Abstract

We investigate control of the propagation dynamics of weak twin laser pulses and propose a dual-optical switching scheme in four-level semiconductor quantum dots of diamond configuration. It is shown that the propagation dynamics of the two probe pulses depend not only on the intensity of corresponding control field in each cascade transition path but also on the relative intensities of the two control fields. This property provides the probability for realizing all-optical switching in the quantum dots. Possible all-optical switching operations for any one of the probe fields or both probe fields simultaneously with the same or adverse switching status can be realized by modulating the corresponding control fields. In addition, the relative phase of the laser fields also influences the switching operation and can be used to realize optical switching, which is also discussed in the paper.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [CrossRef]
  2. M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
    [CrossRef]
  3. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  4. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference, ” Phys. Rev. Lett. 81, 3611–3614 (1998).
    [CrossRef]
  5. E. A. Korsunsky and D. V. Kosachiov, “Phase-dependent nonlinear optics with double-Λ atoms, ” Phys. Rev. A 60, 4996–5009 (1999).
    [CrossRef]
  6. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
    [CrossRef]
  7. B. S. Ham and P. R. Hemmer, “Coherence switching in a four-level system: quantum switching,” Phys. Rev. Lett. 84, 4080–4083 (2000).
    [CrossRef]
  8. M. Yan, E. G. Rickey, and Y. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64, 013412 (2001).
    [CrossRef]
  9. S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
    [CrossRef]
  10. Y. Xue, G. Wang, J.-H. Wu, and J.-Y. Gao, “Optical gain properties in a coherently prepared four-level cold atomic system,” Phys. Rev. A 75, 063832 (2007).
    [CrossRef]
  11. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  12. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
    [CrossRef]
  13. S. E. Harris, “Electromagnetically induced transparency with matched pulses,” Phys. Rev. Lett. 70, 552–555 (1993).
    [CrossRef]
  14. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
    [CrossRef]
  15. H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
    [CrossRef]
  16. Y. Niu, S. Gong, R. Li, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005).
    [CrossRef]
  17. L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902 (2002).
    [CrossRef]
  18. Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
    [CrossRef]
  19. Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
    [CrossRef]
  20. T. Hong, “Spatial weak-light solitons in an electromagnetically induced nonlinear waveguide,” Phys. Rev. Lett. 90, 183901 (2003).
    [CrossRef]
  21. H. Michinel, M. J. Paz-Alonso, and V. M. Pérez-Garca, “Turning light into a liquid via atomic coherence,” Phys. Rev. Lett. 96, 023903 (2006).
    [CrossRef]
  22. C. Hang, G. X. Huang, and L. Deng, “Stable high-dimensional spatial weak-light solitons in a resonant three-state atomic system,” Phys. Rev. E 74, 046601 (2006).
    [CrossRef]
  23. I. Friedler, G. Kurizki, O. Cohen, and M. Segev, “Spatial Thirring-type solitons via electromagnetically induced transparency,” Opt. Lett. 30, 3374–3376 (2005).
    [CrossRef]
  24. G. X. Huang, C. Hang, and L. Deng, “Gain-assisted superluminal optical solitons at very low light intensity,” Phys. Rev. A 77, 011803 (2008).
    [CrossRef]
  25. L.-G. Si, W.-X. Yang, X.-Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82, 013836 (2010).
    [CrossRef]
  26. Y. Qi, F. Zhou, T. Huang, Y. Niu, and S. Gong, “Spatial vector solitons in a four-level tripod-type atomic system,” Phys. Rev. A 84, 023814 (2011).
    [CrossRef]
  27. M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
    [CrossRef]
  28. W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003).
    [CrossRef]
  29. H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
    [CrossRef]
  30. J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
    [CrossRef]
  31. D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59, 12212–12215 (1999).
    [CrossRef]
  32. M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175 (2006).
    [CrossRef]
  33. C. Yuan and K. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052115 (2006).
    [CrossRef]
  34. H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
    [CrossRef]
  35. C. Zhu and G. Huang, “Giant Kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well,” Opt. Express 19, 23364–23376 (2011).
    [CrossRef]
  36. Y. Qi, Y. Niu, Y. Xiang, H. Wang, and S. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
    [CrossRef]
  37. S. F. Yelin and P. R. Hemmer, “Resonantly enhanced nonlinear optics in semiconductor quantum wells: an application to sensitive infrared detection,” Phys. Rev. A 66, 013803 (2002).
    [CrossRef]
  38. E. Paspalakis, “Localizing two interacting electrons in a driven quantum dot molecule,” Phys. Rev. B 67, 233306 (2003).
    [CrossRef]
  39. E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
    [CrossRef]
  40. B. D. Gerardot, D. Brunner, P. A. Dalgarno, K. Karrai, A. Badolato, P. M. Petroff, and R. J. Warburton, “Dressed excitonic states and quantum interference in a three-level quantum dot ladder system,” New J. Phys. 11, 013028 (2009).
    [CrossRef]
  41. M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801 (2001).
    [CrossRef]
  42. D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003).
    [CrossRef]
  43. Y. F. Chen, Z. H. Tsai, Y. C. Liu, and I. A. Yu, “Low-light-level photon switching by quantum interference,” Opt. Lett. 30, 3207–3209 (2005).
    [CrossRef]
  44. M. A. Antón, O. G. Calderón, S. Melle, I. Gonzalo, and F. Carreño, “All-optical switching and storage in a four-level tripod-type atomic system,” Opt. Commun. 268, 146–154 (2006).
    [CrossRef]
  45. H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73, 011802 (2006).
    [CrossRef]
  46. D. D. Yavuz, “All-optical femtosecond switch using two-photon absorption,” Phys. Rev. A 74, 053804 (2006).
    [CrossRef]
  47. J. H. Li, R. Yu, L. G. Si, and X. X. Yang, “Propagation of twin light pulses under magneto-optical switching operations in a four-level inverted-Y atomic medium,” J. Phys. B 43, 065502 (2010).
    [CrossRef]
  48. Y. Qi, Y. Niu, F. Zhou, Y. Peng, and S. Gong, “Phase control of coherent pulse propagation and switching based on electromagnetically induced transparency in a four-level atomic system,” J. Phys. B 44, 085502 (2011).
    [CrossRef]
  49. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
    [CrossRef]
  50. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
    [CrossRef]
  51. J. Gea-Banacloche, M. Mumba, and M. Xiao, “Optical switching in arrays of quantum dots with dipole–dipole interactions,” Phys. Rev. B 74, 165330 (2006).
    [CrossRef]
  52. M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “All-optical control of the time delay in a one-dimensional photonic bandgap formed by double-quantum-wells,” Opt. Commun. 281, 644–654 (2008).
    [CrossRef]
  53. J. Li, R. Yu, and X. Yang, “Design of electro-optic switching via a photonic crystal cavity coupled to a quantum-dot molecule and waveguides,” Phys. Lett. A 374, 3762–3767 (2010).
    [CrossRef]
  54. S. J. Buckle, S. M. Barnett, P. L. Knight, M. A. Lauder, and D. T. Pegg, “Atomic interferometers: phase-dependence in multilevel atomic transitions,” Optica Acta 33, 1129–1140 (1986).
    [CrossRef]
  55. Y. Xue, Q.-Y. He, G. C. LaRocca, M. Artoni, J.-H. Xu, and J.-Y. Gao, “Dynamic control of four-wave-mixing enhancement in coherently driven four-level atoms,” Phys. Rev. A 73, 013816 (2006).
    [CrossRef]
  56. K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, and G. Weimann, “Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure,” Phys. Rev. Lett. 73, 1138–1141 (1994).
    [CrossRef]
  57. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
    [CrossRef]
  58. W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Control of fine-structure splitting and biexciton binding in InxGa1−xAs quantum dots by annealing,” Phys. Rev. B 69, 161301 (2004).
    [CrossRef]
  59. W.-X. Yang, A.-X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
    [CrossRef]
  60. C. Ding, X. Hao, J. Li, and X. Yang, “Efficient generation of maximally entangled states via four-wave mixing in a semiconductor quantum-dot nanostructure,” Phys. Lett. A 374, 680–686 (2010).
    [CrossRef]
  61. X. Hao, J. Wu, and Y. Wang, “Steady-state absorption–dispersion properties and four-wave mixing process in a quantum dot nanostructure,” J. Opt. Soc. Am. B 29, 420–428 (2012).
    [CrossRef]
  62. J. Faist, F. Capasso, C. Sirtori, K. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
    [CrossRef]
  63. G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
    [CrossRef]
  64. D. Kosachiov, B. Matisov, and Y. Rozhdestvensky, “Coherent population trapping: sensitivity of an atomic system to the relative phase of exciting fields,” Opt. Commun. 85, 209–212 (1991).
    [CrossRef]
  65. W. Maichen, R. Gaggl, E. Korsunsky, and L. Windholz, “Observation of phase-dependent coherent population trapping in optically closed atomic systems,” Europhys. Lett. 31, 189–194 (1995).
    [CrossRef]
  66. M. Paillard, X. Marie, P. Renucci, T. Amand, A. Jbeli, and J. M. Gerard, “Spin relaxation quenching in semiconductor quantum dots,” Phys. Rev. Lett. 86, 1634–1637 (2001).
    [CrossRef]
  67. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
    [CrossRef]
  68. M. Larqué, I. Robert-Philip, and A. Beveratos, “Bell inequalities and density matrix for polarization-entangled photons out of a two-photon cascade in a single quantum dot,” Phys. Rev. A 77, 042118 (2008).
    [CrossRef]
  69. J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004).
    [CrossRef]

