Abstract

Coaxial nanopatterned lithium niobate embedded in Ag enables a large electromagnetic confinement in small-volume cavities. The nonlinear material filling these cavities is at the origin of high second-order nonlinear conversion, where no phase matching is needed. A doubly resonant optical spectrum of the linear response is required in order to boost this phenomenon, providing a promising and stable second-harmonic (SH) device tailored for any desired wavelength. The structure is fabricated by using electron-beam lithography, dry etching, and chemical mechanical polishing. We report a second-harmonic generation (SHG) enhancement factor of 26 compared to unpatterned x-cut lithium niobate wafer at λpump=1550nm. The enhancement, which comes exclusively from the nanostructured lithium niobate, is experimentally and theoretically demonstrated. A comparison with three types of metallic subwavelength apertures is shown. The embedded structure shows the strongest SH signal. Analysis of the strong dependence of the incident polarization on the SHG intensity with a homemade 3D–NL–FDTD algorithm shows good agreement with experimental data.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
    [CrossRef]
  2. R. Menzel, Photonics: Linear and Nonlinear Interactions of Laser Light and Matter (Springer, 2002).
  3. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [CrossRef]
  4. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
    [CrossRef]
  5. S. K. David, W. L. James, and E. R. Cora, Polarized Light in Optics and Spectroscopy (Academic, 1990).
  6. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
    [CrossRef]
  7. E. A. Mamonov, T. V. Murzina, I. A. Kolmychek, A. I. Maydykovsky, V. K. Valev, A. V. Silhanek, E. Ponizovskaya, A. Bratkovsky, T. Verbiest, V. V. Moshchalkov, and O. A. Aktsipetrov, “Coherent and incoherent second harmonic generation in planar G-shaped nanostructures,” Opt. Lett. 36, 3681–3683 (2011).
    [CrossRef]
  8. R. Zhou, H. Lu, X. Liu, Y. Gong, and D. Mao, “Second-harmonic generation from a periodic array of non-centro symmetric nanoholes,” J. Opt. Soc. Am. B 27, 2405–2409 (2010).
    [CrossRef]
  9. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
    [CrossRef]
  10. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Molone, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B. 79, 235109 (2009).
    [CrossRef]
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary ptical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  12. T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
    [CrossRef]
  13. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
    [CrossRef]
  14. F. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 26, 1–8 (2004).
    [CrossRef]
  15. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef]
  16. F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67, 155314 (2003).
    [CrossRef]
  17. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
    [CrossRef]
  18. Y. Poujet, J. Salvi, and F. I. Baida, “90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays,” Opt. Lett. 32, 2942–2944 (2007).
    [CrossRef]
  19. W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
    [CrossRef]
  20. M. A. Vincenti, D. De Ceglia, V. Roppo, and M. Scalora, “Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths,” Opt. Express 19, 2064–2078 (2011).
    [CrossRef]
  21. E. Barakat, M-P. Bernal, and F. I. Baida, “Theoretical analysis of enhanced nonlinear conversion from metallo-dielectric nano-structures,” Opt. Express 20, 16258–16268 (2012).
    [CrossRef]
  22. S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17, 697–702 (2009).
    [CrossRef]
  23. E. Barakat, M. P. Bernal, and F. I. Baida, “Second harmonic generation enhancement by use of annular aperture arrays embedded into silver and filled by lithium niobate,” Opt. Express 18, 6530–6536 (2010).
    [CrossRef]
  24. F. I. Baida, A. Belkhir, and D. Van Labeke, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
    [CrossRef]
  25. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).

2012 (1)

2011 (2)

2010 (2)

2009 (2)

Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Molone, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B. 79, 235109 (2009).
[CrossRef]

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express 17, 697–702 (2009).
[CrossRef]

2008 (1)

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

2007 (2)

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Y. Poujet, J. Salvi, and F. I. Baida, “90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays,” Opt. Lett. 32, 2942–2944 (2007).
[CrossRef]

2006 (3)

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

F. I. Baida, A. Belkhir, and D. Van Labeke, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[CrossRef]

2005 (1)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

2004 (2)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

F. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 26, 1–8 (2004).
[CrossRef]

2003 (1)

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67, 155314 (2003).
[CrossRef]

2002 (2)

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary ptical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Abdenour, A.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Aktsipetrov, O. A.

Bai, B.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Baida, F.

F. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 26, 1–8 (2004).
[CrossRef]

Baida, F. I.

E. Barakat, M-P. Bernal, and F. I. Baida, “Theoretical analysis of enhanced nonlinear conversion from metallo-dielectric nano-structures,” Opt. Express 20, 16258–16268 (2012).
[CrossRef]

E. Barakat, M. P. Bernal, and F. I. Baida, “Second harmonic generation enhancement by use of annular aperture arrays embedded into silver and filled by lithium niobate,” Opt. Express 18, 6530–6536 (2010).
[CrossRef]

Y. Poujet, J. Salvi, and F. I. Baida, “90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays,” Opt. Lett. 32, 2942–2944 (2007).
[CrossRef]

F. I. Baida, A. Belkhir, and D. Van Labeke, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67, 155314 (2003).
[CrossRef]

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[CrossRef]

Barakat, E.

Belkhir, A.

