Abstract

In this paper, we demonstrate novel properties in the phenomenology of supercontinuum generation in sapphire with diffractive lenses and provide a complete spatial, spectral, and temporal characterization of the so-generated pulses. Filament formation inside the sample is analyzed and related to the measured spectra, finding that clipping of the filament results in blueshifted spectra. For comparison, filament formation with refractive lenses is also examined, and the roles of diffraction and extension of the focusing region are inspected. The tunability achieved in the anti-Stokes side of the spectrum is also extended to the ultraviolet by frequency mixing with infrared femtosecond pulses.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  2. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
    [CrossRef]
  3. F. Rotermund and V. Petrov, “Generation of the fourth harmonic of a femtosecond Ti:sapphire laser,” Opt. Lett. 23, 1040–1042 (1998).
    [CrossRef]
  4. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
    [CrossRef]
  5. K. Osvay, G. Kurdi, J. Klebniczki, M. Csatári, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
    [CrossRef]
  6. P. Tzankov, T. Fiebig, and I. Buchvarov, “Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband amplification,” Appl. Phys. Lett. 82, 517–519 (2003).
    [CrossRef]
  7. R. R. Alfano, The Supercontinuum Laser Source (Springer Verlag, 2006).
  8. H. Dachraoui, C. Oberer, M. Michelswirth, and U. Heinzmann, “Direct time-domain observation of laser pulse filaments in transparent media,” Phys. Rev. A 82, 043820 (2010).
    [CrossRef]
  9. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [CrossRef]
  10. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
    [CrossRef]
  11. A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
    [CrossRef]
  12. C. Nagura, A. Suda, H. Kawano, M. Obara, and K. Midorikawa, “Generation and characterization of ultrafast white-light continuum in condensed media,” Appl. Opt. 41, 3735–3742 (2002).
    [CrossRef]
  13. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
    [CrossRef]
  14. M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91, 043905 (2003).
    [CrossRef]
  15. J. B. Ashcom, R. R. Gattass, C. B. Shaffer, and E. Mazur, “Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica,” J. Opt. Soc. Am. B 23, 2317–2322 (2006).
    [CrossRef]
  16. Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A 68, 063820 (2003).
    [CrossRef]
  17. M. Ziolek, R. Naskrecki, and J. Karolczak, “Some temporal and spectral properties of femtosecond supercontinuum important in pump-probe spectroscopy,” Opt. Commun. 241, 221–229 (2004).
    [CrossRef]
  18. A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
    [CrossRef]
  19. X. Fang and T. Kobayashi, “Evolution of a super-broadened spectrum in filament generated by an ultrashort intense laser pulse in fused silica,” Appl. Phys. B 77, 167–170 (2003).
    [CrossRef]
  20. C. Romero, R. Borrego-Varillas, A. Camino, G. Minguez-Vega, O. Mendoza-Yero, J. Hernández-Toro, and J. R. Vázquez de Aldana, “Diffractive optics for spectral control of the supercontinuum generated in sapphire with femtosecond pulses,” Opt. Express 19, 4977–4984 (2011).
    [CrossRef]
  21. V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).
    [CrossRef]
  22. G. Mínguez-Vega, C. Romero, O. Mendoza-Yero, J. R. Vázquez de Aldana, R. Borrego-Varillas, C. Méndez, P. Andrés, J. Lancis, V. Climent, and L. Roso, “Wavelength tuning of femtosecond pulses generated in nonlinear crystals by using diffractive lenses,” Opt. Lett. 35, 3694–3696 (2010).
    [CrossRef]
  23. H. Urey, “Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams,” Appl. Opt. 43, 620–625 (2004).
    [CrossRef]
  24. B. Alonso, R. Borrego-Varillas, O. Mendoza-Yero, I. J. Sola, J. San Román, G. Mínguez-Vega, and L. Roso, “Frequency resolved wavefront retrieval and dynamics of diffractive focused ultrashort pulses,” J. Opt. Soc. Am. B 29, 1993–2000 (2012).
    [CrossRef]
  25. V. Kartazaev and R. R. Alfano, “Supercontinuum generated in calcite with chirped femtosecond pulses,” Opt. Lett. 32, 3293–3295 (2007).
    [CrossRef]
  26. D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J. V. Moloney, A. Couairon, and P. di Trapani, “Generation and control of extreme blueshifted continuum peaks in optical Kerr media,” Phys. Rev. A 78, 033825 (2008).
    [CrossRef]
  27. E. O. Smetanina, V. O. Kompanets, S. V. Chekalin, A. E. Dormidonov, and V. P. Kandidov, “Anti-Stokes wing of femtosecond laser filament supercontinuum in fused silica,” Opt. Lett. 38, 16–18 (2013).
    [CrossRef]
  28. Q. Xing, K. M. Yoo, and R. R. Alfano, “Conical emission by four-photon parametric generation by using femtosecond laser pulses,” Appl. Opt. 32, 2087–2089 (1993).
    [CrossRef]
  29. L. Martí-López, O. Mendoza-Yero, and J. A. Ramos de Campos, “Propagation of polychromatic Gaussian beams through thin lenses,” J. Opt. Soc. Am. A 18, 1348–1356 (2001).
    [CrossRef]
  30. A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Analysis of cross correlation, phase velocity mismatch, and group velocity mismatches in sum-frequency generation,” IEEE J. Quantum Electron. 29, 580–589 (1993).
    [CrossRef]

