Abstract

Visible transitions in the blue, green, and red of Pr3+ ions are of interest for laser applications. A description of spectroscopic properties of this rare earth ion in Zr–Ba–La–Al (ZBLA) fluorozirconate glass matrix is presented, using an original approach. Magnetic-dipole and electric-dipole contributions are calculated, in the context of the Judd–Ofelt theory, to determine the Ωt (t=2, 4, 6) parameters, lifetime, and branching ratios of P30 emitting level. Influence of overlapping transitions and sensitized transitions are discussed, as well as the use of the standard or normalized method. Branching ratios are measured using an experimental method and compared to theoretical ones. The influence of higher energy and thermally populated P31 and I16 levels on the P30 lifetime is also studied. Considering this influence, a good agreement is found between theoretical and experimental P30 lifetimes. Finally, emission cross sections are calculated for the visible transitions, using either the reciprocity method or the Füchtbauer–Ladenburg formula, for different calculated Judd–Ofelt parameters, highlighting the ability of Pr3+-doped ZBLA to be used as a laser material.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Osiac, E. Heumann, G. Huber, S. Kuck, E. Sani, A. Toncelli, and M. Tonelli, “Orange and red upconversion laser pumped by an avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Appl. Phys. Lett. 82, 3832–3834 (2003).
    [CrossRef]
  2. M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326–327, 505–509 (2003).
    [CrossRef]
  3. C. M. Baldwin, R. M. Almeida, and J. D. Mackenzie, “Halide glasses,” J. Non-Cryst. Solids 43, 309–344 (1981).
    [CrossRef]
  4. S. Aasland, M. A. Einarsrud, T. Grande, A. Grzechnik, and P. F. McMillan, “The structure of ternary fluorozirconate glasses,” J. Non-Cryst. Solids 213–214, 341–344 (1997).
    [CrossRef]
  5. C. Charron, E. Fogret, G. Fonteneau, R. Rimet, and J. Lucas, “Fluoride glass planar optical waveguides,” J. Non-Cryst. Solids 184, 222–224 (1995).
    [CrossRef]
  6. H. Okamoto, K. Kasuga, and Y. Kubota, “Efficient 521 nm all-fiber laser: splicing Pr3+-doped ZBLAN fiber to end-coated silica fiber,” Opt. Lett. 36, 1470–1472 (2011).
    [CrossRef]
  7. H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, “Visible-NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode,” Opt. Express 17, 20227–20232 (2009).
    [CrossRef]
  8. M. Olivier, J. L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J. N. Coulon, A. Braud, J. L. Adam, and V. Nazabal, “Optical amplification of Pr3+-doped ZBLA channel waveguides for visible laser emission,” Opt. Express 20, 25064–25070 (2012).
    [CrossRef]
  9. R. S. Quimby and W. J. Miniscalco, “Modified Judd-Ofelt technique and application to optical transitions in Pr3+-doped glass,” J. Appl. Phys. 75, 613–615 (1994).
    [CrossRef]
  10. J. A. Medeiros Neto, D. W. Hewak, and H. Tate, “Application of a modified Judd-Ofelt theory to praseodymium-doped fluoride glasses,” J. Non-Cryst. Solids 183, 201–207 (1995).
    [CrossRef]
  11. P. Goldner and F. Auzel, “Application of standard and modified Judd-Ofelt theories to a praseodymium-doped fluorozirconate glass,” J. Appl. Phys. 79, 7972–7977 (1996).
    [CrossRef]
  12. J. L. Adam and W. A. Sibley, “Optical transitions of Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 76, 267–279 (1985).
    [CrossRef]
  13. M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium(III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985).
    [CrossRef]
  14. X. Z. a. N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
  15. B. P. Petreski, “Optical amplification on the P03F32 transition in praseodymium-doped fluorozirconate fiber,” Fiber Integr. Opt. 18, 21–32 (1999).
    [CrossRef]
  16. B. Di Bartolo, O. Forte, and B. Walsh, “Judd-Ofelt Theory: principles and practices” in Advances in Spectroscopy for Lasers and Sensing (Springer, 2006), pp. 403–433.
  17. E. Dunina, A. Kornienko, and L. Fomicheva, “Modified theory of f-f transition intensities and crystal field for systems with anomalously strong configuration interaction,” Central Eur. J. Phys. 6, 407–414 (2008).
    [CrossRef]
  18. A. Remillieux, B. Jacquier, C. Linares, C. Lesergent, S. Artigaud, D. Bayard, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fibre amplifier,” J. Phys. D 29, 963 (1996).
    [CrossRef]
  19. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
    [CrossRef]
  20. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  21. M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys. 48, 4774–4780 (1968).
    [CrossRef]
  22. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954 (1964).
    [CrossRef]
  23. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
    [CrossRef]
  24. W. B. Fowler and D. L. Dexter, “Relation between absorption and emission probabilities in luminescent centers in ionic solids,” Phys. Rev. 128, 2154 (1962).
    [CrossRef]
  25. M. Olivier, P. Pirasteh, J.-L. Doualan, P. Camy, H. Lhermite, J.-L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater. 33, 980–984 (2011).
    [CrossRef]
  26. R. Reisfeld, M. Eyal, and C. K. Jørgensen, “Comparison of laser properties of rare earths in oxide and fluoride glasses,” J. Less-Common Met. 126, 187–194 (1986).
    [CrossRef]
  27. B. P. Petreski, P. M. Farrell, and S. F. Collins, “Cross-relaxation in praseodymium-doped fluorozirconate glass,” Opt. Commun. 132, 89–93 (1996).
    [CrossRef]