F. I. Baida, A. Belkhir, and D. Van Labeke, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

F. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 26, 1–8 (2004).
[CrossRef]

Bernal, M. P.

Bernal, M-P.

Bratkovsky, A.

Brueck, S. R. J.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

Canfield, B. K.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Ceglia, D. De

Cora, E. R.

S. K. David, W. L. James, and E. R. Cora, Polarized Light in Optics and Spectroscopy (Academic, 1990).

David, S. K.

S. K. David, W. L. James, and E. R. Cora, Polarized Light in Optics and Spectroscopy (Academic, 1990).

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary ptical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

Fan, W.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary ptical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Gong, Y.

Granet, G.

F. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 26, 1–8 (2004).
[CrossRef]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Hoyer, W.

Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Molone, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B. 79, 235109 (2009).
[CrossRef]

Husu, H.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

James, W. L.

S. K. David, W. L. James, and E. R. Cora, Polarized Light in Optics and Spectroscopy (Academic, 1990).

Ju, J. J.

Kauranen, M.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Kim, J. T.

Kim, M. S.

Klein, M. W.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[CrossRef]

Koch, S. W.

Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Molone, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B. 79, 235109 (2009).
[CrossRef]

Kolmychek, I. A.

Koschny, Th.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

Krishna, S.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Kuittinen, M.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Labeke, D. V.

F. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 26, 1–8 (2004).
[CrossRef]

Lalanne, P.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

Laukkanen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Lee, J.-M.

Lee, M.-H.

Lee, W.-J.

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary ptical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Linden, S.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Liu, H.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

Liu, J.

Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Molone, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B. 79, 235109 (2009).
[CrossRef]

Liu, X.

Lopez-Rios, T.

T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Lu, H.

Malloy, K. J.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Mamonov, E. A.

Mao, D.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Maydykovsky, A. I.

Mendoza, D.

T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Menzel, R.

R. Menzel, Photonics: Linear and Nonlinear Interactions of Laser Light and Matter (Springer, 2002).

Molone, J. V.

Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Molone, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B. 79, 235109 (2009).
[CrossRef]

Moreau, A.

F. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 26, 1–8 (2004).
[CrossRef]

Moshchalkov, V. V.

Murzina, T. V.

Osgood, R. M.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Pannetier, B.

T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Panoiu, N. C.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Park, S.

Park, S. K.

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Ponizovskaya, E.

Poujet, Y.

Roppo, V.

Salvi, J.

Sánchez-Dehesa, J.

T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Scalora, M.

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).

Silhanek, A. V.

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Soukoulis, C. M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary ptical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Turunen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Valev, V. K.

Van Labeke, D.

F. I. Baida, A. Belkhir, and D. Van Labeke, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67, 155314 (2003).
[CrossRef]

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[CrossRef]

Verbiest, T.

Vincenti, M. A.

Wegener, M.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary ptical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Zeng, Y.

Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Molone, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B. 79, 235109 (2009).
[CrossRef]

Zhang, S.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

Zhou, R.

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

Appl. Phys. B (1)

F. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 26, 1–8 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Nature (2)

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary ptical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Commun. (1)

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (2)

F. I. Baida, A. Belkhir, and D. Van Labeke, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67, 155314 (2003).
[CrossRef]

Phys. Rev. B. (1)

Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Molone, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B. 79, 235109 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

Science (3)

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Other (3)

S. K. David, W. L. James, and E. R. Cora, Polarized Light in Optics and Spectroscopy (Academic, 1990).

R. Menzel, Photonics: Linear and Nonlinear Interactions of Laser Light and Matter (Springer, 2002).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic view of the Ag AAA filled with LiNbO3. The period is defined by p. Ro and Ri are the outer and the inner radii, respectively, while h is the thickness of the metallic film. (b) SEM picture of the etched LiNbO3. (c) SEM picture of the final structure after chemical mechanical polishing.

Fig. 2.
Fig. 2.

(a) Normalized spatial Poynting vector distribution of the pump signal in the xOz plane. (b) The same Poynting vector distributions of SHG for our embedded structure at the PF wavelength (λ=1500nm). (c) Measured zero-order transmission spectrum (solid line) compared with the modeled transmission using the FDTD method (dashed line). Ri=65nm, Ro=135nm, p=300nm, and h=120nm.

Fig. 3.
Fig. 3.

Experimental setup for SHG measurements.

Fig. 4.
Fig. 4.

SHG enhancement factor measured as a function of the wavelength; results correspond to the shaded part of the theoretical curve displayed in the inset. τ is defined by the SHG signal generated from the embedded structure is compared to that generated from unpatterned x-cut LiNbO3.

Fig. 5.
Fig. 5.

(a) Linear response of the symmetric structure as well as the SHG enhancement factor. (b) Normalized spatial Poynting vector distribution of the SHG signal for a symmetric configuration, where air is replaced by LiNbO3 at λ=1500nm.

Fig. 6.
Fig. 6.

Incident polarization-dependent SH emission from the embedded structure. The solid blue line represents the simulated response, and dots correspond to the experimental results.

Fig. 7.
Fig. 7.

Linear optical transmission of Ag AAA with different geometrical parameters and having lithium niobate as substrate for (a) and (c); (b) has SiO2 as a substrate. The table displays the SHG strength for each type of nanostructure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PNLz=d31Ex2+d31Ey2+d33Ez2,

Metrics