2012

2011

C. Zhu and G. Huang, “Giant Kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well,” Opt. Express 19, 23364–23376 (2011).
[CrossRef]

Y. Qi, Y. Niu, F. Zhou, Y. Peng, and S. Gong, “Phase control of coherent pulse propagation and switching based on electromagnetically induced transparency in a four-level atomic system,” J. Phys. B 44, 085502 (2011).
[CrossRef]

W.-X. Yang, A.-X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
[CrossRef]

Y. Qi, F. Zhou, T. Huang, Y. Niu, and S. Gong, “Spatial vector solitons in a four-level tripod-type atomic system,” Phys. Rev. A 84, 023814 (2011).
[CrossRef]

Y. Qi, Y. Niu, Y. Xiang, H. Wang, and S. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
[CrossRef]

2010

L.-G. Si, W.-X. Yang, X.-Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82, 013836 (2010).
[CrossRef]

C. Ding, X. Hao, J. Li, and X. Yang, “Efficient generation of maximally entangled states via four-wave mixing in a semiconductor quantum-dot nanostructure,” Phys. Lett. A 374, 680–686 (2010).
[CrossRef]

J. H. Li, R. Yu, L. G. Si, and X. X. Yang, “Propagation of twin light pulses under magneto-optical switching operations in a four-level inverted-Y atomic medium,” J. Phys. B 43, 065502 (2010).
[CrossRef]

J. Li, R. Yu, and X. Yang, “Design of electro-optic switching via a photonic crystal cavity coupled to a quantum-dot molecule and waveguides,” Phys. Lett. A 374, 3762–3767 (2010).
[CrossRef]

2009

B. D. Gerardot, D. Brunner, P. A. Dalgarno, K. Karrai, A. Badolato, P. M. Petroff, and R. J. Warburton, “Dressed excitonic states and quantum interference in a three-level quantum dot ladder system,” New J. Phys. 11, 013028 (2009).
[CrossRef]

2008

G. X. Huang, C. Hang, and L. Deng, “Gain-assisted superluminal optical solitons at very low light intensity,” Phys. Rev. A 77, 011803 (2008).
[CrossRef]

M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “All-optical control of the time delay in a one-dimensional photonic bandgap formed by double-quantum-wells,” Opt. Commun. 281, 644–654 (2008).
[CrossRef]

M. Larqué, I. Robert-Philip, and A. Beveratos, “Bell inequalities and density matrix for polarization-entangled photons out of a two-photon cascade in a single quantum dot,” Phys. Rev. A 77, 042118 (2008).
[CrossRef]

2007

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
[CrossRef]

Y. Xue, G. Wang, J.-H. Wu, and J.-Y. Gao, “Optical gain properties in a coherently prepared four-level cold atomic system,” Phys. Rev. A 75, 063832 (2007).
[CrossRef]

2006

M. A. Antón, O. G. Calderón, S. Melle, I. Gonzalo, and F. Carreño, “All-optical switching and storage in a four-level tripod-type atomic system,” Opt. Commun. 268, 146–154 (2006).
[CrossRef]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73, 011802 (2006).
[CrossRef]

D. D. Yavuz, “All-optical femtosecond switch using two-photon absorption,” Phys. Rev. A 74, 053804 (2006).
[CrossRef]

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175 (2006).
[CrossRef]

C. Yuan and K. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052115 (2006).
[CrossRef]

H. Michinel, M. J. Paz-Alonso, and V. M. Pérez-Garca, “Turning light into a liquid via atomic coherence,” Phys. Rev. Lett. 96, 023903 (2006).
[CrossRef]

C. Hang, G. X. Huang, and L. Deng, “Stable high-dimensional spatial weak-light solitons in a resonant three-state atomic system,” Phys. Rev. E 74, 046601 (2006).
[CrossRef]

Y. Xue, Q.-Y. He, G. C. LaRocca, M. Artoni, J.-H. Xu, and J.-Y. Gao, “Dynamic control of four-wave-mixing enhancement in coherently driven four-level atoms,” Phys. Rev. A 73, 013816 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

J. Gea-Banacloche, M. Mumba, and M. Xiao, “Optical switching in arrays of quantum dots with dipole–dipole interactions,” Phys. Rev. B 74, 165330 (2006).
[CrossRef]

2005

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Y. F. Chen, Z. H. Tsai, Y. C. Liu, and I. A. Yu, “Low-light-level photon switching by quantum interference,” Opt. Lett. 30, 3207–3209 (2005).
[CrossRef]

Y. Niu, S. Gong, R. Li, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005).
[CrossRef]

I. Friedler, G. Kurizki, O. Cohen, and M. Segev, “Spatial Thirring-type solitons via electromagnetically induced transparency,” Opt. Lett. 30, 3374–3376 (2005).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

2004

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef]

