Abstract

In order to pave the way for the yet-to-be reported experimental observation of the Dyakonov–Tamm wave, the excitation of this surface wave in a prism-coupled configuration was theoretically investigated when one partnering dielectric material is isotropic and homogeneous while the other is a chiral sculptured thin film (CSTF). The excitation of a Dyakonov–Tamm wave in the prism-coupled configuration was identified by those peaks in the plots of the absorptance versus the angle of incidence that were independent of the thicknesses of both partnering materials (beyond some thresholds) and the polarization state of the incident plane wave. The results of the prism-coupled configuration were successfully correlated with the underlying canonical boundary-value problem. An increase in either the structural period or the average vapor flux angle of the CSTF results in a larger angle of incidence for experimental excitation, whereas an increase in an offset angle results in a decrease of that angle. An increase in the bulk refractive index of the material from which the CSTF is fabricated is likely to increase the angle of incidence for experimental observation. It is highly preferable for the CSTF to be an integral number of periods in thickness, and that number does not have to be large.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Polo and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photon. Rev. 5, 234–246 (2011).
    [CrossRef]
  2. A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).
  3. J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Lieterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846–866 (1907).
  4. A. V. Kukushkin, “On the existence and physical meaning of the Zenneck wave,” Phys. Usp. 52, 755–756 (2009).
    [CrossRef]
  5. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 31, 213–222 (1941).
    [CrossRef]
  6. T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40–44 (1959).
    [CrossRef]
  7. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [CrossRef]
  8. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  9. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
    [CrossRef]
  10. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
    [CrossRef]
  11. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
    [CrossRef]
  12. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
    [CrossRef]
  13. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
    [CrossRef]
  14. G. J. Sprokel, R. Santo, and J. D. Swalen, “Determination of the surface tilt angle by attenuated total reflection,” Mol. Cryst. Liq. Cryst. 68, 29–38 (1981).
    [CrossRef]
  15. R. F. Wallis, “Surface magnetoplasmons on semiconductors,” in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), Chap. 15.
  16. S. J. Elston and J. R. Sambles, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mod. Opt. 37, 1895–1902 (1990).
    [CrossRef]
  17. F. N. Marchevskiĭ, V. L. Strizhevskiĭ, and S. V. Strizhevskiĭ, “Singular electromagnetic waves in bounded anisotropic media,” Sov. Phys. Solid State 26, 911–912 (1984).
  18. M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714–716 (1988).
  19. O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
    [CrossRef]
  20. S. He, “Electromagnetic surface waves for some artificial bianisotropic media,” J. Electromagn. Waves Appl. 12, 449–466 (1998).
    [CrossRef]
  21. V. M. Galynsky, A. N. Furs, and L. M. Barkovsky, “Integral formalism for surface electromagnetic waves in bianisotropic media,” J. Phys. A: Math. Gen. 37, 5083–5096 (2004).
    [CrossRef]
  22. J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).
  23. A. Lakhtakia and J. A. Polo, “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. 2, 07021 (2007).
    [CrossRef]
  24. O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
    [CrossRef]
  25. K. Agarwal, J. A. Polo, and A. Lakhtakia, “Theory of Dyakonov–Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A 11, 074003 (2009).
    [CrossRef]
  26. J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
    [CrossRef]
  27. M. Faryad and A. Lakhtakia, “Prism-coupled excitation of Dyakonov–Tamm waves,” Opt. Commun. 294, 192–197 (2013).
    [CrossRef]
  28. J. Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).
  29. V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
    [CrossRef]
  30. C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113, 183105 (2013).
    [CrossRef]
  31. S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep.3, 1409 (2013).
  32. J. A. Polo and A. Lakhtakia, “Dyakonov–Tamm waves guided by the planar interface of an isotropic dielectric material and an electro-optic ambichiral Reusch pile,” J. Opt. Soc. Am. B 28, 567–576 (2011).
    [CrossRef]
  33. J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun. 209, 369–375 (2002).
    [CrossRef]
  34. N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
    [CrossRef]
  35. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
  36. R. Rashed, “A pioneer in anaclastics, Ibn Sahl on burning mirrors and lenses,” Isis 81, 464–491 (1990).
    [CrossRef]
  37. M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: arbitrary incidence,” J. Nanophoton. 3, 033502 (2009).
    [CrossRef]
  38. Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).
  39. I. J. Hodgkinson, Q. h. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
    [CrossRef]
  40. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).
  41. N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).
  42. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

