Abstract

Sensitivities (S) and quality factors (Q) have been trade-offs in label-free optical resonator sensors, and optimal geometry that maximizes both factors is under active development. In this paper, we demonstrate that the nanoslotted parallel multibeam cavity possesses unexplored high S and high Q. We achieve S>800nm/RIU (refractive index unit) and Q>107 in liquid at telecom wavelength range when absorption is neglected. To the best of our knowledge, this is the first geometry that features both high S and Q factors, and thus is potentially an ideal platform for refractive index-based biochemical sensing.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
    [CrossRef]
  2. C. A. Barrios, M. Bauls, V. G. Pedro, K. B. Gylfason, B. Snchez, A. Griol, A. Maquieira, H. Sohlstrm, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008).
    [CrossRef]
  3. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
    [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef]
  5. R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17, 151–161 (2004).
    [CrossRef]
  6. C. Caucheteur, Y. Shevchenko, L. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19, 1656–1664 (2011).
    [CrossRef]
  7. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50, 5503–5507 (2011).
    [CrossRef]
  8. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
    [CrossRef]
  9. A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
    [CrossRef]
  10. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [CrossRef]
  11. C. Kang and S. M. Weiss, “Photonic crystal with multiple-hole defect for sensor applications,” Opt. Express 16, 18188–18193 (2008).
    [CrossRef]
  12. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
    [CrossRef]
  13. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
    [CrossRef]
  14. K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, F. Fornel, and E. Hadji, “An air-slotted nanoresonator relying on coupled high Q small V Fabry–Perot nanocavities,” Appl. Phys. Lett. 94, 251111 (2009).
    [CrossRef]
  15. B. Cluzel, K. Foubert, L. Lalouat, E. Picard, J. Dellinger, D. Peyrade, F. Fornel, and E. Hadji, “Optical field molding within near-field coupled twinned nanobeam cavities,” in Integrated Photonics Research, Silicon and Nanophotonics, Toronto, Canada, 12June, 2011.
  16. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
    [CrossRef]
  17. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
    [CrossRef]
  18. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
    [CrossRef]
  19. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [CrossRef]
  20. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
    [CrossRef]
  21. J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143–1145 (2003).
    [CrossRef]
  22. M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal cavity laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4651 (2003).
    [CrossRef]
  23. E. Chow, A. Grot, I. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
    [CrossRef]
  24. T. Xu and N. Zhu, “Pillar-array based optical sensor,” Opt. Express 18, 5420–5425 (2010).
    [CrossRef]
  25. Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19, 22191–22197 (2011).
    [CrossRef]
  26. K. Yao and Y. Shi, “High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing,” Opt. Express 20, 27039–27044 (2012).
    [CrossRef]
  27. C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express 18, 27930–27937 (2010).
    [CrossRef]
  28. D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011).
    [CrossRef]
  29. W. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37, 1208–1210 (2012).
    [CrossRef]
  30. Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), Baltimore, Maryland, 1May, 2011.
  31. L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
    [CrossRef]
  32. S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096–2098 (2006).
    [CrossRef]
  33. C. A. Barrios, K. B. Gylfason, B. Snchez, A. Griol, H. Sohlstrm, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007).
    [CrossRef]
  34. K. de Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
    [CrossRef]
  35. C. Chao, W. Fung, and L. Guo, “Polymer microring resonators for biochemical sensing ppplications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
    [CrossRef]
  36. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [CrossRef]
  37. Q. Quan, I. Bulu, and M. Loncar, “A broadband waveguide QED system on chip,” Phys. Rev. A 80, 011810(R) (2009).
    [CrossRef]
  38. F. DellOlio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15, 4977–4993 (2007).
    [CrossRef]
  39. S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16, 8174–8180 (2008).
    [CrossRef]
  40. S. Kita, S. Hachuda, K. Nozaki, and T. Baba, “Nanoslot laser,” Appl. Phys. Lett. 97, 161108 (2010).
    [CrossRef]
  41. J. Jgersk, H. Zhang, Z. Diao, N. Le Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35, 2523–2525 (2010).
    [CrossRef]
  42. M. G. Scullion, A. di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
    [CrossRef]
  43. A. di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
    [CrossRef]
  44. B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
    [CrossRef]
  45. B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “InGaAsP photonic crystal slot nanobeam waveguides for refractive index sensing,” Proc. SPIE 7946, 79461C (2011).
    [CrossRef]
  46. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
    [CrossRef]
  47. Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34, 1498–1500 (2009).
    [CrossRef]