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Control of fine-structure splitting and biexciton binding in InxGa1−xAs quantum dots by annealing,” Phys. Rev. B 69, 161301 (2004).
[CrossRef]

2003

T. Hong, “Spatial weak-light solitons in an electromagnetically induced nonlinear waveguide,” Phys. Rev. Lett. 90, 183901 (2003).
[CrossRef]

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003).
[CrossRef]

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[CrossRef]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003).
[CrossRef]

E. Paspalakis, “Localizing two interacting electrons in a driven quantum dot molecule,” Phys. Rev. B 67, 233306 (2003).
[CrossRef]

2002

S. F. Yelin and P. R. Hemmer, “Resonantly enhanced nonlinear optics in semiconductor quantum wells: an application to sensitive infrared detection,” Phys. Rev. A 66, 013803 (2002).
[CrossRef]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902 (2002).
[CrossRef]

2001

M. Paillard, X. Marie, P. Renucci, T. Amand, A. Jbeli, and J. M. Gerard, “Spin relaxation quenching in semiconductor quantum dots,” Phys. Rev. Lett. 86, 1634–1637 (2001).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801 (2001).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64, 013412 (2001).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

2000

B. S. Ham and P. R. Hemmer, “Coherence switching in a four-level system: quantum switching,” Phys. Rev. Lett. 84, 4080–4083 (2000).
[CrossRef]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

E. A. Korsunsky and D. V. Kosachiov, “Phase-dependent nonlinear optics with double-Λ atoms, ” Phys. Rev. A 60, 4996–5009 (1999).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59, 12212–12215 (1999).
[CrossRef]

1998

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference, ” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

1997

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, K. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[CrossRef]

1996

1995

W. Maichen, R. Gaggl, E. Korsunsky, and L. Windholz, “Observation of phase-dependent coherent population trapping in optically closed atomic systems,” Europhys. Lett. 31, 189–194 (1995).
[CrossRef]

1994

K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, and G. Weimann, “Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure,” Phys. Rev. Lett. 73, 1138–1141 (1994).
[CrossRef]

1993

S. E. Harris, “Electromagnetically induced transparency with matched pulses,” Phys. Rev. Lett. 70, 552–555 (1993).
[CrossRef]

1991

D. Kosachiov, B. Matisov, and Y. Rozhdestvensky, “Coherent population trapping: sensitivity of an atomic system to the relative phase of exciting fields,” Opt. Commun. 85, 209–212 (1991).
[CrossRef]

1989

S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
[CrossRef]

1986

S. J. Buckle, S. M. Barnett, P. L. Knight, M. A. Lauder, and D. T. Pegg, “Atomic interferometers: phase-dependence in multilevel atomic transitions,” Optica Acta 33, 1129–1140 (1986).
[CrossRef]

Abstreiter, G.

K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, and G. Weimann, “Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure,” Phys. Rev. Lett. 73, 1138–1141 (1994).
[CrossRef]

Amand, T.

M. Paillard, X. Marie, P. Renucci, T. Amand, A. Jbeli, and J. M. Gerard, “Spin relaxation quenching in semiconductor quantum dots,” Phys. Rev. Lett. 86, 1634–1637 (2001).
[CrossRef]

Antón, M. A.

M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “All-optical control of the time delay in a one-dimensional photonic bandgap formed by double-quantum-wells,” Opt. Commun. 281, 644–654 (2008).
[CrossRef]

M. A. Antón, O. G. Calderón, S. Melle, I. Gonzalo, and F. Carreño, “All-optical switching and storage in a four-level tripod-type atomic system,” Opt. Commun. 268, 146–154 (2006).
[CrossRef]

Artoni, M.

Y. Xue, Q.-Y. He, G. C. LaRocca, M. Artoni, J.-H. Xu, and J.-Y. Gao, “Dynamic control of four-wave-mixing enhancement in coherently driven four-level atoms,” Phys. Rev. A 73, 013816 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Badolato, A.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, K. Karrai, A. Badolato, P. M. Petroff, and R. J. Warburton, “Dressed excitonic states and quantum interference in a three-level quantum dot ladder system,” New J. Phys. 11, 013028 (2009).
[CrossRef]

Balic, V.

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003).
[CrossRef]

Barnett, S. M.

S. J. Buckle, S. M. Barnett, P. L. Knight, M. A. Lauder, and D. T. Pegg, “Atomic interferometers: phase-dependence in multilevel atomic transitions,” Optica Acta 33, 1129–1140 (1986).
[CrossRef]

Bassani, F.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Beck, M.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175 (2006).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Beveratos, A.

M. Larqué, I. Robert-Philip, and A. Beveratos, “Bell inequalities and density matrix for polarization-entangled photons out of a two-photon cascade in a single quantum dot,” Phys. Rev. A 77, 042118 (2008).
[CrossRef]

Bimberg, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Binder, R.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

Böhm, G.

K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, and G. Weimann, “Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure,” Phys. Rev. Lett. 73, 1138–1141 (1994).
[CrossRef]

Borri, P.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Control of fine-structure splitting and biexciton binding in InxGa1−xAs quantum dots by annealing,” Phys. Rev. B 69, 161301 (2004).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Braje, D. A.

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003).
[CrossRef]

Brunner, D.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, K. Karrai, A. Badolato, P. M. Petroff, and R. J. Warburton, “Dressed excitonic states and quantum interference in a three-level quantum dot ladder system,” New J. Phys. 11, 013028 (2009).
[CrossRef]

Brunner, K.

K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, and G. Weimann, “Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure,” Phys. Rev. Lett. 73, 1138–1141 (1994).
[CrossRef]

Buckle, S. J.

S. J. Buckle, S. M. Barnett, P. L. Knight, M. A. Lauder, and D. T. Pegg, “Atomic interferometers: phase-dependence in multilevel atomic transitions,” Optica Acta 33, 1129–1140 (1986).
[CrossRef]

Calderón, O. G.

M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “All-optical control of the time delay in a one-dimensional photonic bandgap formed by double-quantum-wells,” Opt. Commun. 281, 644–654 (2008).
[CrossRef]

M. A. Antón, O. G. Calderón, S. Melle, I. Gonzalo, and F. Carreño, “All-optical switching and storage in a four-level tripod-type atomic system,” Opt. Commun. 268, 146–154 (2006).
[CrossRef]

Campman, K. L.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

Capasso, F.

J. Faist, F. Capasso, C. Sirtori, K. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[CrossRef]

Carreño, F.

M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “All-optical control of the time delay in a one-dimensional photonic bandgap formed by double-quantum-wells,” Opt. Commun. 281, 644–654 (2008).
[CrossRef]

M. A. Antón, O. G. Calderón, S. Melle, I. Gonzalo, and F. Carreño, “All-optical switching and storage in a four-level tripod-type atomic system,” Opt. Commun. 268, 146–154 (2006).
[CrossRef]

Chang-Hasnain, C. J.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004).
[CrossRef]

Chen, A.-X.

W.-X. Yang, A.-X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
[CrossRef]

Chen, Y. F.

Chow, W. W.

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003).
[CrossRef]

Chuang, S. L.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004).
[CrossRef]

Cohen, O.

Dalgarno, P. A.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, K. Karrai, A. Badolato, P. M. Petroff, and R. J. Warburton, “Dressed excitonic states and quantum interference in a three-level quantum dot ladder system,” New J. Phys. 11, 013028 (2009).
[CrossRef]

Deng, L.

