossRef]

du Terrail, Y.

F. Felten, Y. Fautrelle, Y. du Terrail, and O. Metais, “Numerical modelling of electromagnetically-driven turbulent flows using LES methods,” Appl. Math. Model. 28, 15–27 (2004).
[CrossRef]

Fautrelle, Y.

F. Felten, Y. Fautrelle, Y. du Terrail, and O. Metais, “Numerical modelling of electromagnetically-driven turbulent flows using LES methods,” Appl. Math. Model. 28, 15–27 (2004).
[CrossRef]

Felten, F.

F. Felten, Y. Fautrelle, Y. du Terrail, and O. Metais, “Numerical modelling of electromagnetically-driven turbulent flows using LES methods,” Appl. Math. Model. 28, 15–27 (2004).
[CrossRef]

Ferziger, J.

P. Rollet-Miet, D. Laurence, and J. Ferziger, “LES and RANS of turbulent flow in tube bundles,” Int. J. Heat Fluid Flow 20, 241–254 (1999).
[CrossRef]

Ferziger, J. H.

J. H. Ferziger and M. Perić, Solution of the Navier–Stokes Equations (Springer, 2002).

Fochs, S. N.

K. N. LaFortune, R. L. Hurd, S. N. Fochs, M. D. Rotter, P. H. Pax, R. L. Combs, S. S. Olivier, J. M. Brase, and R. M. Yamamoto, “Technical challenges for the future of high energy lasers,” Proc. SPIE 6454, 64540O (2007).
[CrossRef]

Fu, X.

X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111, 517–521 (2013).

Fujita, H.

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Nd:YAG split-disk laser amplifier for 10 J output energy,” Opt. Commun. 260, 277–281 (2006).
[CrossRef]

H. Okada, H. Yoshida, K. Sumimura, T. Sato, H. Fujita, and M. Nakatsuka, “Large-clear-aperture Nd:Cr:YAG split-disk laser amplifier,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (Optical Society of America, 2007), paper WP_015.

Gong, M.

X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111, 517–521 (2013).

Graf, Th.

Hinton, J. S.

X. Y. Luo, J. S. Hinton, T. T. Liew, and K. K. Tan, “LES modelling of flow in a simple airway model,” Med. Eng. Phys. 26, 403–413 (2004).
[CrossRef]

Hurd, R. L.

K. N. LaFortune, R. L. Hurd, S. N. Fochs, M. D. Rotter, P. H. Pax, R. L. Combs, S. S. Olivier, J. M. Brase, and R. M. Yamamoto, “Technical challenges for the future of high energy lasers,” Proc. SPIE 6454, 64540O (2007).
[CrossRef]

Injeyan, H.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

Jackel, S.

Jankevics, A.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

Johnson, A. M.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

Jones, G. C.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

Keane, C. J.

E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: ushering in a new age for high energy density science,” Phys. Plasmas 16, 041006 (2009).
[CrossRef]

Klimek, D. E.

A. Mandl and D. E. Klimek, “Textron’s J-HPSSL 100 kW ThinZag® laser program,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThH2.

Komine, H.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

LaFortune, K. N.

K. N. LaFortune, R. L. Hurd, S. N. Fochs, M. D. Rotter, P. H. Pax, R. L. Combs, S. S. Olivier, J. M. Brase, and R. M. Yamamoto, “Technical challenges for the future of high energy lasers,” Proc. SPIE 6454, 64540O (2007).
[CrossRef]

Laurence, D.

P. Rollet-Miet, D. Laurence, and J. Ferziger, “LES and RANS of turbulent flow in tube bundles,” Int. J. Heat Fluid Flow 20, 241–254 (1999).
[CrossRef]

Li, P.

X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111, 517–521 (2013).

Liew, T. T.

X. Y. Luo, J. S. Hinton, T. T. Liew, and K. K. Tan, “LES modelling of flow in a simple airway model,” Med. Eng. Phys. 26, 403–413 (2004).
[CrossRef]

Liu, Q.

