Abstract

We report absolute frequency measurements of the a1, a10, and a15 hyperfine components of molecular iodine P(28) 30-0 line at 535 nm. A frequency-doubled 1070 nm Nd:GdVO4 laser is frequency stabilized to a hyperfine component of I2 using the third-harmonic demodulation technique. The frequency stability of 3×1012 is achieved at 10 s averaging time when its frequency is stabilized to the a1 component. An optical frequency comb is used to measure its absolute frequency. The pressure shift is investigated to obtain the absolute frequency at zero pressure. The effect of pressure and power broadening of the a10 component are also investigated. This light source can be used for investigating parity nonconservation effect in atomic thallium.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Velchev, W. Hogervorst, and W. Ubachs, “Precision VUV spectroscopy of Ar I at 105 nm,” J. Phys. B 32, L511–L516 (1999).
    [CrossRef]
  2. S. L. Cornish, Y.-W. Liu, I. C. Lane, P. E. G. Baird, G. P. Barwood, P. Taylor, and W. R. C. Rowley, “Interferometric measurements of I2127 reference frequencies for 1S–2S spectroscopy in muonium, hydrogen, and deuterium,” J. Opt. Soc. Am. B 17, 6–10 (2000).
    [CrossRef]
  3. P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S13→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
    [CrossRef]
  4. S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
    [CrossRef]
  5. Y.-C. Huang, W.-J. Luo, Y.-T. Kuo, and L.-B. Wang, “Precision measurement of hyperfine intervals in the D1 lines of atomic Li7,” J. Phys. B 46, 075004 (2013).
    [CrossRef]
  6. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
    [CrossRef]
  7. R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
    [CrossRef]
  8. “IodineSpec5,” http://www.iqo.uni-hannover.de .
  9. A. Arie and R. L. Byer, “Laser heterodyne spectroscopy of I2127 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
    [CrossRef]
  10. P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
    [CrossRef]
  11. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
    [CrossRef]
  12. G. Galzerano, C. Svelto, E. Bava, and F. Bertinetto, “High frequency-stability diode-pumped Nd:YAG lasers with the FM sidebands method and Doppler-free iodine lines at 532 nm,” Appl. Opt. 38, 6962–6966 (1999).
    [CrossRef]
  13. F.-L. Hong and J. Ishikawa, “Hyperfine structures of the R (122)35-0 and P(84)33-0 transitions of I2127 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
    [CrossRef]
  14. N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654–2657 (1995).
    [CrossRef]
  15. P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
    [CrossRef]
  16. A. D. Cronin, R. B. Warrington, S. K. Lamoreaux, and E. N. Fortson, “Studies of electromagnetically induced transparency in thallium vapor and possible utility for measuring atomic parity nonconservation,” Phys. Rev. Lett. 80, 3719–3722 (1998).
    [CrossRef]
  17. N.-C. Shie, W.-F. Hsieh, and J.-T. Shy, “Single frequency 1070 nm Nd:GdVO4 laser using a volume Bragg grating,” Opt. Express 19, 21109–21115 (2011).
    [CrossRef]
  18. C.-C. Liao, K.-Y. Wu, Y.-H. Lien, H. Knöckel, H.-C. Chui, E. Tiemann, and J.-T. Shy, “Precise frequency measurements of I2127 lines in the wavelength region 750–780 nm,” J. Opt. Soc. Am. B 27, 1208–1214 (2010).
    [CrossRef]
  19. L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
    [CrossRef]
  20. H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56)32–0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83 (2006).
    [CrossRef]
  21. V. S. Letokhov and V. P. Chebotayev, “Elements of theory of resonant interaction of a laser field and gas,” in Nonlinear Laser Spectroscopy (Springer, 1977), pp. 72–80.

2013

Y.-C. Huang, W.-J. Luo, Y.-T. Kuo, and L.-B. Wang, “Precision measurement of hyperfine intervals in the D1 lines of atomic Li7,” J. Phys. B 46, 075004 (2013).
[CrossRef]

2011

2010

2007

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

2006

H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56)32–0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83 (2006).
[CrossRef]

2005

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
[CrossRef]

2004

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S13→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

2003

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

2000

1999

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

G. Galzerano, C. Svelto, E. Bava, and F. Bertinetto, “High frequency-stability diode-pumped Nd:YAG lasers with the FM sidebands method and Doppler-free iodine lines at 532 nm,” Appl. Opt. 38, 6962–6966 (1999).
[CrossRef]

I. Velchev, W. Hogervorst, and W. Ubachs, “Precision VUV spectroscopy of Ar I at 105 nm,” J. Phys. B 32, L511–L516 (1999).
[CrossRef]

1998

A. D. Cronin, R. B. Warrington, S. K. Lamoreaux, and E. N. Fortson, “Studies of electromagnetically induced transparency in thallium vapor and possible utility for measuring atomic parity nonconservation,” Phys. Rev. Lett. 80, 3719–3722 (1998).
[CrossRef]

1995

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654–2657 (1995).
[CrossRef]

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
[CrossRef]

1993

1936

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Arie, A.

Baird, P. E. G.