G. X. Huang, C. Hang, and L. Deng, “Gain-assisted superluminal optical solitons at very low light intensity,” Phys. Rev. A 77, 011803 (2008).
[CrossRef]

C. Hang, G. X. Huang, and L. Deng, “Stable high-dimensional spatial weak-light solitons in a resonant three-state atomic system,” Phys. Rev. E 74, 046601 (2006).
[CrossRef]

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902 (2002).
[CrossRef]

Ding, C.

C. Ding, X. Hao, J. Li, and X. Yang, “Efficient generation of maximally entangled states via four-wave mixing in a semiconductor quantum-dot nanostructure,” Phys. Lett. A 374, 680–686 (2010).
[CrossRef]

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Dynes, J. F.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175 (2006).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

Faist, J.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175 (2006).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, K. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

Friedler, I.

Frogley, M. D.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175 (2006).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

Gaggl, R.

W. Maichen, R. Gaggl, E. Korsunsky, and L. Windholz, “Observation of phase-dependent coherent population trapping in optically closed atomic systems,” Europhys. Lett. 31, 189–194 (1995).
[CrossRef]

Gammon, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Gao, J. Y.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Gao, J.-Y.

Y. Xue, G. Wang, J.-H. Wu, and J.-Y. Gao, “Optical gain properties in a coherently prepared four-level cold atomic system,” Phys. Rev. A 75, 063832 (2007).
[CrossRef]

Y. Xue, Q.-Y. He, G. C. LaRocca, M. Artoni, J.-H. Xu, and J.-Y. Gao, “Dynamic control of four-wave-mixing enhancement in coherently driven four-level atoms,” Phys. Rev. A 73, 013816 (2006).
[CrossRef]

Gea-Banacloche, J.

J. Gea-Banacloche, M. Mumba, and M. Xiao, “Optical switching in arrays of quantum dots with dipole–dipole interactions,” Phys. Rev. B 74, 165330 (2006).
[CrossRef]

Gerard, J. M.

M. Paillard, X. Marie, P. Renucci, T. Amand, A. Jbeli, and J. M. Gerard, “Spin relaxation quenching in semiconductor quantum dots,” Phys. Rev. Lett. 86, 1634–1637 (2001).
[CrossRef]

Gerardot, B. D.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, K. Karrai, A. Badolato, P. M. Petroff, and R. J. Warburton, “Dressed excitonic states and quantum interference in a three-level quantum dot ladder system,” New J. Phys. 11, 013028 (2009).
[CrossRef]

Gong, S.

Y. Qi, F. Zhou, T. Huang, Y. Niu, and S. Gong, “Spatial vector solitons in a four-level tripod-type atomic system,” Phys. Rev. A 84, 023814 (2011).
[CrossRef]

Y. Qi, Y. Niu, Y. Xiang, H. Wang, and S. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
[CrossRef]

Y. Qi, Y. Niu, F. Zhou, Y. Peng, and S. Gong, “Phase control of coherent pulse propagation and switching based on electromagnetically induced transparency in a four-level atomic system,” J. Phys. B 44, 085502 (2011).
[CrossRef]

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
[CrossRef]

Y. Niu, S. Gong, R. Li, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005).
[CrossRef]

Gonzalo, I.

M. A. Antón, O. G. Calderón, S. Melle, I. Gonzalo, and F. Carreño, “All-optical switching and storage in a four-level tripod-type atomic system,” Opt. Commun. 268, 146–154 (2006).
[CrossRef]

Goorskey, D.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

Gossard, A. C.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

Hagley, E. W.

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902 (2002).
[CrossRef]

Ham, B. S.

B. S. Ham and P. R. Hemmer, “Coherence switching in a four-level system: quantum switching,” Phys. Rev. Lett. 84, 4080–4083 (2000).
[CrossRef]

Hang, C.

G. X. Huang, C. Hang, and L. Deng, “Gain-assisted superluminal optical solitons at very low light intensity,” Phys. Rev. A 77, 011803 (2008).
[CrossRef]

C. Hang, G. X. Huang, and L. Deng, “Stable high-dimensional spatial weak-light solitons in a resonant three-state atomic system,” Phys. Rev. E 74, 046601 (2006).
[CrossRef]

Hao, X.

X. Hao, J. Wu, and Y. Wang, “Steady-state absorption–dispersion properties and four-wave mixing process in a quantum dot nanostructure,” J. Opt. Soc. Am. B 29, 420–428 (2012).
[CrossRef]

L.-G. Si, W.-X. Yang, X.-Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82, 013836 (2010).
[CrossRef]

C. Ding, X. Hao, J. Li, and X. Yang, “Efficient generation of maximally entangled states via four-wave mixing in a semiconductor quantum-dot nanostructure,” Phys. Lett. A 374, 680–686 (2010).
[CrossRef]

Harris, S. E.

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference, ” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency with matched pulses,” Phys. Rev. Lett. 70, 552–555 (1993).
[CrossRef]

S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

He, Q.-Y.

Y. Xue, Q.-Y. He, G. C. LaRocca, M. Artoni, J.-H. Xu, and J.-Y. Gao, “Dynamic control of four-wave-mixing enhancement in coherently driven four-level atoms,” Phys. Rev. A 73, 013816 (2006).
[CrossRef]

Hemmer, P. R.

S. F. Yelin and P. R. Hemmer, “Resonantly enhanced nonlinear optics in semiconductor quantum wells: an application to sensitive infrared detection,” Phys. Rev. A 66, 013803 (2002).
[CrossRef]

B. S. Ham and P. R. Hemmer, “Coherence switching in a four-level system: quantum switching,” Phys. Rev. Lett. 84, 4080–4083 (2000).
[CrossRef]

Hernandez, G.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73, 011802 (2006).
[CrossRef]

Hong, T.

T. Hong, “Spatial weak-light solitons in an electromagnetically induced nonlinear waveguide,” Phys. Rev. Lett. 90, 183901 (2003).
[CrossRef]

Huang, G.

Huang, G. X.

G. X. Huang, C. Hang, and L. Deng, “Gain-assisted superluminal optical solitons at very low light intensity,” Phys. Rev. A 77, 011803 (2008).
[CrossRef]

C. Hang, G. X. Huang, and L. Deng, “Stable high-dimensional spatial weak-light solitons in a resonant three-state atomic system,” Phys. Rev. E 74, 046601 (2006).
[CrossRef]

Huang, T.

Y. Qi, F. Zhou, T. Huang, Y. Niu, and S. Gong, “Spatial vector solitons in a four-level tripod-type atomic system,” Phys. Rev. A 84, 023814 (2011).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59, 12212–12215 (1999).
[CrossRef]

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
[CrossRef]

Jbeli, A.

M. Paillard, X. Marie, P. Renucci, T. Amand, A. Jbeli, and J. M. Gerard, “Spin relaxation quenching in semiconductor quantum dots,” Phys. Rev. Lett. 86, 1634–1637 (2001).
[CrossRef]

Jin, S.

Kalini, A.