X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111, 517–521 (2013).

Lumer, Y.

Luo, X. Y.

X. Y. Luo, J. S. Hinton, T. T. Liew, and K. K. Tan, “LES modelling of flow in a simple airway model,” Med. Eng. Phys. 26, 403–413 (2004).
[CrossRef]

Machan, J.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

Machavariani, G.

Mandl, A.

A. Mandl and D. E. Klimek, “Textron’s J-HPSSL 100 kW ThinZag® laser program,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThH2.

Marmo, J.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

McClellan, M.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

McKay, J. B.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin-disc lasers,” IEEE J. Quantum Electron. 11, 713–720 (2005).
[CrossRef]

McNaught, S. J.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

Meir, A.

Metais, O.

F. Felten, Y. Fautrelle, Y. du Terrail, and O. Metais, “Numerical modelling of electromagnetically-driven turbulent flows using LES methods,” Appl. Math. Model. 28, 15–27 (2004).
[CrossRef]

Min, J. C.

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26, 549–558 (2006).
[CrossRef]

Moses, E. I.

E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: ushering in a new age for high energy density science,” Phys. Plasmas 16, 041006 (2009).
[CrossRef]

Moshe, I.

Mudge, D.

Munch, J.

Nakatsuka, M.

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Nd:YAG split-disk laser amplifier for 10 J output energy,” Opt. Commun. 260, 277–281 (2006).
[CrossRef]

H. Okada, H. Yoshida, K. Sumimura, T. Sato, H. Fujita, and M. Nakatsuka, “Large-clear-aperture Nd:Cr:YAG split-disk laser amplifier,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (Optical Society of America, 2007), paper WP_015.

Okada, H.

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Nd:YAG split-disk laser amplifier for 10 J output energy,” Opt. Commun. 260, 277–281 (2006).
[CrossRef]

H. Okada, H. Yoshida, K. Sumimura, T. Sato, H. Fujita, and M. Nakatsuka, “Large-clear-aperture Nd:Cr:YAG split-disk laser amplifier,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (Optical Society of America, 2007), paper WP_015.

Olivier, S. S.

K. N. LaFortune, R. L. Hurd, S. N. Fochs, M. D. Rotter, P. H. Pax, R. L. Combs, S. S. Olivier, J. M. Brase, and R. M. Yamamoto, “Technical challenges for the future of high energy lasers,” Proc. SPIE 6454, 64540O (2007).
[CrossRef]

Ostermeyer, M.

Paiken, Y.

Pax, P. H.

K. N. LaFortune, R. L. Hurd, S. N. Fochs, M. D. Rotter, P. H. Pax, R. L. Combs, S. S. Olivier, J. M. Brase, and R. M. Yamamoto, “Technical challenges for the future of high energy lasers,” Proc. SPIE 6454, 64540O (2007).
[CrossRef]

Peric, M.

J. H. Ferziger and M. Perić, Solution of the Navier–Stokes Equations (Springer, 2002).

Perry, M. D.

M. D. Perry, P. S. Banks, J. Zweiback, and R. W. Schleicher, “Laser containing a distributed gain medium,” U.S. Patent7,366,211 (Apr.29, 2008).

Peterson, R. D.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin-disc lasers,” IEEE J. Quantum Electron. 11, 713–720 (2005).
[CrossRef]

Remington, B. A.

E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: ushering in a new age for high energy density science,” Phys. Plasmas 16, 041006 (2009).
[CrossRef]

Rollet-Miet, P.

P. Rollet-Miet, D. Laurence, and J. Ferziger, “LES and RANS of turbulent flow in tube bundles,” Int. J. Heat Fluid Flow 20, 241–254 (1999).
[CrossRef]

Rotter, M. D.

K. N. LaFortune, R. L. Hurd, S. N. Fochs, M. D. Rotter, P. H. Pax, R. L. Combs, S. S. Olivier, J. M. Brase, and R. M. Yamamoto, “Technical challenges for the future of high energy lasers,” Proc. SPIE 6454, 64540O (2007).
[CrossRef]

Sato, T.