2013 (1)

2012 (1)

2011 (1)

2010 (2)

2009 (1)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[CrossRef]

2008 (1)

D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J. V. Moloney, A. Couairon, and P. di Trapani, “Generation and control of extreme blueshifted continuum peaks in optical Kerr media,” Phys. Rev. A 78, 033825 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

2004 (2)

M. Ziolek, R. Naskrecki, and J. Karolczak, “Some temporal and spectral properties of femtosecond supercontinuum important in pump-probe spectroscopy,” Opt. Commun. 241, 221–229 (2004).
[CrossRef]

H. Urey, “Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams,” Appl. Opt. 43, 620–625 (2004).
[CrossRef]

2003 (5)

X. Fang and T. Kobayashi, “Evolution of a super-broadened spectrum in filament generated by an ultrashort intense laser pulse in fused silica,” Appl. Phys. B 77, 167–170 (2003).
[CrossRef]

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A 68, 063820 (2003).
[CrossRef]

P. Tzankov, T. Fiebig, and I. Buchvarov, “Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband amplification,” Appl. Phys. Lett. 82, 517–519 (2003).
[CrossRef]

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91, 043905 (2003).
[CrossRef]

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[CrossRef]

2002 (2)

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatári, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
[CrossRef]

C. Nagura, A. Suda, H. Kawano, M. Obara, and K. Midorikawa, “Generation and characterization of ultrafast white-light continuum in condensed media,” Appl. Opt. 41, 3735–3742 (2002).
[CrossRef]

2001 (1)

1999 (1)

1998 (2)

F. Rotermund and V. Petrov, “Generation of the fourth harmonic of a femtosecond Ti:sapphire laser,” Opt. Lett. 23, 1040–1042 (1998).
[CrossRef]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

1997 (1)

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).
[CrossRef]

1993 (2)

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Analysis of cross correlation, phase velocity mismatch, and group velocity mismatches in sum-frequency generation,” IEEE J. Quantum Electron. 29, 580–589 (1993).
[CrossRef]

Q. Xing, K. M. Yoo, and R. R. Alfano, “Conical emission by four-photon parametric generation by using femtosecond laser pulses,” Appl. Opt. 32, 2087–2089 (1993).
[CrossRef]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Alfano, R. R.

Alonso, B.

Andrés, P.

Ashcom, J. B.

Averchi, A.

