Abstract

We developed a high resolution laser spectroscopic system to study detailed structures and dynamics in excited states of molecules. The cooperation of an optical frequency comb and a single-mode dye laser realized high resolution, high accuracy, and wide tuning range simultaneously with short measurement time and easy operation. To demonstrate the ability of our system, we observed hyperfine spectra of B–X rovibronic transitions of molecular iodine distributed in the range of 570–612 nm. The absolute frequencies of hyperfine components were determined with the uncertainty of about 100 kHz, and vibrational dependences of the hyperfine constants were examined.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Demtröder, Laser Spectroscopy, 4th ed. (Springer, 2008), Vol. 2.
  2. M. Misono, J. G. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 116, 162–171 (2002).
    [CrossRef]
  3. M. Okubo, J. Wang, M. Baba, M. Misono, S. Kasahara, and H. Katô, “Doppler-free two-photon excitation spectroscopy and the Zeeman effects of the S11B1u(v21=1)←S01Ag(v=0) band of naphthalene-d8,” J. Chem. Phys. 122, 144303 (2005).
    [CrossRef]
  4. M. Misono, J. G. Wang, M. Baba, and H. Katô, “Zeeman spectra of the A˜1Au←X˜1Ag transition of trans-glyoxal studied by Doppler-free two-photon fluorescence excitation spectroscopy,” J. Chem. Phys. 118, 5422–5430 (2003).
    [CrossRef]
  5. H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).
  6. C. J. Sansonetti, “Precise measurements of hyperfine components in the spectrum of molecular iodine,” J. Opt. Soc. Am. B 14, 1913–1920 (1997).
    [CrossRef]
  7. I. Velchev, R. van Dierendonck, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 571–596 nm,” J. Mol. Spectrosc. 187, 21–27 (1998).
    [CrossRef]
  8. J. L. Hall, “Nobel lecture: defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279–1295 (2006).
    [CrossRef]
  9. T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
    [CrossRef]
  10. J. Mandon, G. Guelachvili, and N. Picque, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 293, 99–102 (2008).
    [CrossRef]
  11. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [CrossRef]
  12. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
    [CrossRef]
  13. D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in rubidium87,” Phys. Rev. A 80, 0536806 (2009).
    [CrossRef]
  14. S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. de Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 μm,” Opt. Lett. 32, 988–990 (2007).
    [CrossRef]
  15. I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
    [CrossRef]
  16. A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions,” Appl. Phys. B109, 385–390 (2012).
  17. K. Knabe, P. Williams, F. Giorgetta, M. Radunsky, C. Armacost, S. Crivello, and N. Newbury, “Absolute spectroscopy of N2O near 4.5 μm with a comb-calibrated, frequency-swept quantum cascade laser spectrometer,” Opt. Express 21, 1020–1029 (2013).
    [CrossRef]
  18. I. Ricciardi, E. de Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. de Rosa, and P. de Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 8, 9178–9186 (2013).
    [CrossRef]
  19. M. Broyer, J. Vigué, and J. C. Lehmann, “Effective hyperfine Hamiltonian in homonuclear diatomic molecules. Application to the B state of molecular iodine,” J. Phys. 39, 591–609 (1978).
    [CrossRef]
  20. T. Yang, F. Meng, Y. Zhao, Y. Peng, Y. Li, J. Cao, C. Gao, Z. Fang, and E. Zang, “Hyperfine structure and absolute frequency measurements of I1272 transitions with monolithic Nd:YAG 561 nm lasers,” Appl. Phys. B 106, 613–618 (2012).
    [CrossRef]
  21. F. L. Hong, S. Diddams, R. Guo, Z. Y. Bi, A. Onae, H. Inaba, J. Ishikawa, K. Okumura, D. Katsuragi, J. Hirata, T. Shimizu, T. Kurosu, Y. Koga, and H. Matsumoto, “Frequency measurements and hyperfine structure of the R(85)33‐0 transition of molecular iodine with a femtosecond optical comb,” J. Opt. Soc. Am. B 21, 88–95 (2004).
    [CrossRef]
  22. T. J. Quinn, “International report—practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
    [CrossRef]
  23. P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
    [CrossRef]
  24. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
    [CrossRef]
  25. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [CrossRef]
  26. H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56) 32-0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83 (2006).
    [CrossRef]
  27. S. Picard, Rapport BIPM-90/5 (1990).
  28. S. Picard and A. Razet, Rapport BIPM-91/2 (1991).
  29. S. Gerstenkorn and P. Luc, “Description of absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. 46, 867–881 (1985).
    [CrossRef]
  30. L. Chen, W. Y. Cheng, and J. Ye, “Hyperfine interactions and perturbation effects in the B0u+(3Πu) state of I1272,” J. Opt. Soc. Am. B 21, 820–832 (2004).
    [CrossRef]
  31. L. Chen, W. A. de Jong, and J. Ye, “Characterization of the molecular iodine electronic wave functions and potential energy curves through hyperfine interactions in the B0u+(3Πu) state,” J. Opt. Soc. Am. B 22, 951–961 (2005).
    [CrossRef]
  32. A. Razet, Y. Millerioux, and P. Juncar, “Hyperfine structure of the 47R(9-2), 48P(11-3) and 48R(15-5) lines of I1272 at 612 nm as secondary standards of optical frequency,” Metrologia 28, 309–316 (1991).
    [CrossRef]
  33. A. Razet, “On the hyperfine spectrum of the 62P(17-1) line of I1272 at 576 nm,” Metrologia 30, 193–195 (1993).
    [CrossRef]