2012 (1)

2011 (2)

H. Okamoto, K. Kasuga, and Y. Kubota, “Efficient 521 nm all-fiber laser: splicing Pr3+-doped ZBLAN fiber to end-coated silica fiber,” Opt. Lett. 36, 1470–1472 (2011).
[CrossRef]

M. Olivier, P. Pirasteh, J.-L. Doualan, P. Camy, H. Lhermite, J.-L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater. 33, 980–984 (2011).
[CrossRef]

2010 (1)

X. Z. a. N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).

2009 (1)

2008 (1)

E. Dunina, A. Kornienko, and L. Fomicheva, “Modified theory of f-f transition intensities and crystal field for systems with anomalously strong configuration interaction,” Central Eur. J. Phys. 6, 407–414 (2008).
[CrossRef]

2003 (2)

E. Osiac, E. Heumann, G. Huber, S. Kuck, E. Sani, A. Toncelli, and M. Tonelli, “Orange and red upconversion laser pumped by an avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Appl. Phys. Lett. 82, 3832–3834 (2003).
[CrossRef]

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326–327, 505–509 (2003).
[CrossRef]

1999 (1)

B. P. Petreski, “Optical amplification on the P03F32 transition in praseodymium-doped fluorozirconate fiber,” Fiber Integr. Opt. 18, 21–32 (1999).
[CrossRef]

1997 (1)

S. Aasland, M. A. Einarsrud, T. Grande, A. Grzechnik, and P. F. McMillan, “The structure of ternary fluorozirconate glasses,” J. Non-Cryst. Solids 213–214, 341–344 (1997).
[CrossRef]

1996 (3)

P. Goldner and F. Auzel, “Application of standard and modified Judd-Ofelt theories to a praseodymium-doped fluorozirconate glass,” J. Appl. Phys. 79, 7972–7977 (1996).
[CrossRef]

A. Remillieux, B. Jacquier, C. Linares, C. Lesergent, S. Artigaud, D. Bayard, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fibre amplifier,” J. Phys. D 29, 963 (1996).
[CrossRef]

B. P. Petreski, P. M. Farrell, and S. F. Collins, “Cross-relaxation in praseodymium-doped fluorozirconate glass,” Opt. Commun. 132, 89–93 (1996).
[CrossRef]

1995 (2)

J. A. Medeiros Neto, D. W. Hewak, and H. Tate, “Application of a modified Judd-Ofelt theory to praseodymium-doped fluoride glasses,” J. Non-Cryst. Solids 183, 201–207 (1995).
[CrossRef]

C. Charron, E. Fogret, G. Fonteneau, R. Rimet, and J. Lucas, “Fluoride glass planar optical waveguides,” J. Non-Cryst. Solids 184, 222–224 (1995).
[CrossRef]

1994 (1)

R. S. Quimby and W. J. Miniscalco, “Modified Judd-Ofelt technique and application to optical transitions in Pr3+-doped glass,” J. Appl. Phys. 75, 613–615 (1994).
[CrossRef]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