D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J. V. Moloney, A. Couairon, and P. di Trapani, “Generation and control of extreme blueshifted continuum peaks in optical Kerr media,” Phys. Rev. A 78, 033825 (2008).
[CrossRef]

Baronavski, A. P.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Analysis of cross correlation, phase velocity mismatch, and group velocity mismatches in sum-frequency generation,” IEEE J. Quantum Electron. 29, 580–589 (1993).
[CrossRef]

Baum, P.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[CrossRef]

Borrego-Varillas, R.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Bradler, M.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[CrossRef]

Brodeur, A.

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
[CrossRef]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

Buchvarov, I.

P. Tzankov, T. Fiebig, and I. Buchvarov, “Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband amplification,” Appl. Phys. Lett. 82, 517–519 (2003).
[CrossRef]

Camino, A.

Cerullo, G.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[CrossRef]

Chekalin, S. V.

Chin, S. L.

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
[CrossRef]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

Climent, V.

Couairon, A.

D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J. V. Moloney, A. Couairon, and P. di Trapani, “Generation and control of extreme blueshifted continuum peaks in optical Kerr media,” Phys. Rev. A 78, 033825 (2008).
[CrossRef]

Csatári, M.

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatári, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
[CrossRef]

Dachraoui, H.

H. Dachraoui, C. Oberer, M. Michelswirth, and U. Heinzmann, “Direct time-domain observation of laser pulse filaments in transparent media,” Phys. Rev. A 82, 043820 (2010).
[CrossRef]

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[CrossRef]

Dharmadhikari, A. K.

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

di Trapani, P.

D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J. V. Moloney, A. Couairon, and P. di Trapani, “Generation and control of extreme blueshifted continuum peaks in optical Kerr media,” Phys. Rev. A 78, 033825 (2008).
[CrossRef]

Dormidonov, A. E.

Faccio, D.

D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J. V. Moloney, A. Couairon, and P. di Trapani, “Generation and control of extreme blueshifted continuum peaks in optical Kerr media,” Phys. Rev. A 78, 033825 (2008).
[CrossRef]

Fang, X.

X. Fang and T. Kobayashi, “Evolution of a super-broadened spectrum in filament generated by an ultrashort intense laser pulse in fused silica,” Appl. Phys. B 77, 167–170 (2003).
[CrossRef]

Fiebig, T.

P. Tzankov, T. Fiebig, and I. Buchvarov, “Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband amplification,” Appl. Phys. Lett. 82, 517–519 (2003).
[CrossRef]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Gattass, R. R.

Gong, Q.

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A 68, 063820 (2003).
[CrossRef]

Heinzmann, U.

H. Dachraoui, C. Oberer, M. Michelswirth, and U. Heinzmann, “Direct time-domain observation of laser pulse filaments in transparent media,” Phys. Rev. A 82, 043820 (2010).
[CrossRef]

Hernández-Toro, J.

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Jiang, H.

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A 68, 063820 (2003).
[CrossRef]

Kandidov, V. P.

Karolczak, J.

M. Ziolek, R. Naskrecki, and J. Karolczak, “Some temporal and spectral properties of femtosecond supercontinuum important in pump-probe spectroscopy,” Opt. Commun. 241, 221–229 (2004).
[CrossRef]

Kartazaev, V.

Katona, G.

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91, 043905 (2003).
[CrossRef]

Kawano, H.

Klebniczki, J.

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatári, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
[CrossRef]

Kobayashi, T.

X. Fang and T. Kobayashi, “Evolution of a super-broadened spectrum in filament generated by an ultrashort intense laser pulse in fused silica,” Appl. Phys. B 77, 167–170 (2003).
[CrossRef]

Kolesik, M.

D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J. V. Moloney, A. Couairon, and P. di Trapani, “Generation and control of extreme blueshifted continuum peaks in optical Kerr media,” Phys. Rev. A 78, 033825 (2008).
[CrossRef]

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91, 043905 (2003).
[CrossRef]

Kompanets, V. O.