2013

I. Ricciardi, E. de Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. de Rosa, and P. de Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 8, 9178–9186 (2013).
[CrossRef]

K. Knabe, P. Williams, F. Giorgetta, M. Radunsky, C. Armacost, S. Crivello, and N. Newbury, “Absolute spectroscopy of N2O near 4.5 μm with a comb-calibrated, frequency-swept quantum cascade laser spectrometer,” Opt. Express 21, 1020–1029 (2013).
[CrossRef]

2012

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[CrossRef]

T. Yang, F. Meng, Y. Zhao, Y. Peng, Y. Li, J. Cao, C. Gao, Z. Fang, and E. Zang, “Hyperfine structure and absolute frequency measurements of I1272 transitions with monolithic Nd:YAG 561 nm lasers,” Appl. Phys. B 106, 613–618 (2012).
[CrossRef]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[CrossRef]

2009

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in rubidium87,” Phys. Rev. A 80, 0536806 (2009).
[CrossRef]

P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

2008

J. Mandon, G. Guelachvili, and N. Picque, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 293, 99–102 (2008).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef]

2007

2006

H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56) 32-0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83 (2006).
[CrossRef]

J. L. Hall, “Nobel lecture: defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279–1295 (2006).
[CrossRef]

T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
[CrossRef]

2005

M. Okubo, J. Wang, M. Baba, M. Misono, S. Kasahara, and H. Katô, “Doppler-free two-photon excitation spectroscopy and the Zeeman effects of the S11B1u(v21=1)←S01Ag(v=0) band of naphthalene-d8,” J. Chem. Phys. 122, 144303 (2005).
[CrossRef]

L. Chen, W. A. de Jong, and J. Ye, “Characterization of the molecular iodine electronic wave functions and potential energy curves through hyperfine interactions in the B0u+(3Πu) state,” J. Opt. Soc. Am. B 22, 951–961 (2005).
[CrossRef]

2004

2003

M. Misono, J. G. Wang, M. Baba, and H. Katô, “Zeeman spectra of the A˜1Au←X˜1Ag transition of trans-glyoxal studied by Doppler-free two-photon fluorescence excitation spectroscopy,” J. Chem. Phys. 118, 5422–5430 (2003).
[CrossRef]

T. J. Quinn, “International report—practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

2002

M. Misono, J. G. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 116, 162–171 (2002).
[CrossRef]

2000

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

1999

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

1998

I. Velchev, R. van Dierendonck, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 571–596 nm,” J. Mol. Spectrosc. 187, 21–27 (1998).
[CrossRef]

1997

1993

A. Razet, “On the hyperfine spectrum of the 62P(17-1) line of I1272 at 576 nm,” Metrologia 30, 193–195 (1993).
[CrossRef]

1991

A. Razet, Y. Millerioux, and P. Juncar, “Hyperfine structure of the 47R(9-2), 48P(11-3) and 48R(15-5) lines of I1272 at 612 nm as secondary standards of optical frequency,” Metrologia 28, 309–316 (1991).
[CrossRef]

1985

S. Gerstenkorn and P. Luc, “Description of absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. 46, 867–881 (1985).
[CrossRef]

1978

M. Broyer, J. Vigué, and J. C. Lehmann, “Effective hyperfine Hamiltonian in homonuclear diatomic molecules. Application to the B state of molecular iodine,” J. Phys. 39, 591–609 (1978).
[CrossRef]

Allison, T. K.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[CrossRef]

Arcizet, O.