1986 (1)

R. Reisfeld, M. Eyal, and C. K. Jørgensen, “Comparison of laser properties of rare earths in oxide and fluoride glasses,” J. Less-Common Met. 126, 187–194 (1986).
[CrossRef]

1985 (2)

J. L. Adam and W. A. Sibley, “Optical transitions of Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 76, 267–279 (1985).
[CrossRef]

M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium(III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985).
[CrossRef]

1981 (1)

C. M. Baldwin, R. M. Almeida, and J. D. Mackenzie, “Halide glasses,” J. Non-Cryst. Solids 43, 309–344 (1981).
[CrossRef]

1968 (1)

M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys. 48, 4774–4780 (1968).
[CrossRef]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954 (1964).
[CrossRef]

1962 (3)

W. B. Fowler and D. L. Dexter, “Relation between absorption and emission probabilities in luminescent centers in ionic solids,” Phys. Rev. 128, 2154 (1962).
[CrossRef]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Aasland, S.

S. Aasland, M. A. Einarsrud, T. Grande, A. Grzechnik, and P. F. McMillan, “The structure of ternary fluorozirconate glasses,” J. Non-Cryst. Solids 213–214, 341–344 (1997).
[CrossRef]

Adam, J. L.

Adam, J.-L.

M. Olivier, P. Pirasteh, J.-L. Doualan, P. Camy, H. Lhermite, J.-L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater. 33, 980–984 (2011).
[CrossRef]

Almeida, R. M.

C. M. Baldwin, R. M. Almeida, and J. D. Mackenzie, “Halide glasses,” J. Non-Cryst. Solids 43, 309–344 (1981).
[CrossRef]

Artigaud, S.

A. Remillieux, B. Jacquier, C. Linares, C. Lesergent, S. Artigaud, D. Bayard, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fibre amplifier,” J. Phys. D 29, 963 (1996).
[CrossRef]

Auzel, F.

P. Goldner and F. Auzel, “Application of standard and modified Judd-Ofelt theories to a praseodymium-doped fluorozirconate glass,” J. Appl. Phys. 79, 7972–7977 (1996).
[CrossRef]

Baldwin, C. M.

C. M. Baldwin, R. M. Almeida, and J. D. Mackenzie, “Halide glasses,” J. Non-Cryst. Solids 43, 309–344 (1981).
[CrossRef]

Bayard, D.

A. Remillieux, B. Jacquier, C. Linares, C. Lesergent, S. Artigaud, D. Bayard, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fibre amplifier,” J. Phys. D 29, 963 (1996).
[CrossRef]

Beylat, J. L.

A. Remillieux, B. Jacquier, C. Linares, C. Lesergent, S. Artigaud, D. Bayard, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fibre amplifier,” J. Phys. D 29, 963 (1996).
[CrossRef]

Braud, A.

Cai, Z.

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326–327, 505–509 (2003).
[CrossRef]

Camy, P.

M. Olivier, J. L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J. N. Coulon, A. Braud, J. L. Adam, and V. Nazabal, “Optical amplification of Pr3+-doped ZBLA channel waveguides for visible laser emission,” Opt. Express 20, 25064–25070 (2012).
[CrossRef]

M. Olivier, P. Pirasteh, J.-L. Doualan, P. Camy, H. Lhermite, J.-L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater. 33, 980–984 (2011).
[CrossRef]

Charron, C.

C. Charron, E. Fogret, G. Fonteneau, R. Rimet, and J. Lucas, “Fluoride glass planar optical waveguides,” J. Non-Cryst. Solids 184, 222–224 (1995).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Collins, S. F.

B. P. Petreski, P. M. Farrell, and S. F. Collins, “Cross-relaxation in praseodymium-doped fluorozirconate glass,” Opt. Commun. 132, 89–93 (1996).
[CrossRef]

Coulon, J. N.

Dexter, D. L.

W. B. Fowler and D. L. Dexter, “Relation between absorption and emission probabilities in luminescent centers in ionic solids,” Phys. Rev. 128, 2154 (1962).
[CrossRef]

Di Bartolo, B.

B. Di Bartolo, O. Forte, and B. Walsh, “Judd-Ofelt Theory: principles and practices” in Advances in Spectroscopy for Lasers and Sensing (Springer, 2006), pp. 403–433.

