Abstract

We systematically studied slow light (SL) and stored light in the presence of a static magnetic field, either parallel to or transverse to the direction of light propagation. The theoretical calculations are in good agreement with the measured data, and paves the way for determining the information of optical density, coupling Rabi frequency, and ground state population distribution of a system. We also observed an unexpected double-peak profile in the output of SL and the retrieved signal of stored light under a large transverse magnetic field. Our work provides a better understanding in the studies of SL and storage of light.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef]
  2. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [CrossRef]
  3. M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  5. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
    [CrossRef]
  6. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [CrossRef]
  7. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [CrossRef]
  8. A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
    [CrossRef]
  9. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
    [CrossRef]
  10. M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837–841 (2005).
    [CrossRef]
  11. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
    [CrossRef]
  12. M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801(R) (2001).
  13. D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
    [CrossRef]
  14. W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
    [CrossRef]
  15. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
    [CrossRef]
  16. H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
    [CrossRef]
  17. Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
    [CrossRef]
  18. H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804(R) (2011).
  19. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
    [CrossRef]
  20. Y. W. Lin, W. T. Liao, T. Peters, H. C. Chou, J. S. Wang, H. W. Cho, P. C. Kuan, and I. A. Yu, “Stationary light pulses in cold Atomic media and without Bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
    [CrossRef]
  21. A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
    [CrossRef]
  22. S. D. Jenkins, D. N. Matsukevich, T. Chanelière, A. Kuzmich, and T. A. B. Kennedy, “Theory of dark-state polariton collapses and revivals,” Phys. Rev. A 73, 021803(R) (2006).
    [CrossRef]
  23. D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Observation of dark state polariton collapses and revivals,” Phys. Rev. Lett. 96, 033601 (2006).
    [CrossRef]
  24. D. Moretti, D. Felinto, and J. W. R. Tabosa, “Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble,” Phys. Rev. A 79, 023825 (2009).
    [CrossRef]
  25. D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B 43, 115502 (2010).
    [CrossRef]
  26. T. Peters, Y. H. Chen, J. S. Wang, Y. W. Lin, and I. A. Yu, “Optimizing the retrieval efficiency of stored light pulses,” Opt. Express 17, 6665–6675 (2009).
    [CrossRef]
  27. P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3, 225–229 (2009).
    [CrossRef]
  28. Y. W. Chen, C. W. Lin, Y. C. Chen, and I. A. Yu, “Quantization axes in coherent two-field spectroscopy,” J. Opt. Soc. Am. B 19, 1917–1921 (2002).
    [CrossRef]
  29. Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
    [CrossRef]
  30. Q. Q. Bao, J. W. Gao, C. L. Cui, G. Wang, Y. Xue, and J. H. Wu, “Dynamic generation of robust and controlled beating signals in an asymmetric procedure of light storage and retrieval,” Opt. Express 19, 11832–11840 (2011).
    [CrossRef]

2011 (2)

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804(R) (2011).

Q. Q. Bao, J. W. Gao, C. L. Cui, G. Wang, Y. Xue, and J. H. Wu, “Dynamic generation of robust and controlled beating signals in an asymmetric procedure of light storage and retrieval,” Opt. Express 19, 11832–11840 (2011).
[CrossRef]

2010 (1)

D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B 43, 115502 (2010).
[CrossRef]

2009 (5)

P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3, 225–229 (2009).
[CrossRef]

T. Peters, Y. H. Chen, J. S. Wang, Y. W. Lin, and I. A. Yu, “Optimizing the retrieval efficiency of stored light pulses,” Opt. Express 17, 6665–6675 (2009).
[CrossRef]

Y. W. Lin, W. T. Liao, T. Peters, H. C. Chou, J. S. Wang, H. W. Cho, P. C. Kuan, and I. A. Yu, “Stationary light pulses in cold Atomic media and without Bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef]

D. Moretti, D. Felinto, and J. W. R. Tabosa, “Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble,” Phys. Rev. A 79, 023825 (2009).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

2008 (3)

W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
[CrossRef]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[CrossRef]

2006 (3)