H. Okada, H. Yoshida, K. Sumimura, T. Sato, H. Fujita, and M. Nakatsuka, “Large-clear-aperture Nd:Cr:YAG split-disk laser amplifier,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (Optical Society of America, 2007), paper WP_015.

Schepler, K. L.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin-disc lasers,” IEEE J. Quantum Electron. 11, 713–720 (2005).
[CrossRef]

Schleicher, R. W.

M. D. Perry, P. S. Banks, J. Zweiback, and R. W. Schleicher, “Laser containing a distributed gain medium,” U.S. Patent7,366,211 (Apr.29, 2008).

Schmid, M.

Siegenthaler, J. P.

J. P. Siegenthaler, “Guidelines for adaptive-optic correction based on aperture filtration,” Ph.D. disstertation (University of Notre Dame, 2009).

Simpson, R.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

Sollee, J.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

Song, Y. Z.

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26, 549–558 (2006).
[CrossRef]

Speiser, J.

Sumimura, K.

H. Okada, H. Yoshida, K. Sumimura, T. Sato, H. Fujita, and M. Nakatsuka, “Large-clear-aperture Nd:Cr:YAG split-disk laser amplifier,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (Optical Society of America, 2007), paper WP_015.

Tan, K. K.

X. Y. Luo, J. S. Hinton, T. T. Liew, and K. K. Tan, “LES modelling of flow in a simple airway model,” Med. Eng. Phys. 26, 403–413 (2004).
[CrossRef]

Tao, Z.

Z. Tao, “Effect of magnetic field of light on refractive index,” Chin. Phys. 13, 1358–1364 (2004).
[CrossRef]

Valley, M. M.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

Veitch, P. J.

Wang, J. R.

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26, 549–558 (2006).
[CrossRef]

Weber, H. P.

Weber, M.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

Weiss, S. B.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

Yamamoto, R. M.

K. N. LaFortune, R. L. Hurd, S. N. Fochs, M. D. Rotter, P. H. Pax, R. L. Combs, S. S. Olivier, J. M. Brase, and R. M. Yamamoto, “Technical challenges for the future of high energy lasers,” Proc. SPIE 6454, 64540O (2007).
[CrossRef]

Yoshida, H.

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Nd:YAG split-disk laser amplifier for 10 J output energy,” Opt. Commun. 260, 277–281 (2006).
[CrossRef]

H. Okada, H. Yoshida, K. Sumimura, T. Sato, H. Fujita, and M. Nakatsuka, “Large-clear-aperture Nd:Cr:YAG split-disk laser amplifier,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (Optical Society of America, 2007), paper WP_015.

Zweiback, J.

M. D. Perry, P. S. Banks, J. Zweiback, and R. W. Schleicher, “Laser containing a distributed gain medium,” U.S. Patent7,366,211 (Apr.29, 2008).

Appl. Math. Model.

F. Felten, Y. Fautrelle, Y. du Terrail, and O. Metais, “Numerical modelling of electromagnetically-driven turbulent flows using LES methods,” Appl. Math. Model. 28, 15–27 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. B

X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111, 517–521 (2013).

Appl. Therm. Eng.

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26, 549–558 (2006).
[CrossRef]

Chin. Phys.

Z. Tao, “Effect of magnetic field of light on refractive index,” Chin. Phys. 13, 1358–1364 (2004).
[CrossRef]

IEEE J. Quantum Electron.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin-disc lasers,” IEEE J. Quantum Electron. 11, 713–720 (2005).
[CrossRef]

Int. J. Heat Fluid Flow

P. Rollet-Miet, D. Laurence, and J. Ferziger, “LES and RANS of turbulent flow in tube bundles,” Int. J. Heat Fluid Flow 20, 241–254 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Med. Eng. Phys.