Doualan, J. L.

Doualan, J.-L.

M. Olivier, P. Pirasteh, J.-L. Doualan, P. Camy, H. Lhermite, J.-L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater. 33, 980–984 (2011).
[CrossRef]

Dunina, E.

E. Dunina, A. Kornienko, and L. Fomicheva, “Modified theory of f-f transition intensities and crystal field for systems with anomalously strong configuration interaction,” Central Eur. J. Phys. 6, 407–414 (2008).
[CrossRef]

Einarsrud, M. A.

S. Aasland, M. A. Einarsrud, T. Grande, A. Grzechnik, and P. F. McMillan, “The structure of ternary fluorozirconate glasses,” J. Non-Cryst. Solids 213–214, 341–344 (1997).
[CrossRef]

Eyal, M.

R. Reisfeld, M. Eyal, and C. K. Jørgensen, “Comparison of laser properties of rare earths in oxide and fluoride glasses,” J. Less-Common Met. 126, 187–194 (1986).
[CrossRef]

M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium(III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985).
[CrossRef]

Farrell, P. M.

B. P. Petreski, P. M. Farrell, and S. F. Collins, “Cross-relaxation in praseodymium-doped fluorozirconate glass,” Opt. Commun. 132, 89–93 (1996).
[CrossRef]

Féron, P.

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326–327, 505–509 (2003).
[CrossRef]

Fogret, E.

C. Charron, E. Fogret, G. Fonteneau, R. Rimet, and J. Lucas, “Fluoride glass planar optical waveguides,” J. Non-Cryst. Solids 184, 222–224 (1995).
[CrossRef]

Fomicheva, L.

E. Dunina, A. Kornienko, and L. Fomicheva, “Modified theory of f-f transition intensities and crystal field for systems with anomalously strong configuration interaction,” Central Eur. J. Phys. 6, 407–414 (2008).
[CrossRef]

Fonteneau, G.

C. Charron, E. Fogret, G. Fonteneau, R. Rimet, and J. Lucas, “Fluoride glass planar optical waveguides,” J. Non-Cryst. Solids 184, 222–224 (1995).
[CrossRef]

Forte, O.

B. Di Bartolo, O. Forte, and B. Walsh, “Judd-Ofelt Theory: principles and practices” in Advances in Spectroscopy for Lasers and Sensing (Springer, 2006), pp. 403–433.

Fowler, W. B.

W. B. Fowler and D. L. Dexter, “Relation between absorption and emission probabilities in luminescent centers in ionic solids,” Phys. Rev. 128, 2154 (1962).
[CrossRef]

Goldner, P.

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326–327, 505–509 (2003).
[CrossRef]

P. Goldner and F. Auzel, “Application of standard and modified Judd-Ofelt theories to a praseodymium-doped fluorozirconate glass,” J. Appl. Phys. 79, 7972–7977 (1996).
[CrossRef]

Grande, T.

S. Aasland, M. A. Einarsrud, T. Grande, A. Grzechnik, and P. F. McMillan, “The structure of ternary fluorozirconate glasses,” J. Non-Cryst. Solids 213–214, 341–344 (1997).
[CrossRef]

Greenberg, E.

M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium(III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985).
[CrossRef]

Grzechnik, A.

S. Aasland, M. A. Einarsrud, T. Grande, A. Grzechnik, and P. F. McMillan, “The structure of ternary fluorozirconate glasses,” J. Non-Cryst. Solids 213–214, 341–344 (1997).
[CrossRef]

Hamon, L.

A. Remillieux, B. Jacquier, C. Linares, C. Lesergent, S. Artigaud, D. Bayard, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fibre amplifier,” J. Phys. D 29, 963 (1996).
[CrossRef]

Hara, I.

Heumann, E.

E. Osiac, E. Heumann, G. Huber, S. Kuck, E. Sani, A. Toncelli, and M. Tonelli, “Orange and red upconversion laser pumped by an avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Appl. Phys. Lett. 82, 3832–3834 (2003).
[CrossRef]

Hewak, D. W.

J. A. Medeiros Neto, D. W. Hewak, and H. Tate, “Application of a modified Judd-Ofelt theory to praseodymium-doped fluoride glasses,” J. Non-Cryst. Solids 183, 201–207 (1995).
[CrossRef]

Huber, G.