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

S. D. Jenkins, D. N. Matsukevich, T. Chanelière, A. Kuzmich, and T. A. B. Kennedy, “Theory of dark-state polariton collapses and revivals,” Phys. Rev. A 73, 021803(R) (2006).
[CrossRef]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Observation of dark state polariton collapses and revivals,” Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef]

2005 (3)

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837–841 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

2003 (3)

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef]

2002 (3)

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[CrossRef]

Y. W. Chen, C. W. Lin, Y. C. Chen, and I. A. Yu, “Quantization axes in coherent two-field spectroscopy,” J. Opt. Soc. Am. B 19, 1917–1921 (2002).
[CrossRef]

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

2001 (3)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801(R) (2001).

2000 (1)

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

1991 (1)

K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Adams, C. S.

P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3, 225–229 (2009).
[CrossRef]

André, A.

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837–841 (2005).
[CrossRef]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

Bao, Q. Q.

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Bell, N. C.

P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3, 225–229 (2009).
[CrossRef]

Boller, K. J.

K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Braje, D. A.

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

Cai, Y.

P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3, 225–229 (2009).
[CrossRef]

Chanelière, T.

S. D. Jenkins, D. N. Matsukevich, T. Chanelière, A. Kuzmich, and T. A. B. Kennedy, “Theory of dark-state polariton collapses and revivals,” Phys. Rev. A 73, 021803(R) (2006).
[CrossRef]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Observation of dark state polariton collapses and revivals,” Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

Chen, H. C.

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804(R) (2011).

Chen, J. X.

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804(R) (2011).

Chen, Y. C.

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804(R) (2011).

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804(R) (2011).

Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[CrossRef]

Y. W. Chen, C. W. Lin, Y. C. Chen, and I. A. Yu, “Quantization axes in coherent two-field spectroscopy,” J. Opt. Soc. Am. B 19, 1917–1921 (2002).
[CrossRef]

Chen, Y. F.

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804(R) (2011).

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

Chen, Y. H.

Chen, Y. W.

Cho, H. W.

Y. W. Lin, W. T. Liao, T. Peters, H. C. Chou, J. S. Wang, H. W. Cho, P. C. Kuan, and I. A. Yu, “Stationary light pulses in cold Atomic media and without Bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef]

Choi, K. S.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

Chou, H. C.

Y. W. Lin, W. T. Liao, T. Peters, H. C. Chou, J. S. Wang, H. W. Cho, P. C. Kuan, and I. A. Yu, “Stationary light pulses in cold Atomic media and without Bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef]

Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[CrossRef]

Cui, C. L.

Deng, H.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Dwivedi, P. P.

Eisaman, M. D.

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837–841 (2005).
[CrossRef]

Felinto, D.

D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B 43, 115502 (2010).
[CrossRef]

D. Moretti, D. Felinto, and J. W. R. Tabosa, “Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble,” Phys. Rev. A 79, 023825 (2009).
[CrossRef]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837–841 (2005).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

Gao, J. W.

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Hager, J.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[CrossRef]

Harris, S. E.

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Hughes, I. G.

P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3, 225–229 (2009).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Jenkins, S. D.

S. D. Jenkins, D. N. Matsukevich, T. Chanelière, A. Kuzmich, and T. A. B. Kennedy, “Theory of dark-state polariton collapses and revivals,” Phys. Rev. A 73, 021803(R) (2006).
[CrossRef]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Observation of dark state polariton collapses and revivals,” Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

Kang, H.

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef]

Kennedy, T. A. B.

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Observation of dark state polariton collapses and revivals,” Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef]

S. D. Jenkins, D. N. Matsukevich, T. Chanelière, A. Kuzmich, and T. A. B. Kennedy, “Theory of dark-state polariton collapses and revivals,” Phys. Rev. A 73, 021803(R) (2006).
[CrossRef]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

Kimble, H. J.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

Kocharovskaya, O.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

Kuan, P. C.

Y. W. Lin, W. T. Liao, T. Peters, H. C. Chou, J. S. Wang, H. W. Cho, P. C. Kuan, and I. A. Yu, “Stationary light pulses in cold Atomic media and without Bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef]

Kuzmich, A.