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

Kang, H.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73, 011802 (2006).
[CrossRef]

Karrai, K.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, K. Karrai, A. Badolato, P. M. Petroff, and R. J. Warburton, “Dressed excitonic states and quantum interference in a three-level quantum dot ladder system,” New J. Phys. 11, 013028 (2009).
[CrossRef]

Katzer, D. S.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Kim, J.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004).
[CrossRef]

Knight, P. L.

S. J. Buckle, S. M. Barnett, P. L. Knight, M. A. Lauder, and D. T. Pegg, “Atomic interferometers: phase-dependence in multilevel atomic transitions,” Optica Acta 33, 1129–1140 (1986).
[CrossRef]

Korsunsky, E.

W. Maichen, R. Gaggl, E. Korsunsky, and L. Windholz, “Observation of phase-dependent coherent population trapping in optically closed atomic systems,” Europhys. Lett. 31, 189–194 (1995).
[CrossRef]

Korsunsky, E. A.

E. A. Korsunsky and D. V. Kosachiov, “Phase-dependent nonlinear optics with double-Λ atoms, ” Phys. Rev. A 60, 4996–5009 (1999).
[CrossRef]

Kosachiov, D.

D. Kosachiov, B. Matisov, and Y. Rozhdestvensky, “Coherent population trapping: sensitivity of an atomic system to the relative phase of exciting fields,” Opt. Commun. 85, 209–212 (1991).
[CrossRef]

Kosachiov, D. V.

E. A. Korsunsky and D. V. Kosachiov, “Phase-dependent nonlinear optics with double-Λ atoms, ” Phys. Rev. A 60, 4996–5009 (1999).
[CrossRef]

Kozuma, M.

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902 (2002).
[CrossRef]

Ku, P. C.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004).
[CrossRef]

Kurizki, G.

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef]

Kwong, N. H.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

Langbein, W.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Control of fine-structure splitting and biexciton binding in InxGa1−xAs quantum dots by annealing,” Phys. Rev. B 69, 161301 (2004).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

LaRocca, G. C.

Y. Xue, Q.-Y. He, G. C. LaRocca, M. Artoni, J.-H. Xu, and J.-Y. Gao, “Dynamic control of four-wave-mixing enhancement in coherently driven four-level atoms,” Phys. Rev. A 73, 013816 (2006).
[CrossRef]

Larqué, M.

M. Larqué, I. Robert-Philip, and A. Beveratos, “Bell inequalities and density matrix for polarization-entangled photons out of a two-photon cascade in a single quantum dot,” Phys. Rev. A 77, 042118 (2008).
[CrossRef]

Lauder, M. A.

S. J. Buckle, S. M. Barnett, P. L. Knight, M. A. Lauder, and D. T. Pegg, “Atomic interferometers: phase-dependence in multilevel atomic transitions,” Optica Acta 33, 1129–1140 (1986).
[CrossRef]

Lee, R.-K.

W.-X. Yang, A.-X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
[CrossRef]

Li, J.

C. Ding, X. Hao, J. Li, and X. Yang, “Efficient generation of maximally entangled states via four-wave mixing in a semiconductor quantum-dot nanostructure,” Phys. Lett. A 374, 680–686 (2010).
[CrossRef]

J. Li, R. Yu, and X. Yang, “Design of electro-optic switching via a photonic crystal cavity coupled to a quantum-dot molecule and waveguides,” Phys. Lett. A 374, 3762–3767 (2010).
[CrossRef]

Li, J. H.

J. H. Li, R. Yu, L. G. Si, and X. X. Yang, “Propagation of twin light pulses under magneto-optical switching operations in a four-level inverted-Y atomic medium,” J. Phys. B 43, 065502 (2010).
[CrossRef]

Li, R.

Li, X.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Liang, X.

Liu, Y. C.

Lü, X.-Y.

L.-G. Si, W.-X. Yang, X.-Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82, 013836 (2010).
[CrossRef]

Lukin, M. D.

M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

Maichen, W.

W. Maichen, R. Gaggl, E. Korsunsky, and L. Windholz, “Observation of phase-dependent coherent population trapping in optically closed atomic systems,” Europhys. Lett. 31, 189–194 (1995).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Marie, X.

M. Paillard, X. Marie, P. Renucci, T. Amand, A. Jbeli, and J. M. Gerard, “Spin relaxation quenching in semiconductor quantum dots,” Phys. Rev. Lett. 86, 1634–1637 (2001).
[CrossRef]

Matisov, B.

D. Kosachiov, B. Matisov, and Y. Rozhdestvensky, “Coherent population trapping: sensitivity of an atomic system to the relative phase of exciting fields,” Opt. Commun. 85, 209–212 (1991).
[CrossRef]

Melle, S.

M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “All-optical control of the time delay in a one-dimensional photonic bandgap formed by double-quantum-wells,” Opt. Commun. 281, 644–654 (2008).
[CrossRef]

M. A. Antón, O. G. Calderón, S. Melle, I. Gonzalo, and F. Carreño, “All-optical switching and storage in a four-level tripod-type atomic system,” Opt. Commun. 268, 146–154 (2006).
[CrossRef]

Michinel, H.

H. Michinel, M. J. Paz-Alonso, and V. M. Pérez-Garca, “Turning light into a liquid via atomic coherence,” Phys. Rev. Lett. 96, 023903 (2006).
[CrossRef]

Mumba, M.

J. Gea-Banacloche, M. Mumba, and M. Xiao, “Optical switching in arrays of quantum dots with dipole–dipole interactions,” Phys. Rev. B 74, 165330 (2006).
[CrossRef]

Nikonov, D. E.

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59, 12212–12215 (1999).
[CrossRef]

Niu, Y.

Y. Qi, Y. Niu, F. Zhou, Y. Peng, and S. Gong, “Phase control of coherent pulse propagation and switching based on electromagnetically induced transparency in a four-level atomic system,” J. Phys. B 44, 085502 (2011).
[CrossRef]

Y. Qi, Y. Niu, Y. Xiang, H. Wang, and S. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
[CrossRef]

Y. Qi, F. Zhou, T. Huang, Y. Niu, and S. Gong, “Spatial vector solitons in a four-level tripod-type atomic system,” Phys. Rev. A 84, 023814 (2011).
[CrossRef]

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007).
[CrossRef]

Y. Niu, S. Gong, R. Li, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005).
[CrossRef]

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Paillard, M.

M. Paillard, X. Marie, P. Renucci, T. Amand, A. Jbeli, and J. M. Gerard, “Spin relaxation quenching in semiconductor quantum dots,” Phys. Rev. Lett. 86, 1634–1637 (2001).
[CrossRef]

Park, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Paspalakis, E.

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

E. Paspalakis, “Localizing two interacting electrons in a driven quantum dot molecule,” Phys. Rev. B 67, 233306 (2003).
[CrossRef]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef]

Payne, M. G.

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902 (2002).
[CrossRef]

Paz-Alonso, M. J.

H. Michinel, M. J. Paz-Alonso, and V. M. Pérez-Garca, “Turning light into a liquid via atomic coherence,” Phys. Rev. Lett. 96, 023903 (2006).
[CrossRef]

Pegg, D. T.

S. J. Buckle, S. M. Barnett, P. L. Knight, M. A. Lauder, and D. T. Pegg, “Atomic interferometers: phase-dependence in multilevel atomic transitions,” Optica Acta 33, 1129–1140 (1986).
[CrossRef]

Peng, Y.