2012

2011

2010

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

S. Kita, S. Hachuda, K. Nozaki, and T. Baba, “Nanoslot laser,” Appl. Phys. Lett. 97, 161108 (2010).
[CrossRef]

J. Jgersk, H. Zhang, Z. Diao, N. Le Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35, 2523–2525 (2010).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
[CrossRef]

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[CrossRef]

T. Xu and N. Zhu, “Pillar-array based optical sensor,” Opt. Express 18, 5420–5425 (2010).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express 18, 27930–27937 (2010).
[CrossRef]

2009

Q. Quan, I. Bulu, and M. Loncar, “A broadband waveguide QED system on chip,” Phys. Rev. A 80, 011810(R) (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
[CrossRef]

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, F. Fornel, and E. Hadji, “An air-slotted nanoresonator relying on coupled high Q small V Fabry–Perot nanocavities,” Appl. Phys. Lett. 94, 251111 (2009).
[CrossRef]

A. di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34, 1498–1500 (2009).
[CrossRef]

2008

S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16, 8174–8180 (2008).
[CrossRef]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef]

C. Kang and S. M. Weiss, “Photonic crystal with multiple-hole defect for sensor applications,” Opt. Express 16, 18188–18193 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

C. A. Barrios, M. Bauls, V. G. Pedro, K. B. Gylfason, B. Snchez, A. Griol, A. Maquieira, H. Sohlstrm, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008).
[CrossRef]

2007

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

F. DellOlio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15, 4977–4993 (2007).
[CrossRef]

C. A. Barrios, K. B. Gylfason, B. Snchez, A. Griol, H. Sohlstrm, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007).
[CrossRef]

K. de Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef]

2006

C. Chao, W. Fung, and L. Guo, “Polymer microring resonators for biochemical sensing ppplications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096–2098 (2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
[CrossRef]

2005

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

2004

2003

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143–1145 (2003).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal cavity laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4651 (2003).
[CrossRef]

Albert, J.

Almeida, V. R.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Armani, A. M.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[CrossRef]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
[CrossRef]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef]

Assefa, S.

Baba, T.

Baets, R.

Barrios, C. A.

Bartolozzi, I.

Bauls, M.

Besselink, G. A.

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Beumer, T. A. M.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Bhattacharya, P.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143–1145 (2003).
[CrossRef]

Bienstman, P.

Bulu, I.

Q. Quan, I. Bulu, and M. Loncar, “A broadband waveguide QED system on chip,” Phys. Rev. A 80, 011810(R) (2009).
[CrossRef]

Burgess, I. B.

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19, 22191–22197 (2011).
[CrossRef]

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), Baltimore, Maryland, 1May, 2011.

Casquel, R.

Caucheteur, C.

Chakravarty, S.

Chang, S.

L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

Chao, C.

C. Chao, W. Fung, and L. Guo, “Polymer microring resonators for biochemical sensing ppplications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

Chen, R. T.

Cho, S.

S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096–2098 (2006).
[CrossRef]

Chow, E.

Cluzel, B.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, F. Fornel, and E. Hadji, “An air-slotted nanoresonator relying on coupled high Q small V Fabry–Perot nanocavities,” Appl. Phys. Lett. 94, 251111 (2009).
[CrossRef]

B. Cluzel, K. Foubert, L. Lalouat, E. Picard, J. Dellinger, D. Peyrade, F. Fornel, and E. Hadji, “Optical field molding within near-field coupled twinned nanobeam cavities,” in Integrated Photonics Research, Silicon and Nanophotonics, Toronto, Canada, 12June, 2011.

Dai, D.

de Vos, K.

Dellinger, J.

B. Cluzel, K. Foubert, L. Lalouat, E. Picard, J. Dellinger, D. Peyrade, F. Fornel, and E. Hadji, “Optical field molding within near-field coupled twinned nanobeam cavities,” in Integrated Photonics Research, Silicon and Nanophotonics, Toronto, Canada, 12June, 2011.

DellOlio, F.

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
[CrossRef]

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), Baltimore, Maryland, 1May, 2011.

di Falco, A.

M. G. Scullion, A. di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[CrossRef]

A. di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

Diao, Z.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Dündar, M. A.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “InGaAsP photonic crystal slot nanobeam waveguides for refractive index sensing,” Proc. SPIE 7946, 79461C (2011).
[CrossRef]

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Floyd, D. L.

