Abstract

In this paper, we discuss the possible applications of a solid-state ring laser comprising a feedback loop for stabilizing the bidirectional regime and a magneto-optic element for frequency-shifting the counterpropagating modes. In a first simple two-mode configuration, this device is shown to be sensitive to small changes in the rotation rate and external magnetic field. In a second more sophisticated version, the magnetic sensitivity can be significantly reduced thanks to multioscillator operation. The results of our proof-of-principle four-mode experiment are discussed, and some improvements are suggested toward a high-performance solid-state ring laser gyroscope without lock-in.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Macek and D. Davis, “Rotation rate sensing with traveling wave ring lasers,” Appl. Phys. Lett. 2, 67–68 (1963).
    [CrossRef]
  2. D. M. Shupe, “Thermally induced nonreciprocity in the fiber-optic interferometer,” Appl. Opt. 19, 654–655 (1980).
    [CrossRef]
  3. J. Kilpatrick, “Laser angular rate sensor,” U.S. patent3,373,650 (March19, 1968).
  4. F. Aronowitz, “Fundamentals of the ring laser gyro,” in Optical Gyros and their Application, NATO RTO AGARDograph 339 (1999).
  5. P. H. Lee and J. G. Atwood, “Measurement of saturation induced optical nonreciprocity in a ring laser plasma,” IEEE J. Quantum Electron. 2, 235–243 (1966).
    [CrossRef]
  6. W. Chow, J. Hambenne, T. Hutchings, V. Sanders, M. Sargent, and M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. 16, 918–936 (1980).
    [CrossRef]
  7. T. Dorschner, H. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16, 1376–1379 (1980).
    [CrossRef]
  8. S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, “Suppression of nonlinear interactions in resonant macroscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
    [CrossRef]
  9. S. Schwartz, F. Gutty, G. Feugnet, E. Loil, and J.-P. Pocholle, “Solid-state ring laser gyro behaving like its helium-neon counterpart at low rotation rates,” Opt. Lett. 34, 3884–3886 (2009).
    [CrossRef]
  10. A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, “Use of a feedback loop for the stabilization of a beat regime in a solid-state ring laser,” Sov. J. Quantum Electron. 16, 58–63 (1986).
    [CrossRef]
  11. S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
    [CrossRef]
  12. F. Bretenaker, B. Lépine, J.-C. Cotteverte, and A. Le Floch, “Mean-field laser magnetometry,” Phys. Rev. Lett. 69, 909–912 (1992).
    [CrossRef]
  13. S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
    [CrossRef]

2009 (2)

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

S. Schwartz, F. Gutty, G. Feugnet, E. Loil, and J.-P. Pocholle, “Solid-state ring laser gyro behaving like its helium-neon counterpart at low rotation rates,” Opt. Lett. 34, 3884–3886 (2009).
[CrossRef]

2008 (1)

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, “Suppression of nonlinear interactions in resonant macroscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef]

2006 (1)

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef]

1992 (1)

F. Bretenaker, B. Lépine, J.-C. Cotteverte, and A. Le Floch, “Mean-field laser magnetometry,” Phys. Rev. Lett. 69, 909–912 (1992).
[CrossRef]

1986 (1)

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, “Use of a feedback loop for the stabilization of a beat regime in a solid-state ring laser,” Sov. J. Quantum Electron. 16, 58–63 (1986).
[CrossRef]

1980 (3)

W. Chow, J. Hambenne, T. Hutchings, V. Sanders, M. Sargent, and M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. 16, 918–936 (1980).
[CrossRef]

T. Dorschner, H. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16, 1376–1379 (1980).
[CrossRef]

D. M. Shupe, “Thermally induced nonreciprocity in the fiber-optic interferometer,” Appl. Opt. 19, 654–655 (1980).
[CrossRef]

1966 (1)

P. H. Lee and J. G. Atwood, “Measurement of saturation induced optical nonreciprocity in a ring laser plasma,” IEEE J. Quantum Electron. 2, 235–243 (1966).
[CrossRef]

1963 (1)

W. Macek and D. Davis, “Rotation rate sensing with traveling wave ring lasers,” Appl. Phys. Lett. 2, 67–68 (1963).
[CrossRef]

Aronowitz, F.

F. Aronowitz, “Fundamentals of the ring laser gyro,” in Optical Gyros and their Application, NATO RTO AGARDograph 339 (1999).

Aspect, A.

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef]

Atwood, J. G.

P. H. Lee and J. G. Atwood, “Measurement of saturation induced optical nonreciprocity in a ring laser plasma,” IEEE J. Quantum Electron. 2, 235–243 (1966).
[CrossRef]

Bouyer, P.

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, “Suppression of nonlinear interactions in resonant macroscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef]

Bretenaker, F.