Barwood, G. P.

Bava, E.

Bertinetto, F.

Buhr, H.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Byer, R. L.

Cancio Pastor, P.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S13→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

Carlson, L. A.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Chebotayev, V. P.

V. S. Letokhov and V. P. Chebotayev, “Elements of theory of resonant interaction of a laser field and gas,” in Nonlinear Laser Spectroscopy (Springer, 1977), pp. 72–80.

Chui, H.-C.

Cornish, S. L.

Cronin, A. D.

A. D. Cronin, R. B. Warrington, S. K. Lamoreaux, and E. N. Fortson, “Studies of electromagnetically induced transparency in thallium vapor and possible utility for measuring atomic parity nonconservation,” Phys. Rev. Lett. 80, 3719–3722 (1998).
[CrossRef]

de Mauro, C.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S13→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

De Natale, P.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S13→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

Edwards, N. H.

N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654–2657 (1995).
[CrossRef]

Eickhoff, M.

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Fang, H.-M.

H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56)32–0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83 (2006).
[CrossRef]

Felder, R.

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
[CrossRef]

Fortson, E. N.

A. D. Cronin, R. B. Warrington, S. K. Lamoreaux, and E. N. Fortson, “Studies of electromagnetically induced transparency in thallium vapor and possible utility for measuring atomic parity nonconservation,” Phys. Rev. Lett. 80, 3719–3722 (1998).
[CrossRef]

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
[CrossRef]

Fraser, L. H. D.

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Galzerano, G.

Gillespie, L. J.

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Giusfredi, G.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S13→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

Gwinner, G.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Hagel, G.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S13→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

Hall, J. L.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Hänsch, T. W.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Hogervorst, W.

I. Velchev, W. Hogervorst, and W. Ubachs, “Precision VUV spectroscopy of Ar I at 105 nm,” J. Phys. B 32, L511–L516 (1999).
[CrossRef]

Holzwarth, R.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Hong, F.-L.

F.-L. Hong and J. Ishikawa, “Hyperfine structures of the R (122)35-0 and P(84)33-0 transitions of I2127 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

Hsieh, W.-F.

Huang, Y.-C.

Y.-C. Huang, W.-J. Luo, Y.-T. Kuo, and L.-B. Wang, “Precision measurement of hyperfine intervals in the D1 lines of atomic Li7,” J. Phys. B 46, 075004 (2013).
[CrossRef]

Huber, G.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Inguscio, M.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S13→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

Ishikawa, J.

F.-L. Hong and J. Ishikawa, “Hyperfine structures of the R (122)35-0 and P(84)33-0 transitions of I2127 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

Jungner, P. A.

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Karpuk, S.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Knöckel, H.

Kuo, Y.-T.

Y.-C. Huang, W.-J. Luo, Y.-T. Kuo, and L.-B. Wang, “Precision measurement of hyperfine intervals in the D1 lines of atomic Li7,” J. Phys. B 46, 075004 (2013).
[CrossRef]

Lamoreaux, S. K.

A. D. Cronin, R. B. Warrington, S. K. Lamoreaux, and E. N. Fortson, “Studies of electromagnetically induced transparency in thallium vapor and possible utility for measuring atomic parity nonconservation,” Phys. Rev. Lett. 80, 3719–3722 (1998).
[CrossRef]

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
[CrossRef]

Lane, I. C.

Letokhov, V. S.

V. S. Letokhov and V. P. Chebotayev, “Elements of theory of resonant interaction of a laser field and gas,” in Nonlinear Laser Spectroscopy (Springer, 1977), pp. 72–80.

Liao, C.-C.

Lien, Y.-H.

Liu, Y.-W.

Luo, W.-J.

Y.-C. Huang, W.-J. Luo, Y.-T. Kuo, and L.-B. Wang, “Precision measurement of hyperfine intervals in the D1 lines of atomic Li7,” J. Phys. B 46, 075004 (2013).
[CrossRef]

Ma, L.-S.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Majumder, P. K.

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
[CrossRef]

Meekhof, D. M.

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
[CrossRef]

Nakayama, S.

N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654–2657 (1995).
[CrossRef]

Novotny, C.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Phipp, S. J.

N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654–2657 (1995).
[CrossRef]

Picard, S.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Quinn, T. J.

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

Reinhardt, S.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Robertsson, L.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

Rowley, W. R. C.

Saathoff, G.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Schwalm, D.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Shie, N.-C.

Shy, J.-T.

Svelto, C.

Swartz, S.

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Taylor, P.

Tiemann, E.

Ubachs, W.

I. Velchev, W. Hogervorst, and W. Ubachs, “Precision VUV spectroscopy of Ar I at 105 nm,” J. Phys. B 32, L511–L516 (1999).
[CrossRef]

Udem, T.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Velchev, I.

I. Velchev, W. Hogervorst, and W. Ubachs, “Precision VUV spectroscopy of Ar I at 105 nm,” J. Phys. B 32, L511–L516 (1999).
[CrossRef]

Vetter, P. A.

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
[CrossRef]

Waltman, S.

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Wang, L.-B.