2013 (3)

M. Faryad and A. Lakhtakia, “Prism-coupled excitation of Dyakonov–Tamm waves,” Opt. Commun. 294, 192–197 (2013).
[CrossRef]

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[CrossRef]

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

2011 (3)

J. A. Polo and A. Lakhtakia, “Dyakonov–Tamm waves guided by the planar interface of an isotropic dielectric material and an electro-optic ambichiral Reusch pile,” J. Opt. Soc. Am. B 28, 567–576 (2011).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photon. Rev. 5, 234–246 (2011).
[CrossRef]

2009 (4)

A. V. Kukushkin, “On the existence and physical meaning of the Zenneck wave,” Phys. Usp. 52, 755–756 (2009).
[CrossRef]

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef]

K. Agarwal, J. A. Polo, and A. Lakhtakia, “Theory of Dyakonov–Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A 11, 074003 (2009).
[CrossRef]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: arbitrary incidence,” J. Nanophoton. 3, 033502 (2009).
[CrossRef]

2008 (1)

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

2007 (2)

A. Lakhtakia and J. A. Polo, “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. 2, 07021 (2007).
[CrossRef]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[CrossRef]

2005 (1)

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
[CrossRef]

2004 (1)

V. M. Galynsky, A. N. Furs, and L. M. Barkovsky, “Integral formalism for surface electromagnetic waves in bianisotropic media,” J. Phys. A: Math. Gen. 37, 5083–5096 (2004).
[CrossRef]

2002 (1)

J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun. 209, 369–375 (2002).
[CrossRef]

1999 (1)

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

1998 (2)

1990 (2)

R. Rashed, “A pioneer in anaclastics, Ibn Sahl on burning mirrors and lenses,” Isis 81, 464–491 (1990).
[CrossRef]

S. J. Elston and J. R. Sambles, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mod. Opt. 37, 1895–1902 (1990).
[CrossRef]

1988 (1)

M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714–716 (1988).

1984 (1)

F. N. Marchevskiĭ, V. L. Strizhevskiĭ, and S. V. Strizhevskiĭ, “Singular electromagnetic waves in bounded anisotropic media,” Sov. Phys. Solid State 26, 911–912 (1984).

1981 (1)

G. J. Sprokel, R. Santo, and J. D. Swalen, “Determination of the surface tilt angle by attenuated total reflection,” Mol. Cryst. Liq. Cryst. 68, 29–38 (1981).
[CrossRef]

1978 (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

1977 (1)

1968 (2)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

1959 (2)

T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40–44 (1959).
[CrossRef]

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

1941 (1)

1907 (1)

J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Lieterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846–866 (1907).

Agarwal, K.

K. Agarwal, J. A. Polo, and A. Lakhtakia, “Theory of Dyakonov–Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A 11, 074003 (2009).
[CrossRef]

Alieva, E. V.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[CrossRef]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[CrossRef]

Artigas, D.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef]

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

Barkovsky, L. M.

V. M. Galynsky, A. N. Furs, and L. M. Barkovsky, “Integral formalism for surface electromagnetic waves in bianisotropic media,” J. Phys. A: Math. Gen. 37, 5083–5096 (2004).
[CrossRef]

Bernussi, A. A.

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

Burke, J. J.

N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).

Cho, A. Y.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

Crasovan, L.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef]

Crasovan, L.-C.

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

D’yakonov, M. I.

M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714–716 (1988).

Dietler, G.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[CrossRef]

Dominguez, D.