P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

Armacost, C.

Baba, M.

M. Okubo, J. Wang, M. Baba, M. Misono, S. Kasahara, and H. Katô, “Doppler-free two-photon excitation spectroscopy and the Zeeman effects of the S11B1u(v21=1)←S01Ag(v=0) band of naphthalene-d8,” J. Chem. Phys. 122, 144303 (2005).
[CrossRef]

M. Misono, J. G. Wang, M. Baba, and H. Katô, “Zeeman spectra of the A˜1Au←X˜1Ag transition of trans-glyoxal studied by Doppler-free two-photon fluorescence excitation spectroscopy,” J. Chem. Phys. 118, 5422–5430 (2003).
[CrossRef]

M. Misono, J. G. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 116, 162–171 (2002).
[CrossRef]

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Bartalini, S.

Bartels, A.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in rubidium87,” Phys. Rev. A 80, 0536806 (2009).
[CrossRef]

Baumann, E.

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[CrossRef]

Bi, Z. Y.

Borri, S.

Braje, D. A.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in rubidium87,” Phys. Rev. A 80, 0536806 (2009).
[CrossRef]

Broyer, M.

M. Broyer, J. Vigué, and J. C. Lehmann, “Effective hyperfine Hamiltonian in homonuclear diatomic molecules. Application to the B state of molecular iodine,” J. Phys. 39, 591–609 (1978).
[CrossRef]

Cancio, P.

Cao, J.

T. Yang, F. Meng, Y. Zhao, Y. Peng, Y. Li, J. Cao, C. Gao, Z. Fang, and E. Zang, “Hyperfine structure and absolute frequency measurements of I1272 transitions with monolithic Nd:YAG 561 nm lasers,” Appl. Phys. B 106, 613–618 (2012).
[CrossRef]

Castrillo, A.

A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions,” Appl. Phys. B109, 385–390 (2012).

Chen, L.

Cheng, W. Y.

Cingöz, A.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[CrossRef]

Coddington, I.

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef]

Coluccelli, N.

A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions,” Appl. Phys. B109, 385–390 (2012).

Crivello, S.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

de Jong, W. A.

de Natale, P.

I. Ricciardi, E. de Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. de Rosa, and P. de Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 8, 9178–9186 (2013).
[CrossRef]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. de Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 μm,” Opt. Lett. 32, 988–990 (2007).
[CrossRef]

de Rosa, M.

I. Ricciardi, E. de Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. de Rosa, and P. de Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 8, 9178–9186 (2013).
[CrossRef]

de Tommasi, E.

I. Ricciardi, E. de Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. de Rosa, and P. de Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 8, 9178–9186 (2013).
[CrossRef]

Del'Haye, P.

P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

Demtröder, W.

W. Demtröder, Laser Spectroscopy, 4th ed. (Springer, 2008), Vol. 2.

Diddams, S.

Diddams, S. A.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in rubidium87,” Phys. Rev. A 80, 0536806 (2009).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Fang, H.-M.

H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56) 32-0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83 (2006).
[CrossRef]

Fang, Z.

T. Yang, F. Meng, Y. Zhao, Y. Peng, Y. Li, J. Cao, C. Gao, Z. Fang, and E. Zang, “Hyperfine structure and absolute frequency measurements of I1272 transitions with monolithic Nd:YAG 561 nm lasers,” Appl. Phys. B 106, 613–618 (2012).
[CrossRef]

Fermann, M. E.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[CrossRef]

Fortier, T. M.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in rubidium87,” Phys. Rev. A 80, 0536806 (2009).
[CrossRef]

Fujita, N.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Fujiwara, C.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Galli, I.

Galzerano, G.

A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions,” Appl. Phys. B109, 385–390 (2012).

Gambetta, A.

A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions,” Appl. Phys. B109, 385–390 (2012).

Gao, C.