E. Osiac, E. Heumann, G. Huber, S. Kuck, E. Sani, A. Toncelli, and M. Tonelli, “Orange and red upconversion laser pumped by an avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Appl. Phys. Lett. 82, 3832–3834 (2003).
[CrossRef]

Jacquier, B.

A. Remillieux, B. Jacquier, C. Linares, C. Lesergent, S. Artigaud, D. Bayard, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fibre amplifier,” J. Phys. D 29, 963 (1996).
[CrossRef]

Jørgensen, C. K.

R. Reisfeld, M. Eyal, and C. K. Jørgensen, “Comparison of laser properties of rare earths in oxide and fluoride glasses,” J. Less-Common Met. 126, 187–194 (1986).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
[CrossRef]

Kasuga, K.

Kornienko, A.

E. Dunina, A. Kornienko, and L. Fomicheva, “Modified theory of f-f transition intensities and crystal field for systems with anomalously strong configuration interaction,” Central Eur. J. Phys. 6, 407–414 (2008).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Kubota, Y.

Kuck, S.

E. Osiac, E. Heumann, G. Huber, S. Kuck, E. Sani, A. Toncelli, and M. Tonelli, “Orange and red upconversion laser pumped by an avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Appl. Phys. Lett. 82, 3832–3834 (2003).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Lesergent, C.

A. Remillieux, B. Jacquier, C. Linares, C. Lesergent, S. Artigaud, D. Bayard, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fibre amplifier,” J. Phys. D 29, 963 (1996).
[CrossRef]

Lhermite, H.

M. Olivier, J. L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J. N. Coulon, A. Braud, J. L. Adam, and V. Nazabal, “Optical amplification of Pr3+-doped ZBLA channel waveguides for visible laser emission,” Opt. Express 20, 25064–25070 (2012).
[CrossRef]

M. Olivier, P. Pirasteh, J.-L. Doualan, P. Camy, H. Lhermite, J.-L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater. 33, 980–984 (2011).
[CrossRef]

Linares, C.

A. Remillieux, B. Jacquier, C. Linares, C. Lesergent, S. Artigaud, D. Bayard, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fibre amplifier,” J. Phys. D 29, 963 (1996).
[CrossRef]

Lucas, J.

C. Charron, E. Fogret, G. Fonteneau, R. Rimet, and J. Lucas, “Fluoride glass planar optical waveguides,” J. Non-Cryst. Solids 184, 222–224 (1995).
[CrossRef]

Mackenzie, J. D.

C. M. Baldwin, R. M. Almeida, and J. D. Mackenzie, “Halide glasses,” J. Non-Cryst. Solids 43, 309–344 (1981).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954 (1964).
[CrossRef]

McMillan, P. F.

S. Aasland, M. A. Einarsrud, T. Grande, A. Grzechnik, and P. F. McMillan, “The structure of ternary fluorozirconate glasses,” J. Non-Cryst. Solids 213–214, 341–344 (1997).
[CrossRef]

Medeiros Neto, J. A.

J. A. Medeiros Neto, D. W. Hewak, and H. Tate, “Application of a modified Judd-Ofelt theory to praseodymium-doped fluoride glasses,” J. Non-Cryst. Solids 183, 201–207 (1995).
[CrossRef]

Miniscalco, W. J.

R. S. Quimby and W. J. Miniscalco, “Modified Judd-Ofelt technique and application to optical transitions in Pr3+-doped glass,” J. Appl. Phys. 75, 613–615 (1994).
[CrossRef]

Mortier, M.

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326–327, 505–509 (2003).
[CrossRef]

Nazabal, V.

M. Olivier, J. L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J. N. Coulon, A. Braud, J. L. Adam, and V. Nazabal, “Optical amplification of Pr3+-doped ZBLA channel waveguides for visible laser emission,” Opt. Express 20, 25064–25070 (2012).
[CrossRef]

M. Olivier, P. Pirasteh, J.-L. Doualan, P. Camy, H. Lhermite, J.-L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater. 33, 980–984 (2011).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Okamoto, H.

Olivier, M.