S. D. Jenkins, D. N. Matsukevich, T. Chanelière, A. Kuzmich, and T. A. B. Kennedy, “Theory of dark-state polariton collapses and revivals,” Phys. Rev. A 73, 021803(R) (2006).
[CrossRef]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Observation of dark state polariton collapses and revivals,” Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

Lan, S.-Y.

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Observation of dark state polariton collapses and revivals,” Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

Laurat, J.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

Lee, Y. F.

W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
[CrossRef]

Lezama, A.

D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B 43, 115502 (2010).
[CrossRef]

Liao, W. T.

Y. W. Lin, W. T. Liao, T. Peters, H. C. Chou, J. S. Wang, H. W. Cho, P. C. Kuan, and I. A. Yu, “Stationary light pulses in cold Atomic media and without Bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef]

W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
[CrossRef]

Lin, C. W.

Lin, W. H.

W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
[CrossRef]

Lin, Y. W.

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

Lo, H. Y.

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804(R) (2011).

Lukin, M. D.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837–841 (2005).
[CrossRef]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef]

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

Mair, A.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Massou, F.

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837–841 (2005).
[CrossRef]

Matsko, A. B.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

Matsukevich, D. N.

S. D. Jenkins, D. N. Matsukevich, T. Chanelière, A. Kuzmich, and T. A. B. Kennedy, “Theory of dark-state polariton collapses and revivals,” Phys. Rev. A 73, 021803(R) (2006).
[CrossRef]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Observation of dark state polariton collapses and revivals,” Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

Moretti, D.

D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B 43, 115502 (2010).
[CrossRef]

D. Moretti, D. Felinto, and J. W. R. Tabosa, “Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble,” Phys. Rev. A 79, 023825 (2009).
[CrossRef]

Peters, T.

Y. W. Lin, W. T. Liao, T. Peters, H. C. Chou, J. S. Wang, H. W. Cho, P. C. Kuan, and I. A. Yu, “Stationary light pulses in cold Atomic media and without Bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef]

T. Peters, Y. H. Chen, J. S. Wang, Y. W. Lin, and I. A. Yu, “Optimizing the retrieval efficiency of stored light pulses,” Opt. Express 17, 6665–6675 (2009).
[CrossRef]

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Phillips, D. F.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef]

Rickey, E. G.

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801(R) (2001).

Rostovtsev, Y. V.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

Scully, M. O.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

Siddons, P.

P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3, 225–229 (2009).
[CrossRef]

Su, P. C.

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804(R) (2011).

Tabosa, J. W. R.

D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B 43, 115502 (2010).
[CrossRef]

D. Moretti, D. Felinto, and J. W. R. Tabosa, “Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble,” Phys. Rev. A 79, 023825 (2009).
[CrossRef]

Vuletic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Walsworth, R. L.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef]

Wang, C. Y.

W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
[CrossRef]

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

Wang, G.

Wang, J. S.

T. Peters, Y. H. Chen, J. S. Wang, Y. W. Lin, and I. A. Yu, “Optimizing the retrieval efficiency of stored light pulses,” Opt. Express 17, 6665–6675 (2009).
[CrossRef]

Y. W. Lin, W. T. Liao, T. Peters, H. C. Chou, J. S. Wang, H. W. Cho, P. C. Kuan, and I. A. Yu, “Stationary light pulses in cold Atomic media and without Bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef]

Wang, S. H.

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

Welch, G. R.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

Wu, J. H.

Xue, Y.

Yan, M.

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801(R) (2001).

Yin, G. Y.

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

Yu, I. A.

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804(R) (2011).

Y. W. Lin, W. T. Liao, T. Peters, H. C. Chou, J. S. Wang, H. W. Cho, P. C. Kuan, and I. A. Yu, “Stationary light pulses in cold Atomic media and without Bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef]

T. Peters, Y. H. Chen, J. S. Wang, Y. W. Lin, and I. A. Yu, “Optimizing the retrieval efficiency of stored light pulses,” Opt. Express 17, 6665–6675 (2009).
[CrossRef]

Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[CrossRef]

W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
[CrossRef]

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

Y. W. Chen, C. W. Lin, Y. C. Chen, and I. A. Yu, “Quantization axes in coherent two-field spectroscopy,” J. Opt. Soc. Am. B 19, 1917–1921 (2002).
[CrossRef]

Zhu, Y.