T. Yang, F. Meng, Y. Zhao, Y. Peng, Y. Li, J. Cao, C. Gao, Z. Fang, and E. Zang, “Hyperfine structure and absolute frequency measurements of I1272 transitions with monolithic Nd:YAG 561 nm lasers,” Appl. Phys. B 106, 613–618 (2012).
[CrossRef]

Gatti, D.

A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions,” Appl. Phys. B109, 385–390 (2012).

Gerstenkorn, S.

S. Gerstenkorn and P. Luc, “Description of absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. 46, 867–881 (1985).
[CrossRef]

Gianfrani, L.

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. de Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 μm,” Opt. Lett. 32, 988–990 (2007).
[CrossRef]

A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions,” Appl. Phys. B109, 385–390 (2012).

Giorgetta, F.

Giorgetta, F. R.

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[CrossRef]

Giusfredi, G.

Gorodetsky, M. L.

P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

Guelachvili, G.

J. Mandon, G. Guelachvili, and N. Picque, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 293, 99–102 (2008).
[CrossRef]

Guo, R.

Hall, J. L.

J. L. Hall, “Nobel lecture: defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279–1295 (2006).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
[CrossRef]

Hartl, I.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[CrossRef]

Heinecke, D. C.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in rubidium87,” Phys. Rev. A 80, 0536806 (2009).
[CrossRef]

Hirata, J.

Hogervorst, W.

I. Velchev, R. van Dierendonck, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 571–596 nm,” J. Mol. Spectrosc. 187, 21–27 (1998).
[CrossRef]

Hollberg, L.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in rubidium87,” Phys. Rev. A 80, 0536806 (2009).
[CrossRef]

Holzwarth, R.

P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

Hong, F. L.

Ikeuchi, M.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Inaba, H.

Ishikawa, J.

Ishikawa, K.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Juncar, P.

A. Razet, Y. Millerioux, and P. Juncar, “Hyperfine structure of the 47R(9-2), 48P(11-3) and 48R(15-5) lines of I1272 at 612 nm as secondary standards of optical frequency,” Metrologia 28, 309–316 (1991).
[CrossRef]

Kabir, M. H.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Kasahara, S.

M. Okubo, J. Wang, M. Baba, M. Misono, S. Kasahara, and H. Katô, “Doppler-free two-photon excitation spectroscopy and the Zeeman effects of the S11B1u(v21=1)←S01Ag(v=0) band of naphthalene-d8,” J. Chem. Phys. 122, 144303 (2005).
[CrossRef]

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Katô, H.

M. Okubo, J. Wang, M. Baba, M. Misono, S. Kasahara, and H. Katô, “Doppler-free two-photon excitation spectroscopy and the Zeeman effects of the S11B1u(v21=1)←S01Ag(v=0) band of naphthalene-d8,” J. Chem. Phys. 122, 144303 (2005).
[CrossRef]

M. Misono, J. G. Wang, M. Baba, and H. Katô, “Zeeman spectra of the A˜1Au←X˜1Ag transition of trans-glyoxal studied by Doppler-free two-photon fluorescence excitation spectroscopy,” J. Chem. Phys. 118, 5422–5430 (2003).
[CrossRef]

M. Misono, J. G. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 116, 162–171 (2002).
[CrossRef]

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Katsuragi, D.

Keller, U.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Kimura, Y.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Kippenberg, T. J.

P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

Knabe, K.

Koga, Y.

Kurosu, T.

Kuwano, H.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Laporta, P.

A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions,” Appl. Phys. B109, 385–390 (2012).

Lehmann, J. C.

M. Broyer, J. Vigué, and J. C. Lehmann, “Effective hyperfine Hamiltonian in homonuclear diatomic molecules. Application to the B state of molecular iodine,” J. Phys. 39, 591–609 (1978).
[CrossRef]

Leveque, T.

Li, Y.

T. Yang, F. Meng, Y. Zhao, Y. Peng, Y. Li, J. Cao, C. Gao, Z. Fang, and E. Zang, “Hyperfine structure and absolute frequency measurements of I1272 transitions with monolithic Nd:YAG 561 nm lasers,” Appl. Phys. B 106, 613–618 (2012).
[CrossRef]

Luc, P.

S. Gerstenkorn and P. Luc, “Description of absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. 46, 867–881 (1985).
[CrossRef]

Maddaloni, P.