M. Olivier, J. L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J. N. Coulon, A. Braud, J. L. Adam, and V. Nazabal, “Optical amplification of Pr3+-doped ZBLA channel waveguides for visible laser emission,” Opt. Express 20, 25064–25070 (2012).
[CrossRef]

M. Olivier, P. Pirasteh, J.-L. Doualan, P. Camy, H. Lhermite, J.-L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater. 33, 980–984 (2011).
[CrossRef]

Osiac, E.

E. Osiac, E. Heumann, G. Huber, S. Kuck, E. Sani, A. Toncelli, and M. Tonelli, “Orange and red upconversion laser pumped by an avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Appl. Phys. Lett. 82, 3832–3834 (2003).
[CrossRef]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Petreski, B. P.

B. P. Petreski, “Optical amplification on the P03F32 transition in praseodymium-doped fluorozirconate fiber,” Fiber Integr. Opt. 18, 21–32 (1999).
[CrossRef]

B. P. Petreski, P. M. Farrell, and S. F. Collins, “Cross-relaxation in praseodymium-doped fluorozirconate glass,” Opt. Commun. 132, 89–93 (1996).
[CrossRef]

Peyghambarian, X. Z. a. N.

X. Z. a. N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).

Pirasteh, P.

M. Olivier, J. L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J. N. Coulon, A. Braud, J. L. Adam, and V. Nazabal, “Optical amplification of Pr3+-doped ZBLA channel waveguides for visible laser emission,” Opt. Express 20, 25064–25070 (2012).
[CrossRef]

M. Olivier, P. Pirasteh, J.-L. Doualan, P. Camy, H. Lhermite, J.-L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater. 33, 980–984 (2011).
[CrossRef]

Quimby, R. S.

R. S. Quimby and W. J. Miniscalco, “Modified Judd-Ofelt technique and application to optical transitions in Pr3+-doped glass,” J. Appl. Phys. 75, 613–615 (1994).
[CrossRef]

Reisfeld, R.

R. Reisfeld, M. Eyal, and C. K. Jørgensen, “Comparison of laser properties of rare earths in oxide and fluoride glasses,” J. Less-Common Met. 126, 187–194 (1986).
[CrossRef]

M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium(III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985).
[CrossRef]

Remillieux, A.

A. Remillieux, B. Jacquier, C. Linares, C. Lesergent, S. Artigaud, D. Bayard, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fibre amplifier,” J. Phys. D 29, 963 (1996).
[CrossRef]

Rimet, R.

C. Charron, E. Fogret, G. Fonteneau, R. Rimet, and J. Lucas, “Fluoride glass planar optical waveguides,” J. Non-Cryst. Solids 184, 222–224 (1995).
[CrossRef]

Sani, E.

E. Osiac, E. Heumann, G. Huber, S. Kuck, E. Sani, A. Toncelli, and M. Tonelli, “Orange and red upconversion laser pumped by an avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Appl. Phys. Lett. 82, 3832–3834 (2003).
[CrossRef]

Sibley, W. A.

J. L. Adam and W. A. Sibley, “Optical transitions of Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 76, 267–279 (1985).
[CrossRef]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Spector, N.

M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium(III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985).
[CrossRef]

Stephan, G. M.

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326–327, 505–509 (2003).
[CrossRef]

Tate, H.

J. A. Medeiros Neto, D. W. Hewak, and H. Tate, “Application of a modified Judd-Ofelt theory to praseodymium-doped fluoride glasses,” J. Non-Cryst. Solids 183, 201–207 (1995).
[CrossRef]

Toncelli, A.

E. Osiac, E. Heumann, G. Huber, S. Kuck, E. Sani, A. Toncelli, and M. Tonelli, “Orange and red upconversion laser pumped by an avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Appl. Phys. Lett. 82, 3832–3834 (2003).
[CrossRef]

Tonelli, M.

E. Osiac, E. Heumann, G. Huber, S. Kuck, E. Sani, A. Toncelli, and M. Tonelli, “Orange and red upconversion laser pumped by an avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Appl. Phys. Lett. 82, 3832–3834 (2003).
[CrossRef]

Walsh, B.

B. Di Bartolo, O. Forte, and B. Walsh, “Judd-Ofelt Theory: principles and practices” in Advances in Spectroscopy for Lasers and Sensing (Springer, 2006), pp. 403–433.

Weber, M. J.