Y. Qi, Y. Niu, F. Zhou, Y. Peng, and S. Gong, “Phase control of coherent pulse propagation and switching based on electromagnetically induced transparency in a four-level atomic system,” J. Phys. B 44, 085502 (2011).
[CrossRef]

Pérez-Garca, V. M.

H. Michinel, M. J. Paz-Alonso, and V. M. Pérez-Garca, “Turning light into a liquid via atomic coherence,” Phys. Rev. Lett. 96, 023903 (2006).
[CrossRef]

Petroff, P. M.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, K. Karrai, A. Badolato, P. M. Petroff, and R. J. Warburton, “Dressed excitonic states and quantum interference in a three-level quantum dot ladder system,” New J. Phys. 11, 013028 (2009).
[CrossRef]

Pfeiffer, L. N.

J. Faist, F. Capasso, C. Sirtori, K. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[CrossRef]

Phillips, C. C.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175 (2006).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef]

Phillips, M. C.

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003).
[CrossRef]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

Piermarocchi, C.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Qi, Y.

Y. Qi, Y. Niu, Y. Xiang, H. Wang, and S. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
[CrossRef]

Y. Qi, F. Zhou, T. Huang, Y. Niu, and S. Gong, “Spatial vector solitons in a four-level tripod-type atomic system,” Phys. Rev. A 84, 023814 (2011).
[CrossRef]

Y. Qi, Y. Niu, F. Zhou, Y. Peng, and S. Gong, “Phase control of coherent pulse propagation and switching based on electromagnetically induced transparency in a four-level atomic system,” J. Phys. B 44, 085502 (2011).
[CrossRef]

Renucci, P.

M. Paillard, X. Marie, P. Renucci, T. Amand, A. Jbeli, and J. M. Gerard, “Spin relaxation quenching in semiconductor quantum dots,” Phys. Rev. Lett. 86, 1634–1637 (2001).
[CrossRef]

Reuter, D.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Control of fine-structure splitting and biexciton binding in InxGa1−xAs quantum dots by annealing,” Phys. Rev. B 69, 161301 (2004).
[CrossRef]

Rickey, E. G.

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64, 013412 (2001).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801 (2001).
[CrossRef]

Robert-Philip, I.

M. Larqué, I. Robert-Philip, and A. Beveratos, “Bell inequalities and density matrix for polarization-entangled photons out of a two-photon cascade in a single quantum dot,” Phys. Rev. A 77, 042118 (2008).
[CrossRef]

Rocca, G. C. La

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Rodger, J.

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

Rozhdestvensky, Y.

D. Kosachiov, B. Matisov, and Y. Rozhdestvensky, “Coherent population trapping: sensitivity of an atomic system to the relative phase of exciting fields,” Opt. Commun. 85, 209–212 (1991).
[CrossRef]

Rumyantsev, I.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

Schmidt, H.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
[CrossRef]

Schneider, H. C.

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003).
[CrossRef]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Scully, M. O.

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59, 12212–12215 (1999).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

Segev, M.

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Serapiglia, G. B.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef]

Sham, L. J.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Si, L. G.

J. H. Li, R. Yu, L. G. Si, and X. X. Yang, “Propagation of twin light pulses under magneto-optical switching operations in a four-level inverted-Y atomic medium,” J. Phys. B 43, 065502 (2010).
[CrossRef]

Si, L.-G.

L.-G. Si, W.-X. Yang, X.-Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82, 013836 (2010).
[CrossRef]

Silvestri, L.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Sirtori, C.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, K. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[CrossRef]

Stavarache, V.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Control of fine-structure splitting and biexciton binding in InxGa1−xAs quantum dots by annealing,” Phys. Rev. B 69, 161301 (2004).
[CrossRef]

Steel, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Stievater, T. H.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Sun, H.

Takayama, R.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

Terzis, A. F.

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

Tränkle, G.

K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, and G. Weimann, “Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure,” Phys. Rev. Lett. 73, 1138–1141 (1994).
[CrossRef]

Tsai, Z. H.

Vodopyanov, K. L.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef]

Wang, G.

Y. Xue, G. Wang, J.-H. Wu, and J.-Y. Gao, “Optical gain properties in a coherently prepared four-level cold atomic system,” Phys. Rev. A 75, 063832 (2007).
[CrossRef]

Wang, H.

Y. Qi, Y. Niu, Y. Xiang, H. Wang, and S. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
[CrossRef]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef]

Wang, Y.

Warburton, R. J.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, K. Karrai, A. Badolato, P. M. Petroff, and R. J. Warburton, “Dressed excitonic states and quantum interference in a three-level quantum dot ladder system,” New J. Phys. 11, 013028 (2009).
[CrossRef]

Weimann, G.

K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, and G. Weimann, “Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure,” Phys. Rev. Lett. 73, 1138–1141 (1994).
[CrossRef]

West, K.

J. Faist, F. Capasso, C. Sirtori, K. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[CrossRef]

Wieck, A. D.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Control of fine-structure splitting and biexciton binding in InxGa1−xAs quantum dots by annealing,” Phys. Rev. B 69, 161301 (2004).
[CrossRef]

Windholz, L.

W. Maichen, R. Gaggl, E. Korsunsky, and L. Windholz, “Observation of phase-dependent coherent population trapping in optically closed atomic systems,” Europhys. Lett. 31, 189–194 (1995).
[CrossRef]

Woggon, U.

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Control of fine-structure splitting and biexciton binding in InxGa1−xAs quantum dots by annealing,” Phys. Rev. B 69, 161301 (2004).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Wu, J.

Wu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Wu, J.-H.

Y. Xue, G. Wang, J.-H. Wu, and J.-Y. Gao, “Optical gain properties in a coherently prepared four-level cold atomic system,” Phys. Rev. A 75, 063832 (2007).
[CrossRef]

Wu, Y.

W.-X. Yang, A.-X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef]

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Xiang, Y.

Y. Qi, Y. Niu, Y. Xiang, H. Wang, and S. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
[CrossRef]

Xiao, M.

J. Gea-Banacloche, M. Mumba, and M. Xiao, “Optical switching in arrays of quantum dots with dipole–dipole interactions,” Phys. Rev. B 74, 165330 (2006).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

Xu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

Xu, J.-H.

Y. Xue, Q.-Y. He, G. C. LaRocca, M. Artoni, J.-H. Xu, and J.-Y. Gao, “Dynamic control of four-wave-mixing enhancement in coherently driven four-level atoms,” Phys. Rev. A 73, 013816 (2006).
[CrossRef]

Xue, Y.

Y. Xue, G. Wang, J.-H. Wu, and J.-Y. Gao, “Optical gain properties in a coherently prepared four-level cold atomic system,” Phys. Rev. A 75, 063832 (2007).
[CrossRef]

Y. Xue, Q.-Y. He, G. C. LaRocca, M. Artoni, J.-H. Xu, and J.-Y. Gao, “Dynamic control of four-wave-mixing enhancement in coherently driven four-level atoms,” Phys. Rev. A 73, 013816 (2006).
[CrossRef]

Yamamoto, Y.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference, ” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

Yan, M.