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

F. Bretenaker, B. Lépine, J.-C. Cotteverte, and A. Le Floch, “Mean-field laser magnetometry,” Phys. Rev. Lett. 69, 909–912 (1992).
[CrossRef]

Chow, W.

W. Chow, J. Hambenne, T. Hutchings, V. Sanders, M. Sargent, and M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. 16, 918–936 (1980).
[CrossRef]

Cotteverte, J.-C.

F. Bretenaker, B. Lépine, J.-C. Cotteverte, and A. Le Floch, “Mean-field laser magnetometry,” Phys. Rev. Lett. 69, 909–912 (1992).
[CrossRef]

Davis, D.

W. Macek and D. Davis, “Rotation rate sensing with traveling wave ring lasers,” Appl. Phys. Lett. 2, 67–68 (1963).
[CrossRef]

Dorschner, T.

T. Dorschner, H. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16, 1376–1379 (1980).
[CrossRef]

Dotsenko, A.

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, “Use of a feedback loop for the stabilization of a beat regime in a solid-state ring laser,” Sov. J. Quantum Electron. 16, 58–63 (1986).
[CrossRef]

Feugnet, G.

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

S. Schwartz, F. Gutty, G. Feugnet, E. Loil, and J.-P. Pocholle, “Solid-state ring laser gyro behaving like its helium-neon counterpart at low rotation rates,” Opt. Lett. 34, 3884–3886 (2009).
[CrossRef]

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, “Suppression of nonlinear interactions in resonant macroscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef]

Gutty, F.

S. Schwartz, F. Gutty, G. Feugnet, E. Loil, and J.-P. Pocholle, “Solid-state ring laser gyro behaving like its helium-neon counterpart at low rotation rates,” Opt. Lett. 34, 3884–3886 (2009).
[CrossRef]

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, “Suppression of nonlinear interactions in resonant macroscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef]

Hambenne, J.

W. Chow, J. Hambenne, T. Hutchings, V. Sanders, M. Sargent, and M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. 16, 918–936 (1980).
[CrossRef]

Haus, H.

T. Dorschner, H. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16, 1376–1379 (1980).
[CrossRef]

Holz, M.

T. Dorschner, H. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16, 1376–1379 (1980).
[CrossRef]

Hutchings, T.

W. Chow, J. Hambenne, T. Hutchings, V. Sanders, M. Sargent, and M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. 16, 918–936 (1980).
[CrossRef]

Kilpatrick, J.

J. Kilpatrick, “Laser angular rate sensor,” U.S. patent3,373,650 (March19, 1968).

Kornienko, L.

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, “Use of a feedback loop for the stabilization of a beat regime in a solid-state ring laser,” Sov. J. Quantum Electron. 16, 58–63 (1986).
[CrossRef]

Kravtsov, N.

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, “Use of a feedback loop for the stabilization of a beat regime in a solid-state ring laser,” Sov. J. Quantum Electron. 16, 58–63 (1986).
[CrossRef]

Lariontsev, E.

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef]

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, “Use of a feedback loop for the stabilization of a beat regime in a solid-state ring laser,” Sov. J. Quantum Electron. 16, 58–63 (1986).
[CrossRef]

Le Floch, A.

F. Bretenaker, B. Lépine, J.-C. Cotteverte, and A. Le Floch, “Mean-field laser magnetometry,” Phys. Rev. Lett. 69, 909–912 (1992).
[CrossRef]

Lee, P. H.

P. H. Lee and J. G. Atwood, “Measurement of saturation induced optical nonreciprocity in a ring laser plasma,” IEEE J. Quantum Electron. 2, 235–243 (1966).
[CrossRef]

Lépine, B.

F. Bretenaker, B. Lépine, J.-C. Cotteverte, and A. Le Floch, “Mean-field laser magnetometry,” Phys. Rev. Lett. 69, 909–912 (1992).
[CrossRef]

Loil, E.

Macek, W.

W. Macek and D. Davis, “Rotation rate sensing with traveling wave ring lasers,” Appl. Phys. Lett. 2, 67–68 (1963).
[CrossRef]

Nanii, O.

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, “Use of a feedback loop for the stabilization of a beat regime in a solid-state ring laser,” Sov. J. Quantum Electron. 16, 58–63 (1986).
[CrossRef]

Pocholle, J.-P.

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

S. Schwartz, F. Gutty, G. Feugnet, E. Loil, and J.-P. Pocholle, “Solid-state ring laser gyro behaving like its helium-neon counterpart at low rotation rates,” Opt. Lett. 34, 3884–3886 (2009).
[CrossRef]

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, “Suppression of nonlinear interactions in resonant macroscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef]

Rebut, M.

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

Sanders, V.