I. Ricciardi, E. de Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. de Rosa, and P. de Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 8, 9178–9186 (2013).
[CrossRef]

Mandon, J.

J. Mandon, G. Guelachvili, and N. Picque, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 293, 99–102 (2008).
[CrossRef]

Marangoni, M.

A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions,” Appl. Phys. B109, 385–390 (2012).

Matsumoto, H.

Matsunobu, Y.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Mazzotti, D.

Meng, F.

T. Yang, F. Meng, Y. Zhao, Y. Peng, Y. Li, J. Cao, C. Gao, Z. Fang, and E. Zang, “Hyperfine structure and absolute frequency measurements of I1272 transitions with monolithic Nd:YAG 561 nm lasers,” Appl. Phys. B 106, 613–618 (2012).
[CrossRef]

Millerioux, Y.

A. Razet, Y. Millerioux, and P. Juncar, “Hyperfine structure of the 47R(9-2), 48P(11-3) and 48R(15-5) lines of I1272 at 612 nm as secondary standards of optical frequency,” Metrologia 28, 309–316 (1991).
[CrossRef]

Misono, M.

M. Okubo, J. Wang, M. Baba, M. Misono, S. Kasahara, and H. Katô, “Doppler-free two-photon excitation spectroscopy and the Zeeman effects of the S11B1u(v21=1)←S01Ag(v=0) band of naphthalene-d8,” J. Chem. Phys. 122, 144303 (2005).
[CrossRef]

M. Misono, J. G. Wang, M. Baba, and H. Katô, “Zeeman spectra of the A˜1Au←X˜1Ag transition of trans-glyoxal studied by Doppler-free two-photon fluorescence excitation spectroscopy,” J. Chem. Phys. 118, 5422–5430 (2003).
[CrossRef]

M. Misono, J. G. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 116, 162–171 (2002).
[CrossRef]

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Mosca, S.

I. Ricciardi, E. de Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. de Rosa, and P. de Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 8, 9178–9186 (2013).
[CrossRef]

Nagakura, S.

M. Misono, J. G. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 116, 162–171 (2002).
[CrossRef]

Newbury, N.

Newbury, N. R.

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef]

O’Reilly, J.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Okubo, M.

M. Okubo, J. Wang, M. Baba, M. Misono, S. Kasahara, and H. Katô, “Doppler-free two-photon excitation spectroscopy and the Zeeman effects of the S11B1u(v21=1)←S01Ag(v=0) band of naphthalene-d8,” J. Chem. Phys. 122, 144303 (2005).
[CrossRef]

M. Misono, J. G. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 116, 162–171 (2002).
[CrossRef]

Okumura, K.

Onae, A.

Peng, Y.

T. Yang, F. Meng, Y. Zhao, Y. Peng, Y. Li, J. Cao, C. Gao, Z. Fang, and E. Zang, “Hyperfine structure and absolute frequency measurements of I1272 transitions with monolithic Nd:YAG 561 nm lasers,” Appl. Phys. B 106, 613–618 (2012).
[CrossRef]

Picard, S.

S. Picard, Rapport BIPM-90/5 (1990).

S. Picard and A. Razet, Rapport BIPM-91/2 (1991).

Picque, N.

J. Mandon, G. Guelachvili, and N. Picque, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 293, 99–102 (2008).
[CrossRef]

Quinn, T. J.

T. J. Quinn, “International report—practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

Radunsky, M.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Razet, A.

A. Razet, “On the hyperfine spectrum of the 62P(17-1) line of I1272 at 576 nm,” Metrologia 30, 193–195 (1993).
[CrossRef]

A. Razet, Y. Millerioux, and P. Juncar, “Hyperfine structure of the 47R(9-2), 48P(11-3) and 48R(15-5) lines of I1272 at 612 nm as secondary standards of optical frequency,” Metrologia 28, 309–316 (1991).
[CrossRef]

S. Picard and A. Razet, Rapport BIPM-91/2 (1991).

Ricciardi, I.

I. Ricciardi, E. de Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. de Rosa, and P. de Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 8, 9178–9186 (2013).
[CrossRef]

Rocco, A.

I. Ricciardi, E. de Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. de Rosa, and P. de Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 8, 9178–9186 (2013).
[CrossRef]

Ruehl, A.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[CrossRef]

Sansonetti, C. J.

Shimamoto, T.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Shimizu, T.