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64, 013412 (2001).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801 (2001).
[CrossRef]

Yang, W.-X.

W.-X. Yang, A.-X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
[CrossRef]

L.-G. Si, W.-X. Yang, X.-Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82, 013836 (2010).
[CrossRef]

Yang, X.

L.-G. Si, W.-X. Yang, X.-Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82, 013836 (2010).
[CrossRef]

J. Li, R. Yu, and X. Yang, “Design of electro-optic switching via a photonic crystal cavity coupled to a quantum-dot molecule and waveguides,” Phys. Lett. A 374, 3762–3767 (2010).
[CrossRef]

C. Ding, X. Hao, J. Li, and X. Yang, “Efficient generation of maximally entangled states via four-wave mixing in a semiconductor quantum-dot nanostructure,” Phys. Lett. A 374, 680–686 (2010).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Yang, X. X.

J. H. Li, R. Yu, L. G. Si, and X. X. Yang, “Propagation of twin light pulses under magneto-optical switching operations in a four-level inverted-Y atomic medium,” J. Phys. B 43, 065502 (2010).
[CrossRef]

Yavuz, D. D.

D. D. Yavuz, “All-optical femtosecond switch using two-photon absorption,” Phys. Rev. A 74, 053804 (2006).
[CrossRef]

Yelin, S. F.

S. F. Yelin and P. R. Hemmer, “Resonantly enhanced nonlinear optics in semiconductor quantum wells: an application to sensitive infrared detection,” Phys. Rev. A 66, 013803 (2002).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

Yin, G. Y.

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003).
[CrossRef]

Yu, I. A.

Yu, R.

J. H. Li, R. Yu, L. G. Si, and X. X. Yang, “Propagation of twin light pulses under magneto-optical switching operations in a four-level inverted-Y atomic medium,” J. Phys. B 43, 065502 (2010).
[CrossRef]

J. Li, R. Yu, and X. Yang, “Design of electro-optic switching via a photonic crystal cavity coupled to a quantum-dot molecule and waveguides,” Phys. Lett. A 374, 3762–3767 (2010).
[CrossRef]

Yuan, C.

C. Yuan and K. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052115 (2006).
[CrossRef]

Zhang, J.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73, 011802 (2006).
[CrossRef]

Zhou, F.

Y. Qi, Y. Niu, F. Zhou, Y. Peng, and S. Gong, “Phase control of coherent pulse propagation and switching based on electromagnetically induced transparency in a four-level atomic system,” J. Phys. B 44, 085502 (2011).
[CrossRef]

Y. Qi, F. Zhou, T. Huang, Y. Niu, and S. Gong, “Spatial vector solitons in a four-level tripod-type atomic system,” Phys. Rev. A 84, 023814 (2011).
[CrossRef]

Zhu, C.

Zhu, K.

C. Yuan and K. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052115 (2006).
[CrossRef]

Zhu, Y.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73, 011802 (2006).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801 (2001).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64, 013412 (2001).
[CrossRef]

Appl. Phys. Lett.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
[CrossRef]

C. Yuan and K. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052115 (2006).
[CrossRef]

Europhys. Lett.

W. Maichen, R. Gaggl, E. Korsunsky, and L. Windholz, “Observation of phase-dependent coherent population trapping in optically closed atomic systems,” Europhys. Lett. 31, 189–194 (1995).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

J. H. Li, R. Yu, L. G. Si, and X. X. Yang, “Propagation of twin light pulses under magneto-optical switching operations in a four-level inverted-Y atomic medium,” J. Phys. B 43, 065502 (2010).
[CrossRef]

Y. Qi, Y. Niu, F. Zhou, Y. Peng, and S. Gong, “Phase control of coherent pulse propagation and switching based on electromagnetically induced transparency in a four-level atomic system,” J. Phys. B 44, 085502 (2011).
[CrossRef]

J. Phys. Condens. Matter

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004).
[CrossRef]

Nat. Mater.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175 (2006).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, K. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
[CrossRef]

New J. Phys.

B. D. Gerardot, D. Brunner, P. A. Dalgarno, K. Karrai, A. Badolato, P. M. Petroff, and R. J. Warburton, “Dressed excitonic states and quantum interference in a three-level quantum dot ladder system,” New J. Phys. 11, 013028 (2009).
[CrossRef]

Opt. Commun.

M. A. Antón, O. G. Calderón, S. Melle, I. Gonzalo, and F. Carreño, “All-optical switching and storage in a four-level tripod-type atomic system,” Opt. Commun. 268, 146–154 (2006).
[CrossRef]

Y. Qi, Y. Niu, Y. Xiang, H. Wang, and S. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
[CrossRef]

D. Kosachiov, B. Matisov, and Y. Rozhdestvensky, “Coherent population trapping: sensitivity of an atomic system to the relative phase of exciting fields,” Opt. Commun. 85, 209–212 (1991).
[CrossRef]

M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “All-optical control of the time delay in a one-dimensional photonic bandgap formed by double-quantum-wells,” Opt. Commun. 281, 644–654 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Optica Acta

S. J. Buckle, S. M. Barnett, P. L. Knight, M. A. Lauder, and D. T. Pegg, “Atomic interferometers: phase-dependence in multilevel atomic transitions,” Optica Acta 33, 1129–1140 (1986).
[CrossRef]

Phys. Lett. A

J. Li, R. Yu, and X. Yang, “Design of electro-optic switching via a photonic crystal cavity coupled to a quantum-dot molecule and waveguides,” Phys. Lett. A 374, 3762–3767 (2010).
[CrossRef]

C. Ding, X. Hao, J. Li, and X. Yang, “Efficient generation of maximally entangled states via four-wave mixing in a semiconductor quantum-dot nanostructure,” Phys. Lett. A 374, 680–686 (2010).
[CrossRef]

Phys. Rev. A

W.-X. Yang, A.-X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011).
[CrossRef]

Y. Xue, Q.-Y. He, G. C. LaRocca, M. Artoni, J.-H. Xu, and J.-Y. Gao, “Dynamic control of four-wave-mixing enhancement in coherently driven four-level atoms,” Phys. Rev. A 73, 013816 (2006).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

M. Larqué, I. Robert-Philip, and A. Beveratos, “Bell inequalities and density matrix for polarization-entangled photons out of a two-photon cascade in a single quantum dot,” Phys. Rev. A 77, 042118 (2008).
[CrossRef]

S. F. Yelin and P. R. Hemmer, “Resonantly enhanced nonlinear optics in semiconductor quantum wells: an application to sensitive infrared detection,” Phys. Rev. A 66, 013803 (2002).
[CrossRef]

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003).
[CrossRef]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73, 011802 (2006).
[CrossRef]

D. D. Yavuz, “All-optical femtosecond switch using two-photon absorption,” Phys. Rev. A 74, 053804 (2006).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801 (2001).
[CrossRef]

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006).
[CrossRef]

G. X. Huang, C. Hang, and L. Deng, “Gain-assisted superluminal optical solitons at very low light intensity,” Phys. Rev. A 77, 011803 (2008).
[CrossRef]

L.-G. Si, W.-X. Yang, X.-Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82, 013836 (2010).
[CrossRef]