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801(R) (2001).

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837–841 (2005).
[CrossRef]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef]

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B 43, 115502 (2010).
[CrossRef]

Nat. Photonics (1)

P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, “A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,” Nat. Photonics 3, 225–229 (2009).
[CrossRef]

Nature (6)

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005).
[CrossRef]

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837–841 (2005).
[CrossRef]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef]

Opt. Express (3)

Phys. Rev. A (7)

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A 65, 031802(R) (2002).
[CrossRef]

S. D. Jenkins, D. N. Matsukevich, T. Chanelière, A. Kuzmich, and T. A. B. Kennedy, “Theory of dark-state polariton collapses and revivals,” Phys. Rev. A 73, 021803(R) (2006).
[CrossRef]

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804(R) (2011).

D. Moretti, D. Felinto, and J. W. R. Tabosa, “Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble,” Phys. Rev. A 79, 023825 (2009).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801(R) (2001).

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
[CrossRef]

Phys. Rev. Lett. (9)

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef]

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

Y. W. Lin, W. T. Liao, T. Peters, H. C. Chou, J. S. Wang, H. W. Cho, P. C. Kuan, and I. A. Yu, “Stationary light pulses in cold Atomic media and without Bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef]

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef]

K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Observation of dark state polariton collapses and revivals,” Phys. Rev. Lett. 96, 033601 (2006).
[CrossRef]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Orientations of zB and zL which are the direction of the static magnetic field and the propagation direction of the coupling and probe fields, respectively. (b) The GSPD of a system is given under the specific atomic frame of reference zA at the angle of φ with respect to zL. (c) The relative energy levels and laser excitations. ge, gs, and gg denote the Landé g-factors. Both coupling and probe fields drive three σ+ transitions with Rabi frequencies being Ωc,msme=CmsmeΩc,σ+ and Ωp,mgme=CmgmeΩp,σ+, where Cmsme and Cmgme are the Clebsch–Gordan coefficients.

Fig. 2.
Fig. 2.

(a) Representative data of the retrieved probe pulse after different storage times of 222, 518, 740, 962, and 1258 (1/Γ) at the magnetic field B=52mG. Black, green, and red circles are the data of input, SL output, and stored-and-then-retrieved output pulses. Dashed lines indicate the time sequence of the coupling field. The input probe pulse is scaled down by a factor of 0.15. Solid lines are the theoretical prediction calculated by numerically solving Eqs. (7) and (11) with [(P1,P0,P1),(Ωc,σ+,2ηL/Γ)]=[(0.201,0.365,0.434),(1.5Γ,100)] or [(0.910, 0.085, 0.005), (1.3Γ, 317)] where L is the medium length. (b) Normalized retrieved probe amplitude as a function of storage time τ. Red circles are the data and solid line is the best fit with the fitting function shown in Eq. (16). The best fit gives (q1,q2,q3)=(0.039,0.210,0.751), γ=2.2×104Γ, and the oscillatory period TL=2π/ωL=520Γ1 (or 14 μs).

Fig. 3.
Fig. 3.

Normalized retrieved probe amplitude as a function of storage time in the presence of transverse magnetic field B=53.5mG. The 13-level theoretical prediction (solid blue lines) are calculated with Ωc,σ+=1.51Γ, 2ηL/Γ=63, γ=5×104Γ, (P1,P0,P1)zA=(0.175,0.400,0.425), and φ=14.32°. The oscillation period is TL=4π/ωL=1018(1/Γ)=28μs. Inset: SL and stored-and-then-retrieved output pulses. The input probe pulse (black circles and the fitting solid line) has been scaled down by a factor of 0.2. All legends have been described in Fig. 2.

Fig. 4.
Fig. 4.

Zeeman shifts of Rb87 atom in D2 line. The blue, green, and red lines represent the transitions for σ(Δm=1), π(Δm=0), and σ+(Δm=1) under the quantization axis zB.

Fig. 5.
Fig. 5.