M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys. 48, 4774–4780 (1968).
[CrossRef]

Xu, H.

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326–327, 505–509 (2003).
[CrossRef]

Adv. Optoelectron. (1)

X. Z. a. N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).

Appl. Phys. Lett. (1)

E. Osiac, E. Heumann, G. Huber, S. Kuck, E. Sani, A. Toncelli, and M. Tonelli, “Orange and red upconversion laser pumped by an avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Appl. Phys. Lett. 82, 3832–3834 (2003).
[CrossRef]

Central Eur. J. Phys. (1)

E. Dunina, A. Kornienko, and L. Fomicheva, “Modified theory of f-f transition intensities and crystal field for systems with anomalously strong configuration interaction,” Central Eur. J. Phys. 6, 407–414 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, “Spectroscopy of praseodymium(III) in zirconium fluoride glass,” Chem. Phys. Lett. 117, 108–114 (1985).
[CrossRef]

Fiber Integr. Opt. (1)

B. P. Petreski, “Optical amplification on the P03F32 transition in praseodymium-doped fluorozirconate fiber,” Fiber Integr. Opt. 18, 21–32 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

J. Appl. Phys. (2)

P. Goldner and F. Auzel, “Application of standard and modified Judd-Ofelt theories to a praseodymium-doped fluorozirconate glass,” J. Appl. Phys. 79, 7972–7977 (1996).
[CrossRef]

R. S. Quimby and W. J. Miniscalco, “Modified Judd-Ofelt technique and application to optical transitions in Pr3+-doped glass,” J. Appl. Phys. 75, 613–615 (1994).
[CrossRef]

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys. 48, 4774–4780 (1968).
[CrossRef]

J. Less-Common Met. (1)

R. Reisfeld, M. Eyal, and C. K. Jørgensen, “Comparison of laser properties of rare earths in oxide and fluoride glasses,” J. Less-Common Met. 126, 187–194 (1986).
[CrossRef]

J. Non-Cryst. Solids (6)

J. L. Adam and W. A. Sibley, “Optical transitions of Pr3+ ions in fluorozirconate glass,” J. Non-Cryst. Solids 76, 267–279 (1985).
[CrossRef]

J. A. Medeiros Neto, D. W. Hewak, and H. Tate, “Application of a modified Judd-Ofelt theory to praseodymium-doped fluoride glasses,” J. Non-Cryst. Solids 183, 201–207 (1995).
[CrossRef]

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326–327, 505–509 (2003).
[CrossRef]

C. M. Baldwin, R. M. Almeida, and J. D. Mackenzie, “Halide glasses,” J. Non-Cryst. Solids 43, 309–344 (1981).
[CrossRef]

S. Aasland, M. A. Einarsrud, T. Grande, A. Grzechnik, and P. F. McMillan, “The structure of ternary fluorozirconate glasses,” J. Non-Cryst. Solids 213–214, 341–344 (1997).
[CrossRef]

C. Charron, E. Fogret, G. Fonteneau, R. Rimet, and J. Lucas, “Fluoride glass planar optical waveguides,” J. Non-Cryst. Solids 184, 222–224 (1995).
[CrossRef]

J. Phys. D (1)

A. Remillieux, B. Jacquier, C. Linares, C. Lesergent, S. Artigaud, D. Bayard, L. Hamon, and J. L. Beylat, “Upconversion mechanisms of a praseodymium-doped fluoride fibre amplifier,” J. Phys. D 29, 963 (1996).
[CrossRef]

Opt. Commun. (1)

B. P. Petreski, P. M. Farrell, and S. F. Collins, “Cross-relaxation in praseodymium-doped fluorozirconate glass,” Opt. Commun. 132, 89–93 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

M. Olivier, P. Pirasteh, J.-L. Doualan, P. Camy, H. Lhermite, J.-L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater. 33, 980–984 (2011).
[CrossRef]

Phys. Rev. (3)

W. B. Fowler and D. L. Dexter, “Relation between absorption and emission probabilities in luminescent centers in ionic solids,” Phys. Rev. 128, 2154 (1962).
[CrossRef]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
[CrossRef]

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954 (1964).
[CrossRef]

Other (1)

B. Di Bartolo, O. Forte, and B. Walsh, “Judd-Ofelt Theory: principles and practices” in Advances in Spectroscopy for Lasers and Sensing (Springer, 2006), pp. 403–433.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Absorption cross section of Pr3+: ZBLA at RT and at 11 K (inset).