Kurdi, G.

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatári, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
[CrossRef]

Ladouceur, H. D.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Analysis of cross correlation, phase velocity mismatch, and group velocity mismatches in sum-frequency generation,” IEEE J. Quantum Electron. 29, 580–589 (1993).
[CrossRef]

Lancis, J.

Lotti, A.

D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J. V. Moloney, A. Couairon, and P. di Trapani, “Generation and control of extreme blueshifted continuum peaks in optical Kerr media,” Phys. Rev. A 78, 033825 (2008).
[CrossRef]

Martí-López, L.

Mathur, D.

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

Mazur, E.

Méndez, C.

Mendoza-Yero, O.

Michelswirth, M.

H. Dachraoui, C. Oberer, M. Michelswirth, and U. Heinzmann, “Direct time-domain observation of laser pulse filaments in transparent media,” Phys. Rev. A 82, 043820 (2010).
[CrossRef]

Midorikawa, K.

Minguez-Vega, G.

Mínguez-Vega, G.

Moloney, J. V.

D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J. V. Moloney, A. Couairon, and P. di Trapani, “Generation and control of extreme blueshifted continuum peaks in optical Kerr media,” Phys. Rev. A 78, 033825 (2008).
[CrossRef]

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91, 043905 (2003).
[CrossRef]

Moreno, V.

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).
[CrossRef]

Nagura, C.

Naskrecki, R.

M. Ziolek, R. Naskrecki, and J. Karolczak, “Some temporal and spectral properties of femtosecond supercontinuum important in pump-probe spectroscopy,” Opt. Commun. 241, 221–229 (2004).
[CrossRef]

Obara, M.

Oberer, C.

H. Dachraoui, C. Oberer, M. Michelswirth, and U. Heinzmann, “Direct time-domain observation of laser pulse filaments in transparent media,” Phys. Rev. A 82, 043820 (2010).
[CrossRef]

Osvay, K.

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatári, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
[CrossRef]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Petrov, V.

Rajgara, F. A.

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

Ramos de Campos, J. A.

Riedle, E.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[CrossRef]

Román, J. F.

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).
[CrossRef]

Romero, C.

Roso, L.

Ross, I. N.

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatári, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
[CrossRef]

Rotermund, F.

Salgueiro, J. R.

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).
[CrossRef]

San Román, J.

Shaffer, C. B.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Shaw, J. K.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Analysis of cross correlation, phase velocity mismatch, and group velocity mismatches in sum-frequency generation,” IEEE J. Quantum Electron. 29, 580–589 (1993).
[CrossRef]

Smetanina, E. O.

Sola, I. J.

Suda, A.

Sun, Q.

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A 68, 063820 (2003).
[CrossRef]

Tzankov, P.

P. Tzankov, T. Fiebig, and I. Buchvarov, “Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband amplification,” Appl. Phys. Lett. 82, 517–519 (2003).
[CrossRef]

Urey, H.

Vázquez de Aldana, J. R.

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Wright, E. M.

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91, 043905 (2003).
[CrossRef]

Wu, Z.

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A 68, 063820 (2003).
[CrossRef]

Xing, Q.

Yang, H.

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A 68, 063820 (2003).
[CrossRef]

Yoo, K. M.

Ziolek, M.

M. Ziolek, R. Naskrecki, and J. Karolczak, “Some temporal and spectral properties of femtosecond supercontinuum important in pump-probe spectroscopy,” Opt. Commun. 241, 221–229 (2004).
[CrossRef]

Am. J. Phys. (1)

V. Moreno, J. F. Román, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (3)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[CrossRef]

A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

X. Fang and T. Kobayashi, “Evolution of a super-broadened spectrum in filament generated by an ultrashort intense laser pulse in fused silica,” Appl. Phys. B 77, 167–170 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatári, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
[CrossRef]