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

Elston, S. J.

S. J. Elston and J. R. Sambles, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mod. Opt. 37, 1895–1902 (1990).
[CrossRef]

Fano, U.

Faryad, M.

M. Faryad and A. Lakhtakia, “Prism-coupled excitation of Dyakonov–Tamm waves,” Opt. Commun. 294, 192–197 (2013).
[CrossRef]

Furs, A. N.

V. M. Galynsky, A. N. Furs, and L. M. Barkovsky, “Integral formalism for surface electromagnetic waves in bianisotropic media,” J. Phys. A: Math. Gen. 37, 5083–5096 (2004).
[CrossRef]

Galynsky, V. M.

V. M. Galynsky, A. N. Furs, and L. M. Barkovsky, “Integral formalism for surface electromagnetic waves in bianisotropic media,” J. Phys. A: Math. Gen. 37, 5083–5096 (2004).
[CrossRef]

Gao, J.

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

Grave de Peralta, L.

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

Hazel, J.

He, S.

S. He, “Electromagnetic surface waves for some artificial bianisotropic media,” J. Electromagn. Waves Appl. 12, 449–466 (1998).
[CrossRef]

Hodgkinson, I. J.

J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun. 209, 369–375 (2002).
[CrossRef]

I. J. Hodgkinson, Q. h. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
[CrossRef]

Hong, C.-S.

Jaluria, Y.

Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).

Johansen, S. K.

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

Kapany, N. S.

N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).

Karakouz, T.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[CrossRef]

Konopsky, V. N.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[CrossRef]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[CrossRef]

Kowal, J.

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Kukushkin, A. V.

A. V. Kukushkin, “On the existence and physical meaning of the Zenneck wave,” Phys. Usp. 52, 755–756 (2009).
[CrossRef]

Lakhtakia, A.

M. Faryad and A. Lakhtakia, “Prism-coupled excitation of Dyakonov–Tamm waves,” Opt. Commun. 294, 192–197 (2013).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photon. Rev. 5, 234–246 (2011).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Dyakonov–Tamm waves guided by the planar interface of an isotropic dielectric material and an electro-optic ambichiral Reusch pile,” J. Opt. Soc. Am. B 28, 567–576 (2011).
[CrossRef]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: arbitrary incidence,” J. Nanophoton. 3, 033502 (2009).
[CrossRef]

K. Agarwal, J. A. Polo, and A. Lakhtakia, “Theory of Dyakonov–Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A 11, 074003 (2009).
[CrossRef]

A. Lakhtakia and J. A. Polo, “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. 2, 07021 (2007).
[CrossRef]

J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun. 209, 369–375 (2002).
[CrossRef]

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep.3, 1409 (2013).

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).

Lei, M.

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

Mackay, T. G.

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

Marchevskii, F. N.

F. N. Marchevskiĭ, V. L. Strizhevskiĭ, and S. V. Strizhevskiĭ, “Singular electromagnetic waves in bounded anisotropic media,” Sov. Phys. Solid State 26, 911–912 (1984).

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

May, M. S.

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

Messier, R.

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).

Mihalache, D.

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

Motyka, M. A.

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: arbitrary incidence,” J. Nanophoton. 3, 033502 (2009).
[CrossRef]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Polo, J. A.

J. A. Polo and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photon. Rev. 5, 234–246 (2011).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Dyakonov–Tamm waves guided by the planar interface of an isotropic dielectric material and an electro-optic ambichiral Reusch pile,” J. Opt. Soc. Am. B 28, 567–576 (2011).
[CrossRef]

K. Agarwal, J. A. Polo, and A. Lakhtakia, “Theory of Dyakonov–Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A 11, 074003 (2009).
[CrossRef]

A. Lakhtakia and J. A. Polo, “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. 2, 07021 (2007).
[CrossRef]

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

Pulsifer, D. P.

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep.3, 1409 (2013).

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Rashed, R.