Shinano, T.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Shy, J.-T.

H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56) 32-0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83 (2006).
[CrossRef]

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Swann, W. C.

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef]

Takahashi, R.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

Ubachs, W.

I. Velchev, R. van Dierendonck, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 571–596 nm,” J. Mol. Spectrosc. 187, 21–27 (1998).
[CrossRef]

Ushino, M.

M. Misono, J. G. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 116, 162–171 (2002).
[CrossRef]

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

van Dierendonck, R.

I. Velchev, R. van Dierendonck, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 571–596 nm,” J. Mol. Spectrosc. 187, 21–27 (1998).
[CrossRef]

Velchev, I.

I. Velchev, R. van Dierendonck, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 571–596 nm,” J. Mol. Spectrosc. 187, 21–27 (1998).
[CrossRef]

Vigué, J.

M. Broyer, J. Vigué, and J. C. Lehmann, “Effective hyperfine Hamiltonian in homonuclear diatomic molecules. Application to the B state of molecular iodine,” J. Phys. 39, 591–609 (1978).
[CrossRef]

Wang, J.

M. Okubo, J. Wang, M. Baba, M. Misono, S. Kasahara, and H. Katô, “Doppler-free two-photon excitation spectroscopy and the Zeeman effects of the S11B1u(v21=1)←S01Ag(v=0) band of naphthalene-d8,” J. Chem. Phys. 122, 144303 (2005).
[CrossRef]

Wang, J. G.

M. Misono, J. G. Wang, M. Baba, and H. Katô, “Zeeman spectra of the A˜1Au←X˜1Ag transition of trans-glyoxal studied by Doppler-free two-photon fluorescence excitation spectroscopy,” J. Chem. Phys. 118, 5422–5430 (2003).
[CrossRef]

M. Misono, J. G. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 116, 162–171 (2002).
[CrossRef]

Wang, S. C.

H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56) 32-0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83 (2006).
[CrossRef]

Williams, P.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Yang, T.

T. Yang, F. Meng, Y. Zhao, Y. Peng, Y. Li, J. Cao, C. Gao, Z. Fang, and E. Zang, “Hyperfine structure and absolute frequency measurements of I1272 transitions with monolithic Nd:YAG 561 nm lasers,” Appl. Phys. B 106, 613–618 (2012).
[CrossRef]

Ye, J.

Yost, D. C.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[CrossRef]

Zang, E.

T. Yang, F. Meng, Y. Zhao, Y. Peng, Y. Li, J. Cao, C. Gao, Z. Fang, and E. Zang, “Hyperfine structure and absolute frequency measurements of I1272 transitions with monolithic Nd:YAG 561 nm lasers,” Appl. Phys. B 106, 613–618 (2012).
[CrossRef]

Zhao, Y.

T. Yang, F. Meng, Y. Zhao, Y. Peng, Y. Li, J. Cao, C. Gao, Z. Fang, and E. Zang, “Hyperfine structure and absolute frequency measurements of I1272 transitions with monolithic Nd:YAG 561 nm lasers,” Appl. Phys. B 106, 613–618 (2012).
[CrossRef]

Zondy, J.-J.

I. Ricciardi, E. de Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. de Rosa, and P. de Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 8, 9178–9186 (2013).
[CrossRef]

Appl. Phys. B

T. Yang, F. Meng, Y. Zhao, Y. Peng, Y. Li, J. Cao, C. Gao, Z. Fang, and E. Zang, “Hyperfine structure and absolute frequency measurements of I1272 transitions with monolithic Nd:YAG 561 nm lasers,” Appl. Phys. B 106, 613–618 (2012).
[CrossRef]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500  THz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[CrossRef]

J. Chem. Phys.

M. Misono, J. G. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 116, 162–171 (2002).
[CrossRef]

M. Okubo, J. Wang, M. Baba, M. Misono, S. Kasahara, and H. Katô, “Doppler-free two-photon excitation spectroscopy and the Zeeman effects of the S11B1u(v21=1)←S01Ag(v=0) band of naphthalene-d8,” J. Chem. Phys. 122, 144303 (2005).
[CrossRef]

M. Misono, J. G. Wang, M. Baba, and H. Katô, “Zeeman spectra of the A˜1Au←X˜1Ag transition of trans-glyoxal studied by Doppler-free two-photon fluorescence excitation spectroscopy,” J. Chem. Phys. 118, 5422–5430 (2003).
[CrossRef]

J. Mol. Spectrosc.

I. Velchev, R. van Dierendonck, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 571–596 nm,” J. Mol. Spectrosc. 187, 21–27 (1998).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys.