Fornel, F.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, F. Fornel, and E. Hadji, “An air-slotted nanoresonator relying on coupled high Q small V Fabry–Perot nanocavities,” Appl. Phys. Lett. 94, 251111 (2009).
[CrossRef]

B. Cluzel, K. Foubert, L. Lalouat, E. Picard, J. Dellinger, D. Peyrade, F. Fornel, and E. Hadji, “Optical field molding within near-field coupled twinned nanobeam cavities,” in Integrated Photonics Research, Silicon and Nanophotonics, Toronto, Canada, 12June, 2011.

Foubert, K.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, F. Fornel, and E. Hadji, “An air-slotted nanoresonator relying on coupled high Q small V Fabry–Perot nanocavities,” Appl. Phys. Lett. 94, 251111 (2009).
[CrossRef]

B. Cluzel, K. Foubert, L. Lalouat, E. Picard, J. Dellinger, D. Peyrade, F. Fornel, and E. Hadji, “Optical field molding within near-field coupled twinned nanobeam cavities,” in Integrated Photonics Research, Silicon and Nanophotonics, Toronto, Canada, 12June, 2011.

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), Baltimore, Maryland, 1May, 2011.

Fung, W.

C. Chao, W. Fung, and L. Guo, “Polymer microring resonators for biochemical sensing ppplications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

Girolami, G.

Greve, J.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Griol, A.

Grot, A.

Guo, L.

C. Chao, W. Fung, and L. Guo, “Polymer microring resonators for biochemical sensing ppplications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

Gylfason, K. B.

Hachuda, S.

S. Kita, S. Hachuda, K. Nozaki, and T. Baba, “Nanoslot laser,” Appl. Phys. Lett. 97, 161108 (2010).
[CrossRef]

Hadji, E.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, F. Fornel, and E. Hadji, “An air-slotted nanoresonator relying on coupled high Q small V Fabry–Perot nanocavities,” Appl. Phys. Lett. 94, 251111 (2009).
[CrossRef]

B. Cluzel, K. Foubert, L. Lalouat, E. Picard, J. Dellinger, D. Peyrade, F. Fornel, and E. Hadji, “Optical field molding within near-field coupled twinned nanobeam cavities,” in Integrated Photonics Research, Silicon and Nanophotonics, Toronto, Canada, 12June, 2011.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

He, S.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “InGaAsP photonic crystal slot nanobeam waveguides for refractive index sensing,” Proc. SPIE 7946, 79461C (2011).
[CrossRef]

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34, 1498–1500 (2009).
[CrossRef]

Heideman, R. G.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Holgado, M.

Houdré, R.

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[CrossRef]

Illic, R.

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), Baltimore, Maryland, 1May, 2011.

Jgersk, J.

Ji, Y.

Jiang, L.

Jokerst, N.

S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096–2098 (2006).
[CrossRef]

Kang, C.

Kanger, J. S.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Karlsson, R.

R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17, 151–161 (2004).
[CrossRef]

Karouta, F.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “InGaAsP photonic crystal slot nanobeam waveguides for refractive index sensing,” Proc. SPIE 7946, 79461C (2011).
[CrossRef]

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

Kawasaki, K.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
[CrossRef]

Kita, S.

Krauss, T. F.

M. G. Scullion, A. di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[CrossRef]

A. di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

Kuramochi, E.

Lai, W.

Lalouat, L.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, F. Fornel, and E. Hadji, “An air-slotted nanoresonator relying on coupled high Q small V Fabry–Perot nanocavities,” Appl. Phys. Lett. 94, 251111 (2009).
[CrossRef]

B. Cluzel, K. Foubert, L. Lalouat, E. Picard, J. Dellinger, D. Peyrade, F. Fornel, and E. Hadji, “Optical field molding within near-field coupled twinned nanobeam cavities,” in Integrated Photonics Research, Silicon and Nanophotonics, Toronto, Canada, 12June, 2011.

Lambeck, P. V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Le Thomas, N.

Li, B.

Lipson, M.

Loncar, M.

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[CrossRef]

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19, 22191–22197 (2011).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Q. Quan, I. Bulu, and M. Loncar, “A broadband waveguide QED system on chip,” Phys. Rev. A 80, 011810(R) (2009).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal cavity laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4651 (2003).
[CrossRef]

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), Baltimore, Maryland, 1May, 2011.

Lu, Y.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Maquieira, A.

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Mirkarimi, I. W.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Notomi, M.

Nötzel, R.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “InGaAsP photonic crystal slot nanobeam waveguides for refractive index sensing,” Proc. SPIE 7946, 79461C (2011).
[CrossRef]

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

Nozaki, K.

O’Faolain, L.

A. di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

Passaro, V. M. N.

Pedro, V. G.