Fig. 2.
Fig. 2.

Energy level scheme of Pr3+ in ZBLA glasses.

Fig. 3.
Fig. 3.

Emission spectra of Pr3+: ZBLA between RT and 80K.

Fig. 4.
Fig. 4.

Lifetime of Pr3+: ZBLA versus Pr3+ concentration (excitation: 442 nm, emission: 635 nm).

Fig. 5.
Fig. 5.

Lifetime of 0.5% Pr3+: ZBLA versus temperature.

Fig. 6.
Fig. 6.

Emission spectrum of Pr3+: ZBLA recorded between 450 and 1000 nm.

Fig. 7.
Fig. 7.

Absorption and emission spectra of 11 K (P03H43 transition) for ZBLA: Pr3+ bulk glasses.

Fig. 8.
Fig. 8.

Emission cross section of P03H43 transition calculated using the reciprocity method.

Fig. 9.
Fig. 9.

Emission cross section spectra calculated from experimental branching ratios values.

Fig. 10.
Fig. 10.

Boltzmann population of excited state.

Fig. 11.
Fig. 11.

Cross-relaxation processes occurring in praseodymium-doped ZBLA glasses.

Tables (6)

Tables Icon

Table 1. L+2S Matrix Elements and Magnetic-Dipole Line Strengths for Praseodymium (III)

Tables Icon

Table 2. Measured Mean Wavelengths, Integrated Absorption Cross Sections, and Oscillator Strengths of Pr3+ Ions in ZBLA Glasses

Tables Icon

Table 3. Judd–Ofelt Parameters Calculated for Different Sets of Transitions Included in the Fit (Referred to as Nos. 1 to 8) Using Both Standard and Normalized Methods (P30H35 Transition Excluded)

Tables Icon

Table 4. Theoretical Branching Ratios and Lifetimes for Transitions from P30P31, P13, and I61 Levels, Calculated with Judd–Ofelt Parameters No 2, 5, 6, 8, and Average

Tables Icon

Table 5. Experimental Branching Ratios, Iint Is the Integrated Intensity Calculated from the Calibrated Experimental Emission Spectra, and R Is the Ratio Ijiint/Ij0int

Tables Icon

Table 6. Emission Cross Section Calculated for Visible Transitions of Pr3+ Ions with Füchtbauer–Ladenburg Formula, Using Judd–Ofelt Results, with McCumber Method and with Experimental Branching Ratios and Lifetimes

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

AJJ=64π4e23hλ3(2J+1)[n(n2+2)29SED+n3SMD].
SMD=(h4πmc)2|4fN[αSL]JL⃗+2S⃗4fN[αSL]J|2,
SED=t=2,4,6Ωt|4fN[αSL]JUt4fN[αSL]J|2,
fexp=mc2πe2σa(λ)dλ,
fJJ=8π2mc3h(2J+1)λ[χEDSED+χMDSMD],
χED=(n2+2)29n,
χMD=n3.
SEDexp=1χED[3hc(2J+1)λ8π3e2σa(λ)dλχMDSMD]=t=2,4,6Ωt|4fN[αSL]JUt4fN[αSL]J|2.
1=t=2,4,6(Ωt|4fN[αSL]JUt4fN[αSL]J|2)/SEDexp.
δs=i(SEDexpSEDcalc)2M3,
δn=i(SEDexpSEDcalcSEDexp)2M3.
y=y0+μA[2πωL4(xxc)2+ωL2]+(1μ)4ln2πωGe4ln2ωG(xxc)2,
βj0=i=0j11Ri0λjiλj0.
βji=Ri0λjiλj0i=0j1Rk0λjkλj0=Ri0λjii=0j1Rk0λjk.
Ri0=IjiintIj0int,
σe(λ)=σa(λ)·ZfZeeEZLhcλkT,
σe(λ)=β8πn(λ)2cτλ5I(λ)λI(λ)dλ,
1/τmeas=1/τradWMPWET,
WMP=BeαΔE.
1τrad eff=(1τradP03+g1eΔE1kTτradI61+g3eΔE2kTτradP13)/(1+g1eΔE1kT+g3eΔE2kT).

Metrics