S. Gerstenkorn and P. Luc, “Description of absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. 46, 867–881 (1985).
[CrossRef]

M. Broyer, J. Vigué, and J. C. Lehmann, “Effective hyperfine Hamiltonian in homonuclear diatomic molecules. Application to the B state of molecular iodine,” J. Phys. 39, 591–609 (1978).
[CrossRef]

Metrologia

T. J. Quinn, “International report—practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

A. Razet, Y. Millerioux, and P. Juncar, “Hyperfine structure of the 47R(9-2), 48P(11-3) and 48R(15-5) lines of I1272 at 612 nm as secondary standards of optical frequency,” Metrologia 28, 309–316 (1991).
[CrossRef]

A. Razet, “On the hyperfine spectrum of the 62P(17-1) line of I1272 at 576 nm,” Metrologia 30, 193–195 (1993).
[CrossRef]

Nat. Photonics

P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

J. Mandon, G. Guelachvili, and N. Picque, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 293, 99–102 (2008).
[CrossRef]

Nature

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482, 68–71 (2012).
[CrossRef]

Opt. Commun.

H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56) 32-0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83 (2006).
[CrossRef]

Opt. Express

K. Knabe, P. Williams, F. Giorgetta, M. Radunsky, C. Armacost, S. Crivello, and N. Newbury, “Absolute spectroscopy of N2O near 4.5 μm with a comb-calibrated, frequency-swept quantum cascade laser spectrometer,” Opt. Express 21, 1020–1029 (2013).
[CrossRef]

I. Ricciardi, E. de Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. de Rosa, and P. de Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 8, 9178–9186 (2013).
[CrossRef]

Opt. Lett.

Phys. Rev. A

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in rubidium87,” Phys. Rev. A 80, 0536806 (2009).
[CrossRef]

Phys. Rev. Lett.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef]

Rev. Mod. Phys.

J. L. Hall, “Nobel lecture: defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279–1295 (2006).
[CrossRef]

T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
[CrossRef]

Science

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef]

Other

W. Demtröder, Laser Spectroscopy, 4th ed. (Springer, 2008), Vol. 2.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (JSPS, 2000).

S. Picard, Rapport BIPM-90/5 (1990).

S. Picard and A. Razet, Rapport BIPM-91/2 (1991).

A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions,” Appl. Phys. B109, 385–390 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental setup. PCF, photonic crystal fiber; DG, diffraction grating; APD, avalanche photodiode; LPF, low-pass filter; BPF1, BPF2, bandpass filter; ED, envelope detector; PBS, polarizing beam splitter; AOM, acousto-optic modulator. (b) Principle of the frequency marker generation [23]. When the dye laser frequency (fdye) is scanned, the beat frequencies, fdye-fn and fn+1-fdye, are also scanned. If one of the beat frequencies is equal to the transmission frequencies of the bandpass filters (fBPF1 or fBPF2), a marker peak is generated. We set the transmission frequencies of the bandpass filters to 20.26 and 60.62 MHz (about frep/8 and 3frep/8, respectively) to obtain frequency markers with a step of about frep/4.

Fig. 2.
Fig. 2.

Saturated absorption spectrum of molecular iodine from 17350.8 to 17353.2cm1 (spanning 72 GHz). The top and the second plots show the comb-derived frequency markers from bandpass filters.

Fig. 3.
Fig. 3.

Hyperfine spectrum of the P(62)17-1 transition and frequency markers.

Fig. 4.
Fig. 4.

Vibrational dependences of hyperfine constants, (a) ΔeQq, (b) ΔC, (c) Δd, and (d) Δδ. Δ:P(62)v1, v=1219; :R(47)v2, v=915; ×:P(62)171 in [33] and R(47)9-2 in [32].

Tables (3)

Tables Icon

Table 1. Comparison of Observed Absolute Frequencies with Recommended Values

Tables Icon

Table 2. Measured Absolute Frequencies

Tables Icon

Table 3. Hyperfine Constants of the Observed Transitions

Metrics