R. Rashed, “A pioneer in anaclastics, Ibn Sahl on burning mirrors and lenses,” Isis 81, 464–491 (1990).
[CrossRef]

Regan, C. J.

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

Robertson, W. M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
[CrossRef]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

Sambles, J. R.

S. J. Elston and J. R. Sambles, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mod. Opt. 37, 1895–1902 (1990).
[CrossRef]

Santo, R.

G. J. Sprokel, R. Santo, and J. D. Swalen, “Determination of the surface tilt angle by attenuated total reflection,” Mol. Cryst. Liq. Cryst. 68, 29–38 (1981).
[CrossRef]

Sekatskii, S. K.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[CrossRef]

Sherwin, J. A.

J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun. 209, 369–375 (2002).
[CrossRef]

Shinn, M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
[CrossRef]

Sprokel, G. J.

G. J. Sprokel, R. Santo, and J. D. Swalen, “Determination of the surface tilt angle by attenuated total reflection,” Mol. Cryst. Liq. Cryst. 68, 29–38 (1981).
[CrossRef]

Starzhinskii, V. M.

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

Strizhevskii, S. V.

F. N. Marchevskiĭ, V. L. Strizhevskiĭ, and S. V. Strizhevskiĭ, “Singular electromagnetic waves in bounded anisotropic media,” Sov. Phys. Solid State 26, 911–912 (1984).

Strizhevskii, V. L.

F. N. Marchevskiĭ, V. L. Strizhevskiĭ, and S. V. Strizhevskiĭ, “Singular electromagnetic waves in bounded anisotropic media,” Sov. Phys. Solid State 26, 911–912 (1984).

Swalen, J. D.

G. J. Sprokel, R. Santo, and J. D. Swalen, “Determination of the surface tilt angle by attenuated total reflection,” Mol. Cryst. Liq. Cryst. 68, 29–38 (1981).
[CrossRef]

Swiontek, S. E.

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep.3, 1409 (2013).

Takayama, O.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef]

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

Torner, L.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef]

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

Turbadar, T.

T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40–44 (1959).
[CrossRef]

Vicario, C.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[CrossRef]

Wallis, R. F.

R. F. Wallis, “Surface magnetoplasmons on semiconductors,” in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), Chap. 15.

Wu, Q. h.

Yakubovich, V. A.

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

Yariv, A.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
[CrossRef]

Yeh, P.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
[CrossRef]

Young, N. O.

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

Zenneck, J.

J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Lieterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846–866 (1907).

Anal. Chem. (1)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[CrossRef]

Ann. Phys. (1)

J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Lieterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846–866 (1907).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

Electromagnetics (1)

O. Takayama, L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics 28, 126–145 (2008).
[CrossRef]

Isis (1)

R. Rashed, “A pioneer in anaclastics, Ibn Sahl on burning mirrors and lenses,” Isis 81, 464–491 (1990).
[CrossRef]

J. Appl. Phys. (1)

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

J. Electromagn. Waves Appl. (1)

S. He, “Electromagnetic surface waves for some artificial bianisotropic media,” J. Electromagn. Waves Appl. 12, 449–466 (1998).
[CrossRef]

J. Eur. Opt. Soc. (1)

A. Lakhtakia and J. A. Polo, “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. 2, 07021 (2007).
[CrossRef]

J. Mod. Opt. (1)

S. J. Elston and J. R. Sambles, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mod. Opt. 37, 1895–1902 (1990).
[CrossRef]

J. Nanophoton. (2)

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: arbitrary incidence,” J. Nanophoton. 3, 033502 (2009).
[CrossRef]

J. Opt. A (1)

K. Agarwal, J. A. Polo, and A. Lakhtakia, “Theory of Dyakonov–Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A 11, 074003 (2009).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

J. Phys. A: Math. Gen. (1)

V. M. Galynsky, A. N. Furs, and L. M. Barkovsky, “Integral formalism for surface electromagnetic waves in bianisotropic media,” J. Phys. A: Math. Gen. 37, 5083–5096 (2004).
[CrossRef]