P. Tzankov, T. Fiebig, and I. Buchvarov, “Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband amplification,” Appl. Phys. Lett. 82, 517–519 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Analysis of cross correlation, phase velocity mismatch, and group velocity mismatches in sum-frequency generation,” IEEE J. Quantum Electron. 29, 580–589 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

M. Ziolek, R. Naskrecki, and J. Karolczak, “Some temporal and spectral properties of femtosecond supercontinuum important in pump-probe spectroscopy,” Opt. Commun. 241, 221–229 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (3)

D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J. V. Moloney, A. Couairon, and P. di Trapani, “Generation and control of extreme blueshifted continuum peaks in optical Kerr media,” Phys. Rev. A 78, 033825 (2008).
[CrossRef]

H. Dachraoui, C. Oberer, M. Michelswirth, and U. Heinzmann, “Direct time-domain observation of laser pulse filaments in transparent media,” Phys. Rev. A 82, 043820 (2010).
[CrossRef]

Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A 68, 063820 (2003).
[CrossRef]

Phys. Rev. Lett. (4)

M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phys. Rev. Lett. 91, 043905 (2003).
[CrossRef]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[CrossRef]

Other (2)

R. W. Boyd, Nonlinear Optics (Academic, 2008).

R. R. Alfano, The Supercontinuum Laser Source (Springer Verlag, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup for SC generation. WP, half-wave plate; P, linear polarizer; PM, power meter; BD, beam dumper; NF, neutral-density filter; I, iris; DL, kinoform diffractive lens; MS, motorized linear stage; S, sample (sapphire); L, lens; OF, optical fiber.

Fig. 2.
Fig. 2.

(a) Pictures of the filament produced by the DL inside the sapphire sample (input and output faces marked with vertical lines) at different positions of the crystal along the propagation. The pulse propagates from left to right, and the energy was set to 1.30 μJ. Profiles shown near each picture correspond to an intensity cut along the filament axis. (b) Spectra of the generated SC pulses for different positions of the sapphire crystal.

Fig. 3.
Fig. 3.

(a) Pictures of the filament produced inside the sapphire sample (input and output faces marked with vertical lines) at different positions of the crystal along the propagation axis when a RL (f=100mm) was used to focus the pulsed beam. An iris with a diameter of 5.5 mm was placed in front of the lens. The pulse propagates from left to right, and the energy was set to 0.98 μJ. Profiles shown near each picture correspond to an intensity cut along the filament axis. (b) Spectra of the generated SC pulses for different positions of the sapphire crystal.

Fig. 4.
Fig. 4.

Angular dependence of the spectrum of SC pulses generated with the DL. The horizontal scale is the angle with respect to the propagation axis. (a) z=1.3mm and E=1.3μJ. (b) An iris of 5.5 mm was placed before the lens. z=1.9mm, E=0.9μJ.

Fig. 5.
Fig. 5.

(a) Spatial profiles of the SC pulse near the focus of a f=200mm lens. The sapphire crystal was placed at z=1.2mm, and the pulse energy of the IR was E=1.3μJ. (b) Measured waist of the SC pulse and fitting to a Gaussian beam.

Fig. 6.
Fig. 6.

Normalized spectra obtained by SFG of the SC pulses with a fundamental pulse in a BBO crystal. The position of the sapphire crystal was scanned, thus obtaining tunability of the sum-frequency pulse in the range of 290–320 nm.

Fig. 7.
Fig. 7.

Cross-correlation traces of the SC pulses generated at z=1.18mm and E=1.30μJ with the fundamental pulses. The curve has been obtained by integrating the SFG signal of the two pulses.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f(λ)=f0λ0λ,
U=U0T(λ)S¯(λ)dλ,
w2(z)=M2λπzR[z02+zR2(2z0+2z02+zR2f)z+(1+2z0f+z02+zR2f2)z2],
ω2(z)=a+bz+cz2,
M2=πλz2acb24.
τSC=(τXCpτIRp)1/p,

Metrics