Peyrade, D.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, F. Fornel, and E. Hadji, “An air-slotted nanoresonator relying on coupled high Q small V Fabry–Perot nanocavities,” Appl. Phys. Lett. 94, 251111 (2009).
[CrossRef]

B. Cluzel, K. Foubert, L. Lalouat, E. Picard, J. Dellinger, D. Peyrade, F. Fornel, and E. Hadji, “Optical field molding within near-field coupled twinned nanobeam cavities,” in Integrated Photonics Research, Silicon and Nanophotonics, Toronto, Canada, 12June, 2011.

Phare, C. T.

Picard, E.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, F. Fornel, and E. Hadji, “An air-slotted nanoresonator relying on coupled high Q small V Fabry–Perot nanocavities,” Appl. Phys. Lett. 94, 251111 (2009).
[CrossRef]

B. Cluzel, K. Foubert, L. Lalouat, E. Picard, J. Dellinger, D. Peyrade, F. Fornel, and E. Hadji, “Optical field molding within near-field coupled twinned nanobeam cavities,” in Integrated Photonics Research, Silicon and Nanophotonics, Toronto, Canada, 12June, 2011.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Qiu, Y.

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal cavity laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4651 (2003).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Quan, Q.

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[CrossRef]

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19, 22191–22197 (2011).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Q. Quan, I. Bulu, and M. Loncar, “A broadband waveguide QED system on chip,” Phys. Rev. A 80, 011810(R) (2009).
[CrossRef]

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), Baltimore, Maryland, 1May, 2011.

Roh, Y.-G.

Sabarinathan, J.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143–1145 (2003).
[CrossRef]

Schacht, E.

Schatz, G. C.

L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

Scherer, A.

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal cavity laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4651 (2003).
[CrossRef]

Scullion, M. G.

M. G. Scullion, A. di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Shao, L.

Sherry, L. J.

L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

Shevchenko, Y.

Shi, Y.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Sigalas, M.

Sindy, T.

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), Baltimore, Maryland, 1May, 2011.

Snchez, B.

Sohlstrm, H.

Subramaniam, V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Tanabe, T.

Tang, K. Y.

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), Baltimore, Maryland, 1May, 2011.

Tang, S. K. Y.

Tang, Y.

Taniyama, H.

Tian, H.

Topolancik, J.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143–1145 (2003).
[CrossRef]

Tsai, H.

Vahala, K. J.

van der Heijden, R. W.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “InGaAsP photonic crystal slot nanobeam waveguides for refractive index sensing,” Proc. SPIE 7946, 79461C (2011).
[CrossRef]

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

Van Duyne, R. P.

L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

van Hovell, S.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Vlasov, Y. A.

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef]

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), Baltimore, Maryland, 1May, 2011.

Wang, B.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “InGaAsP photonic crystal slot nanobeam waveguides for refractive index sensing,” Proc. SPIE 7946, 79461C (2011).
[CrossRef]

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

Wang, M.

Wang, S.

Wang, Z.

Weiss, S. M.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Wijn, R.

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Wijn, R. R.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Wink, T.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

Wosinski, L.

Wuilpart, M.

Xiao, H.

Xu, Q.

Xu, T.

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Yang, D.

Yang, J.

Yao, K.

Ymeti, A.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Yu, P.-C.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143–1145 (2003).
[CrossRef]

Zhang, H.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Zhu, N.

Zou, Y.

Anal. Chim. Acta

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009).
[CrossRef]

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, F. Fornel, and E. Hadji, “An air-slotted nanoresonator relying on coupled high Q small V Fabry–Perot nanocavities,” Appl. Phys. Lett. 94, 251111 (2009).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143–1145 (2003).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal cavity laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4651 (2003).
[CrossRef]

S. Kita, S. Hachuda, K. Nozaki, and T. Baba, “Nanoslot laser,” Appl. Phys. Lett. 97, 161108 (2010).
[CrossRef]

A. di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010).
[CrossRef]

Biosens. Bioelectron.