Laser Photon. Rev. (1)

J. A. Polo and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photon. Rev. 5, 234–246 (2011).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

G. J. Sprokel, R. Santo, and J. D. Swalen, “Determination of the surface tilt angle by attenuated total reflection,” Mol. Cryst. Liq. Cryst. 68, 29–38 (1981).
[CrossRef]

Nature (1)

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

Opt. Commun. (2)

J. A. Sherwin, A. Lakhtakia, and I. J. Hodgkinson, “On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements,” Opt. Commun. 209, 369–375 (2002).
[CrossRef]

M. Faryad and A. Lakhtakia, “Prism-coupled excitation of Dyakonov–Tamm waves,” Opt. Commun. 294, 192–197 (2013).
[CrossRef]

Phys. Rev. Lett. (1)

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef]

Phys. Usp. (1)

A. V. Kukushkin, “On the existence and physical meaning of the Zenneck wave,” Phys. Usp. 52, 755–756 (2009).
[CrossRef]

Proc. Phys. Soc. (1)

T. Turbadar, “Complete absorption of light by thin metal films,” Proc. Phys. Soc. 73, 40–44 (1959).
[CrossRef]

Sens. Actuators B (1)

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
[CrossRef]

Sensors (1)

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[CrossRef]

Sov. Phys. JETP (1)

M. I. D’yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714–716 (1988).

Sov. Phys. Solid State (1)

F. N. Marchevskiĭ, V. L. Strizhevskiĭ, and S. V. Strizhevskiĭ, “Singular electromagnetic waves in bounded anisotropic media,” Sov. Phys. Solid State 26, 911–912 (1984).

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Other (10)

A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).

R. F. Wallis, “Surface magnetoplasmons on semiconductors,” in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), Chap. 15.

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

J. Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep.3, 1409 (2013).

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).

Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the prism-coupled configuration. The half-space z<0 is occupied by the prism material and the half-space z>LΣ is occupied by another homogeneous isotropic material, both assumed to have negligible dissipation.

Fig. 2.
Fig. 2.

Schematic of the canonical problem. Both partnering materials are taken to occupy half-spaces.

Fig. 3.
Fig. 3.

Absorptances (a) Ap and (b) As as functions of θinc in the prism-coupled configuration when Ω=150nm, χv=20°, m=1, h=1, and γ=45°; nd=1.377(1+i104) and Ld=300nm; nprism=1.779; and n=1. The red dashed, blue dot-dashed, and green solid lines, respectively, represent the absorptances when Np=5, 6, and 7. A black arrow indicates the location of θC predicted by the solution of the canonical configuration.

Fig. 4.
Fig. 4.

Variations of the magnitudes of the Cartesian components of the electric field phasor along the z axis for (a) a Dyakonov–Tamm wave and (b) a waveguide mode excited in the prism-coupled configuration. Geometric and constitutive parameters are the same as in Fig. 3, except that Ld=2Ω and Np=6. The red dashed, the blue dot-dashed, and the solid green lines, respectively, represent the x-, y-, and z-directed components. The vertical gray line represents the interface z=Ld of the partnering materials. The incident plane wave is p-polarized (ap=1, as=0). (a) θinc=θincDT=58.8° and (b) θinc=60.8°.

Fig. 5.
Fig. 5.

Absorptances Ap and As as functions of θinc in the prism-coupled configuration when (a) Np=6.0, (b) Np=6.1, (c) Np=6.2, (d) Np=6.3, (e) Np=6.4, and (f) Np=6.5. Other parameters are as follows: Ω=150nm, χv=20°, m=1, h=1, and γ=45°; nd=1.377(1+i104) and Ld=300nm; nprism=1.779; and n=1. A black arrow indicates the location of θC predicted by the solution of the canonical configuration.

Fig. 6.
Fig. 6.