X. Y. Luo, J. S. Hinton, T. T. Liew, and K. K. Tan, “LES modelling of flow in a simple airway model,” Med. Eng. Phys. 26, 403–413 (2004).
[CrossRef]

Opt. Commun.

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Nd:YAG split-disk laser amplifier for 10 J output energy,” Opt. Commun. 260, 277–281 (2006).
[CrossRef]

Phys. Plasmas

E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: ushering in a new age for high energy density science,” Phys. Plasmas 16, 041006 (2009).
[CrossRef]

Proc. SPIE

K. N. LaFortune, R. L. Hurd, S. N. Fochs, M. D. Rotter, P. H. Pax, R. L. Combs, S. S. Olivier, J. M. Brase, and R. M. Yamamoto, “Technical challenges for the future of high energy lasers,” Proc. SPIE 6454, 64540O (2007).
[CrossRef]

Other

J. H. Ferziger and M. Perić, Solution of the Navier–Stokes Equations (Springer, 2002).

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

J. P. Siegenthaler, “Guidelines for adaptive-optic correction based on aperture filtration,” Ph.D. disstertation (University of Notre Dame, 2009).

H. Okada, H. Yoshida, K. Sumimura, T. Sato, H. Fujita, and M. Nakatsuka, “Large-clear-aperture Nd:Cr:YAG split-disk laser amplifier,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (Optical Society of America, 2007), paper WP_015.

“High energy liquid laser area defense system,” http://en.wikipedia.org/wiki/High_Energy_Liquid_Laser_Area_Defense_System .

M. D. Perry, P. S. Banks, J. Zweiback, and R. W. Schleicher, “Laser containing a distributed gain medium,” U.S. Patent7,366,211 (Apr.29, 2008).

A. Mandl and D. E. Klimek, “Textron’s J-HPSSL 100 kW ThinZag® laser program,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThH2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Configuration of the Nd:YAG thin-disk laser directly cooled by water.

Fig. 2.
Fig. 2.

Convective cooling model of Nd:YAG thin-disk laser.

Fig. 3.
Fig. 3.

(a) Temperature profiles and (b) pressure profiles of the flow field central cross section.

Fig. 4.
Fig. 4.

Calculated two-dimensional wavefront aberrations with a sample interval of Δt=1s.

Fig. 5.
Fig. 5.

Wavefront aberrations caused by each sublayer divided along the thickness direction.

Fig. 6.
Fig. 6.

PV value and RMS value of wavefront aberration versus heat flux density on disk surfaces.

Fig. 7.
Fig. 7.

PV value and RMS value of wavefront aberration versus entrance velocity.

Fig. 8.
Fig. 8.

(a) Calculated two-dimensional wavefront aberration induced by a single disk crystal and (b) total two-dimensional wavefront aberration at time t=1s about the system.

Fig. 9.
Fig. 9.

Calculated flow field temperature profiles in xz cross section at y=0.05mm based on (a)–(c) LES model and (d) RNG kε model.

Fig. 10.
Fig. 10.

Simulated flow patterns in the entrance region: (a) instantaneous velocity field computed by LES model and (b) time-averaged velocity field computed by RNG kε model.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

n=1+KGD·ρ,
ρt+div(ρu)=0,
(ρui)t+div(ρuiu)=pxi+div(μgradui),
(ρT)t+div(ρTu)=div(kcpgradT),
ρt+xi(ρu¯i)=0,
(ρu¯i)t+xj(ρu¯iu¯j)=p¯xi+xj(μu¯ixj+τij),
ρt+xi(ρu˜i)=0,
(ρu˜i)t+xj(ρu˜iu˜j)=p˜xi+xj(μu˜ixj+Tij),
Tij13Tkkδij=2νsS˜ij.
νs=[Cs(ΔxΔyΔz)1/3]22S˜ijS˜ij,
S˜ij=12(u˜ixj+u˜jxi),
Re=u0Dhv,
OPD=dndTl(TT0)dl,

Metrics