SL (red solid, green dashed, and blue dashed–dotted lines) under different transverse magnetic fields (B=40, 80, and 120 mG). The SL splits into two pulses with different group velocities when B80mG. The population parameters are (P1,P0,P1)zL=(1/3,1/3,1/3), Ωc,σ+=1.5Γ, 2ηL/Γ=130, and γ=0. The input probe pulse (black solid line) has been scaled down by a factor of 0.15.

Fig. 6.
Fig. 6.

(a) Slow and stored-and-then-retrieved light pulses in the presence of B=102mG. The relative 13-level theoretical calculation predicts that (P1,P0,P1)zA=(0.5860,0.4065,0.0075), φ=61.35°, Ωc,σ+=1.24Γ, and 2ηL/Γ=125. The input probe pulses are scaled by a factor of 0.06. (b) The experimental retrieved probe amplitude versus storage time. The dashed line is the exponential decay function, indicating the decoherence rate is 3×104Γ. All legends have been described in Fig. 2.

Fig. 7.
Fig. 7.

(a) Four-level EIT system formed by two detuned coupling fields with detuning δc and one on-resonance probe field and (b) two detuned probe fields. (c) and (e) The black lines are the EIT frequency spectrum. The blue lines are the frequency spectrum of the input probe fields with bandwidth (1/e2 full width of the intensity) being 0.013Γ and detuning (c) δc=0.01Γ and (e) δc=0.003Γ. (d) and (f) The black and blue solid lines are the corresponding input and SL pulses formed by the interference phenomenon of two frequency components. The signals are enclosed within a Gaussian-like profile as shown as the dashed lines. In all simulations, Ωc=0.5Γ and 2ηL/Γ=160.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Rx(θ)=[1+cosθ21cosθ2isinθ21cosθ21+cosθ2isinθ2isinθ2isinθ2cosθ],
[Ωc,σ+Ωc,σΩc,π]([Ωp,σ+Ωp,σΩp,π])=Rx(θ)[Ωc,σ+Ωc,σ0]([Ωp,σ+Ωp,σ+0]).
H˜c=2j=0,±1(ms,me=ms+jΩc,εjCmsme|mems|eiωct+c.c.),
H˜p=2j=0,±1(mg,me=mg+jΩp,εjCmgme|memg|eiωct+c.c.),
H˜B=μBB(ggmgmg|mgmg|+gsmsms|msms+gememe|meme|).
ρ˜t=1i[H˜atom+H˜c+H˜p+H˜B,ρ˜]+{ρ˜t},
ρ˜(1)t=1i[H˜p,ρ˜(0)]+1i[H˜atom+H˜B+H˜c,ρ˜(1)]+{ρ˜(1)t}.
ρ˜mg(0)=mgmgρmgmg|mgmg|.
ρeg,εj=mg,me=mg+jCmgmeρmemg,
[ρeg,σ+ρeg,σρeg,π]=Rx1(θ)[ρeg,σ+ρeg,σρeg,π].
1cΩp,σ±t+Ωp,σ±z=iηρeg,σ±,
1cΩp,σ+t+Ωp,σ+z=iηmgCmgmeρmemg,
ρmemgt=i2CmsmeΩc,σ+ρmsmg+i2PmgCmgmeΩp,σ+(Γ2+iΔeg)ρmemg,
ρmsmgt=i2CmsmeΩc,σ+*ρmemg(γ+iΔsg)ρmsmg,
ρmsmg(t0+τ)=ρmsmg(t0)exp[(iΔsg+γ)τ],
|q1exp(iωLτ)+q2+q3exp(iωLτ)|2exp(2γτ),
ρmsmgPmgCmgmeΩp,σ+CmsmeΩc,σ+exp(iϕmsmg),
ρmemgPmgCmgmeCmsme2exp(iϕmsmg)2iΩc,σ+*(Ωp,σ+/Ωc,σ+)t.
mgPmgCmgme2Cmsme2exp(iϕmsmg).
P1C1g0e2C1s0e2P0C0g1e2C0s1e2P1C1g2e2C1s2e2=q1q2q3(orq3q2q1),
P1=9q19q1+3q2+q3,P0=3q29q1+3q2+q3,P1=q39q1+3q2+q3,

Metrics