Absorptances Ap and As as functions of θinc in the prism-coupled configuration when (a) Ω=150nm, (b) Ω=175nm, (c) Ω=200nm, and (d) Ω=225nm. Other parameters are as follows: χv=20°, Np=6, m=1, h=1, and γ=45°; nd=1.377(1+i104) and Ld=300nm; nprism=1.779; and n=1. The red dashed line is for Ap and the blue dot-dashed line for As. A black arrow indicates the location of θC predicted by the solution of the canonical problem.

Fig. 7.
Fig. 7.

Absorptances Ap and As as functions of θinc in the prism-coupled configuration when (a) χv=16°, (b) χv=20°, (c) χv=25°, and (d) χv=30°. Other parameters are as follows: Ω=150nm, χv=20°, Np=6, m=1, h=1, and γ=45°; nd=1.377(1+i104) and Ld=300nm; nprism=1.779; and n=1. The red dashed line is for Ap and the blue dot-dashed line for As. A black arrow indicates the location of θC predicted by the solution of the canonical problem.

Fig. 8.
Fig. 8.

Absorptances (a) Ap and (b) As as functions of θinc in the prism-coupled configuration for γ={30°,60°,90°,120°,150°,180°}, when Ω=150nm, χv=20°, Np=6, m=1, and h=1; nd=1.377(1+i104) and Ld=300nm; nprism=1.779; and n=1. A black arrow indicates the location of θC predicted by the solution of the canonical problem.

Fig. 9.
Fig. 9.

Absorptances Ap and As as functions of θinc in the prism-coupled configuration when (a) m=0.93, (b) m=1.00, (c) m=1.15, and (d) m=1.25. Other parameters are as follows: Ω=150nm, χv=20°, Np=6, h=1, and γ=45°; nd=1.377(1+i104) and Ld=300nm; nprism=1.779; and n=1. The red dashed line is for Ap and the blue dot-dashed line for As. A black arrow indicates the location of θC predicted by the solution of the canonical problem.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ϵ̲̲CSTF(z,ω)=ϵ0S̲̲z(ζ)S̲̲yϵ̲̲ref°(ω)S̲̲y1S̲̲z1(ζ),
S̲̲z(ζ)=(uxux+uyuy)cos(hπζ/Ω)+(uyuxuxuy)sin(hπζ/Ω)+uzuzS̲̲y=(uxux+uzuz)cosχ+(uzuxuxuz)sinχ+uyuyϵ̲̲ref°(ω)=ϵa(ω)uzuz+ϵb(ω)uxux+ϵc(ω)uyuy},
Np=LCSTF/2Ω,
Einc(r)=[asuy+ap(uxcosθinc+uzsinθinc)]×exp[ik0nprism(uxsinθinc+uzcosθinc)r],z0,
Eref(r)=[rsuy+rp(uxcosθinc+uzsinθinc)]×exp[ik0nprism(uxsinθincuzcosθinc)r],z0.
Etr(r)=[tsuy+tp(uxcosθtr+uzsinθtr)]×exp[ik0(uxnprismsinθinc+uzncosθtr)(ruzLΣ)],zLΣ.
nprismsinθinc=nsinθtr.
Rss=|rs/as|2|ap=0,Rps=|rp/as|2|ap=0Rpp=|rp/ap|2|as=0,Rsp=|rs/ap|2|as=0},
Tss=υ|ts/as|2|ap=0,Tps=υ|tp/as|2|ap=0Tpp=υ|tp/ap|2|as=0,Tsp=υ|ts/ap|2|as=0},
As=1(Rss+Rps+Tss+Tps)
Ap=1(Rpp+Rsp+Tpp+Tsp).
θC=sin1[Re(κ)/k0nprism]
ϵa=m[1.0443+2.7394(2χvπ)1.3697(2χvπ)2]2ϵb=m[1.6765+1.5649(2χvπ)0.7825(2χvπ)]2ϵc=m[1.3586+2.1109(2χvπ)1.0554(2χvπ)2]2χ=tan1(2.8818tanχv)}

Metrics