W. Chow, J. Hambenne, T. Hutchings, V. Sanders, M. Sargent, and M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. 16, 918–936 (1980).
[CrossRef]

Sargent, M.

W. Chow, J. Hambenne, T. Hutchings, V. Sanders, M. Sargent, and M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. 16, 918–936 (1980).
[CrossRef]

Schwartz, S.

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

S. Schwartz, F. Gutty, G. Feugnet, E. Loil, and J.-P. Pocholle, “Solid-state ring laser gyro behaving like its helium-neon counterpart at low rotation rates,” Opt. Lett. 34, 3884–3886 (2009).
[CrossRef]

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, “Suppression of nonlinear interactions in resonant macroscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef]

Scully, M. O.

W. Chow, J. Hambenne, T. Hutchings, V. Sanders, M. Sargent, and M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. 16, 918–936 (1980).
[CrossRef]

Shelaev, A.

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, “Use of a feedback loop for the stabilization of a beat regime in a solid-state ring laser,” Sov. J. Quantum Electron. 16, 58–63 (1986).
[CrossRef]

Shupe, D. M.

Smith, I. W.

T. Dorschner, H. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16, 1376–1379 (1980).
[CrossRef]

Statz, H.

T. Dorschner, H. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16, 1376–1379 (1980).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Macek and D. Davis, “Rotation rate sensing with traveling wave ring lasers,” Appl. Phys. Lett. 2, 67–68 (1963).
[CrossRef]

IEEE J. Quantum Electron. (3)

P. H. Lee and J. G. Atwood, “Measurement of saturation induced optical nonreciprocity in a ring laser plasma,” IEEE J. Quantum Electron. 2, 235–243 (1966).
[CrossRef]

W. Chow, J. Hambenne, T. Hutchings, V. Sanders, M. Sargent, and M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. 16, 918–936 (1980).
[CrossRef]

T. Dorschner, H. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16, 1376–1379 (1980).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, and J.-P. Pocholle, “Suppression of nonlinear interactions in resonant macroscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, and J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef]

F. Bretenaker, B. Lépine, J.-C. Cotteverte, and A. Le Floch, “Mean-field laser magnetometry,” Phys. Rev. Lett. 69, 909–912 (1992).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. Dotsenko, L. Kornienko, N. Kravtsov, E. Lariontsev, O. Nanii, and A. Shelaev, “Use of a feedback loop for the stabilization of a beat regime in a solid-state ring laser,” Sov. J. Quantum Electron. 16, 58–63 (1986).
[CrossRef]

Other (2)

J. Kilpatrick, “Laser angular rate sensor,” U.S. patent3,373,650 (March19, 1968).

F. Aronowitz, “Fundamentals of the ring laser gyro,” in Optical Gyros and their Application, NATO RTO AGARDograph 339 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of the experimental setup for the two-mode solid-state RLG with a magneto-optic frequency bias. The cavity length is Lcav60cm.

Fig. 2.
Fig. 2.

Measured frequency of the beat note signal between the two counterpropagating modes as a function of the applied rotation rate.

Fig. 3.
Fig. 3.

Beat frequency of the biased nonrotating two-mode solid-state RLG as a function of the angular position, showing the influence of the external magnetic field. The value of the bias frequency when taking these data was of the order of 280 kHz.

Fig. 4.
Fig. 4.

Scheme of the experimental setup for the proof-of-principle solid-state multioscillator ring laser gyro. The cavity length is Lcav70cm.

Fig. 5.
Fig. 5.

Digital acquisition of the two experimental beat signals (one for each state of polarization) in the nonrotating case. The time resolution is 1 μs. These signals were acquired over several seconds for accurate Fourier transforms, leading to 239.3 kHz for the frequency of the signal on detector 3, and 243 kHz for the frequency of the signal on detector 4. The frequency difference between the two signals was observed to vary with the cavity alignment (typically between 2 and 5 kHz). The low-frequency modulation is attributed to mode competition between orthogonal modes

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

fbias=2BLTGGVTGGc2πLcav,
ωL=|ωLCWωLCCW+Ω|=2bc/LcavΩ,
ωR=|ωRCWωRCCW+Ω|=2bc/Lcav+Ω.
ωx=|ωxCWωxCCW+Ω|=2bc/LcavΩ,
ωy=|ωyCWωyCCW+Ω|=2bc/Lcav+Ω.
ωyωx=2Ω,
ωx=|ωxCWωxCCW+Ω|=2ωLbLcav(12LΓLcav)Ω,
ωy=|ωyCWωyCCW+Ω|=2ωLbLcav(1+2LΓLcav)+Ω.
ωyωx=2Ω+8ωLΓLbLcav2=2Ω+8bcLΓLcav2,

Metrics