M. G. Scullion, A. di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[CrossRef]

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Chao, W. Fung, and L. Guo, “Polymer microring resonators for biochemical sensing ppplications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096–2098 (2006).
[CrossRef]

J. Mol. Recognit.

R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17, 151–161 (2004).
[CrossRef]

Nano Lett.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007).
[CrossRef]

L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

Nanoscale

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[CrossRef]

Nat. Mater.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Nat. Methods

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef]

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Nature

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Opt. Express

T. Xu and N. Zhu, “Pillar-array based optical sensor,” Opt. Express 18, 5420–5425 (2010).
[CrossRef]

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19, 22191–22197 (2011).
[CrossRef]

K. Yao and Y. Shi, “High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing,” Opt. Express 20, 27039–27044 (2012).
[CrossRef]

C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express 18, 27930–27937 (2010).
[CrossRef]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011).
[CrossRef]

K. de Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef]

F. DellOlio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15, 4977–4993 (2007).
[CrossRef]

S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16, 8174–8180 (2008).
[CrossRef]

C. Kang and S. M. Weiss, “Photonic crystal with multiple-hole defect for sensor applications,” Opt. Express 16, 18188–18193 (2008).
[CrossRef]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010).
[CrossRef]

C. Caucheteur, Y. Shevchenko, L. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19, 1656–1664 (2011).
[CrossRef]

Opt. Lett.

Phys. Rev. A

Q. Quan, I. Bulu, and M. Loncar, “A broadband waveguide QED system on chip,” Phys. Rev. A 80, 011810(R) (2009).
[CrossRef]

Proc. SPIE

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “InGaAsP photonic crystal slot nanobeam waveguides for refractive index sensing,” Proc. SPIE 7946, 79461C (2011).
[CrossRef]

Other

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), Baltimore, Maryland, 1May, 2011.

B. Cluzel, K. Foubert, L. Lalouat, E. Picard, J. Dellinger, D. Peyrade, F. Fornel, and E. Hadji, “Optical field molding within near-field coupled twinned nanobeam cavities,” in Integrated Photonics Research, Silicon and Nanophotonics, Toronto, Canada, 12June, 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematics of the NPMC that consists of multiple waveguides with nanoslot separations. The structure is symmetric with respect to its center (dashed line). Nnb is the number of beams, a is the center-to-center distance between the gratings (periodicity), b, h are the width and thickness of each beam, and w is the width of the nanoslot between adjacent beams. wx(i) are the lengths of the gratings that are tapered quadratically from center to both ends; wy is the width of the grating and is kept constant.

Fig. 2.
Fig. 2.

(a) Normalized sensitivity (S/λres) as a function of the number of nanobeams Nnb when the proportion of wvg/slot is 5/1, 4/1, 3/1, and 8/3, respectively. The total width of the multibeam structure is kept constant [wt=b×Nnb+w×(Nnb1)=1.1μm]. (b) FDTD simulation of the major field profile (E field in plane, perpendicular to the beams) distribution when Nnb=1, 2, 3, 4, 5, and 6 at wvg/slot=8/3. Unit of the x/y axis is μm. (c) General change of the normalized sensitivity as different parameters change including the number of beams (Nnb), width of each single nanobeam b, width of rectangular grating wy, width of slot w, periodicity a, and the length of rectangular grating wx.

Fig. 3.
Fig. 3.

3D FDTD simulation of the major field distribution profile (Ey) in the NPMC. Here the number of Gaussian mirror segments Ntaper=40, with an additional 20 mirrors on both ends of the tapering section. The calculated Q factor is 3.2×107 and the S factor is 808.7nm/RIU. wt=1.1μm, a=500nm, b=200nm, w=100nm, h=220nm, wx(1)=300nm, wy=140nm, wx(i)=wx(1)+(i1)2(wx(i)wx(1))/(imax1)2, I=1,240, and nsi=3.46, nwater=1.315. Unit of the x/y axis is μm.

Fig. 4.
Fig. 4.

Effect of fabrication roughness to the Q factors. A random distribution of roughness from 0–5, 0–10, 0–15, and 0–20 nm, respectively, are simulated. The cavity is immersed in an environment with a refractive index of 1.315.

Fig. 5.
Fig. 5.

Schematic diagram of the coupler used for the NPMC sensor in/out coupling. The dark red dashed line area represents the cavity. The structure is symmetric with respect to its center.

Fig. 6.
Fig. 6.

Transmission spectrum of the NPMC sensor from 3D FDTD simulation. The simulation consists of a bus waveguide with width wC=900nm, three triangular fingers extruding to the NPMC, and the NPMC with a total number of gratings ntaper=30. The width of each taper wtaper=300nm, length of the taper LtaperNPMC=10μm, and Ltapercoupler=15μm. The background refractive index is set as RI=1.315. A Q of 1.5×104 and near unit transmission is obtained. Inset shows the shift of the cavity resonance as the background index changes from RI=1.315 to RI=1.330.

Tables (1)

Tables Icon

Table 1. Sensitivity, Q Factor, and FOM of Various Optical Sensing Schemes

Metrics