Y.-C. Huang, W.-J. Luo, Y.-T. Kuo, and L.-B. Wang, “Precision measurement of hyperfine intervals in the D1 lines of atomic Li7,” J. Phys. B 46, 075004 (2013).
[CrossRef]

Wang, S. C.

H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56)32–0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83 (2006).
[CrossRef]

Warrington, R. B.

A. D. Cronin, R. B. Warrington, S. K. Lamoreaux, and E. N. Fortson, “Studies of electromagnetically induced transparency in thallium vapor and possible utility for measuring atomic parity nonconservation,” Phys. Rev. Lett. 80, 3719–3722 (1998).
[CrossRef]

Wolf, A.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Wu, K.-Y.

Ye, J.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Zimmermann, M.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Appl. Opt.

IEEE Trans. Instrum. Meas.

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J. Am. Chem. Soc.

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

I. Velchev, W. Hogervorst, and W. Ubachs, “Precision VUV spectroscopy of Ar I at 105 nm,” J. Phys. B 32, L511–L516 (1999).
[CrossRef]

Y.-C. Huang, W.-J. Luo, Y.-T. Kuo, and L.-B. Wang, “Precision measurement of hyperfine intervals in the D1 lines of atomic Li7,” J. Phys. B 46, 075004 (2013).
[CrossRef]

Metrologia

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
[CrossRef]

Nat. Phys.

S. Reinhardt, G. Saathoff, H. Buhr, L. A. Carlson, A. Wolf, D. Schwalm, S. Karpuk, C. Novotny, G. Huber, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, and G. Gwinner, “Test of relativistic time dilation with fast optical atomic clocks at different velocities,” Nat. Phys. 3, 861–864 (2007).
[CrossRef]

Opt. Commun.

H.-M. Fang, S. C. Wang, and J.-T. Shy, “Pressure and power broadening of the a10 component of R(56)32–0 transition of molecular iodine at 532 nm,” Opt. Commun. 257, 76–83 (2006).
[CrossRef]

F.-L. Hong and J. Ishikawa, “Hyperfine structures of the R (122)35-0 and P(84)33-0 transitions of I2127 near 532 nm,” Opt. Commun. 183, 101–108 (2000).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S13→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654–2657 (1995).
[CrossRef]

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
[CrossRef]

A. D. Cronin, R. B. Warrington, S. K. Lamoreaux, and E. N. Fortson, “Studies of electromagnetically induced transparency in thallium vapor and possible utility for measuring atomic parity nonconservation,” Phys. Rev. Lett. 80, 3719–3722 (1998).
[CrossRef]

Other

“IodineSpec5,” http://www.iqo.uni-hannover.de .

V. S. Letokhov and V. P. Chebotayev, “Elements of theory of resonant interaction of a laser field and gas,” in Nonlinear Laser Spectroscopy (Springer, 1977), pp. 72–80.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental layout of the iodine laser stabilization. OI, optical isolator; FA, fiber amplifier; FPI, Fabry–Perot interferometer; PD, photodiode; PI, PI servo loop; SG, signal generator; Lock-in, Lock-in amplifier; VA, variable aperture; ABR, auto-balanced receiver; BS, beam splitter; λ/4, quarter-wave plate; DM, dichroic mirror.

Fig. 2.
Fig. 2.

Hyperfine spectrum a1a15 of the iodine P(28) 30-0 line and the probe beam intensity, which represents the absorption profile. Inset is the signal of a1 component, which shows an SNR of 1000. Here, cold-finger temperature is 14.5°C and the lock-in time constant is 30 ms at 12dB/oct.

Fig. 3.
Fig. 3.

Fractional Allan deviation of the measured beat frequency between the laser locked on a1 component and the OFC.

Fig. 4.
Fig. 4.

Measured absolute frequencies versus iodine vapor pressures for hyperfine components a1, a10, and a15. Each data point represents the mean value of 500 measurements. The standard deviation of the 500 measurements divided by the square root of 500 is assigned as the error bar of each data point.

Fig. 5.
Fig. 5.

Linewidth of a10 versus the iodine vapor pressure. The pump and probe powers are fixed at 22.9 and 0.39 mW. The inset shows the measured peak amplitude of the third-derivative signal versus the modulation amplitude under different vapor pressure. The solid curves in inset depict results of curve fitting.

Fig. 6.
Fig. 6.

Linewidth of a10 versus pump power. The cold finger temperature of the iodine cell is fixed at 0.1°C (4.2 Pa). The inset shows the measured peak amplitude of the third-derivative signal on the modulation amplitude under different pump power. The solid curves in inset depict results of curve fitting.

Tables (1)

Tables Icon

Table 1. Selected Hyperfine Transition Frequencies of the P(28) 30-0 Line and Comparisons to the Calculated Values (kHz)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

fiodine=2fIR=2(Nfrep±foffset±fbeat),
log(P)=3512.830T2.013·log(T)+18.37971,
h(δA)=C·(P1δA+P2δA2+P3δA3)/(P4+P5δA+P6δA2+P7δA3),
γ=γ(1+1+P/Ps),

Metrics