Y. Qi, F. Zhou, T. Huang, Y. Niu, and S. Gong, “Spatial vector solitons in a four-level tripod-type atomic system,” Phys. Rev. A 84, 023814 (2011).
[CrossRef]

E. A. Korsunsky and D. V. Kosachiov, “Phase-dependent nonlinear optics with double-Λ atoms, ” Phys. Rev. A 60, 4996–5009 (1999).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64, 013412 (2001).
[CrossRef]

Y. Xue, G. Wang, J.-H. Wu, and J.-Y. Gao, “Optical gain properties in a coherently prepared four-level cold atomic system,” Phys. Rev. A 75, 063832 (2007).
[CrossRef]

Phys. Rev. B

J. Gea-Banacloche, M. Mumba, and M. Xiao, “Optical switching in arrays of quantum dots with dipole–dipole interactions,” Phys. Rev. B 74, 165330 (2006).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59, 12212–12215 (1999).
[CrossRef]

E. Paspalakis, “Localizing two interacting electrons in a driven quantum dot molecule,” Phys. Rev. B 67, 233306 (2003).
[CrossRef]

E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006).
[CrossRef]

W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Control of fine-structure splitting and biexciton binding in InxGa1−xAs quantum dots by annealing,” Phys. Rev. B 69, 161301 (2004).
[CrossRef]

Phys. Rev. E

C. Hang, G. X. Huang, and L. Deng, “Stable high-dimensional spatial weak-light solitons in a resonant three-state atomic system,” Phys. Rev. E 74, 046601 (2006).
[CrossRef]

Phys. Rev. Lett.

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef]

T. Hong, “Spatial weak-light solitons in an electromagnetically induced nonlinear waveguide,” Phys. Rev. Lett. 90, 183901 (2003).
[CrossRef]

H. Michinel, M. J. Paz-Alonso, and V. M. Pérez-Garca, “Turning light into a liquid via atomic coherence,” Phys. Rev. Lett. 96, 023903 (2006).
[CrossRef]

K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, and G. Weimann, “Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure,” Phys. Rev. Lett. 73, 1138–1141 (1994).
[CrossRef]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902 (2002).
[CrossRef]

M. Paillard, X. Marie, P. Renucci, T. Amand, A. Jbeli, and J. M. Gerard, “Spin relaxation quenching in semiconductor quantum dots,” Phys. Rev. Lett. 86, 1634–1637 (2001).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005).
[CrossRef]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference, ” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
[CrossRef]

B. S. Ham and P. R. Hemmer, “Coherence switching in a four-level system: quantum switching,” Phys. Rev. Lett. 84, 4080–4083 (2000).
[CrossRef]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency with matched pulses,” Phys. Rev. Lett. 70, 552–555 (1993).
[CrossRef]

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef]

Phys. Today

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Rev. Mod. Phys.

M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Science

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Energy level diagram and (b) corresponding laser excitation scheme of the GaAs/AlxGa1xAs semiconductor QD under investigation.

Fig. 2.
Fig. 2.

Dependence of the probe absorption Im(ρ10(1)) and Im(ρ20(1)) on the relative phase of laser fields for (a) Ωc1=Ωc2=10γ, Ωp1=Ωp2=0.1γ, Δ1=Δ2=0.5γ and (b) Ωc1=10γ, Ωp1=0.1γ, Ωc2=15γ, Ωp2=0.15γ, Δ1=Δ2=0. Other parameters are given in the text.

Fig. 3.
Fig. 3.

Dependence of Im(ρ10) (red curve) and Im(ρ20) (blue curve) on Ωc1 for Ωc2=10γ, Δ2=0.5γ, ϕ=2nπ. Other parameters are the same as in Fig. 2(a).

Fig. 4.
Fig. 4.

Spatiotemporal evolution of the normalized envelopes of the two probe pulses (a) Ωp1 and (b) Ωp2 with Ω10=Ω20=0.1γ, Ωc1=0, Ωc2=10γ. Other parameters are the same as in Fig. 3.

Fig. 5.
Fig. 5.

Spatiotemporal evolution of the normalized envelopes of the two probe pulses (a), (c) Ωp1 and (b), (d) Ωp2 with (a), (b): Ωc1=Ωc2=10γ and (c), (d): Ωc1=Ωc2=0. Other parameters are the same as in Fig. 4.

Fig. 6.
Fig. 6.

Time evolution of two CW probe fields Ωp1 and Ωp2 normalized by their initial maximum amplitudes at the propagation distance ξ=20/α.

Fig. 7.
Fig. 7.

Dependences of Im(ρ10) (red curve) and Im(ρ20) (blue curve) on Ωp1 for (a) Ωc1=10γ, Ωc2=5γ and (b) Ωc1=10γ, Ωc2=15γ. Other parameters are the same as in Fig. 3.

Fig. 8.
Fig. 8.

Spatiotemporal evolution of the normalized envelopes of the two probe pulses (a), (c) Ωp1 and (b), (d) Ωp2 with Ωc1=10γ, Ωc2=5γ and (a), (b): Ω10=Ω20=0.1γ; (c), (d): Ω10=0.2γ, Ω20=0.1γ. Other parameters are the same as in Fig. 4.

Fig. 9.
Fig. 9.

Time evolution of two CW probe fields Ωp1 and Ωp2 normalized by their initial maximum amplitudes at the propagation distance ξ=20/α.

Fig. 10.
Fig. 10.

Time evolution of two CW probe fields Ωp1 and Ωp2 normalized by their initial maximum amplitudes at the propagation distance ξ=20/α. The phase modulation is given in the text, and other parameters are the same as in Fig. 2(a).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H=i=13Δi|ii|(Ωp1|10|+Ωp2|20|+Ωc1|31|+Ωc2eiϕ|32|+H.c.),
ρ˙11=i(Ωp1ρ01Ωp1*ρ10+Ωc1*ρ31Ωc1ρ13)γ1lρ11,ρ˙22=i(Ωp2ρ02Ωp2*ρ20+Ω˜c2*ρ32Ω˜c2ρ23)γ2lρ22,ρ˙33=i(Ω˜c2ρ23Ω˜c2*ρ32+Ωc1ρ13Ωc1*ρ31)γ3lρ33,ρ˙10=i[d1ρ10+Ωp1(ρ00ρ11)+Ωc1*ρ30Ωp2ρ12],ρ˙20=i[d2ρ20+Ωp2(ρ00ρ22)+Ω˜c2*ρ30Ωp1ρ21],ρ˙30=i(d3ρ30+Ωc1ρ10+Ω˜c2ρ20Ωp2ρ32Ωp1ρ31),ρ˙21=i(d4ρ21Ωp1*ρ20Ωc1ρ23+Ω˜c2*ρ31+Ωp2ρ01),ρ˙31=i[d5ρ31Ωp1*ρ30+Ω˜c2ρ21+Ωc1(ρ11ρ33)],ρ˙32=i[d6ρ32Ω˜c2(ρ33ρ22)+Ωc1ρ12Ωp2*ρ30],
(z+1ct)Ωp1(z,t)=iN|ep1·μ01|2ωp12ε0cρ10,
(z+1ct)Ωp2(z,t)=iN|ep2·μ02|2ωp22ε0cρ20,
u(ξ,τ)ξ=iα1γ1Ω10ρ10,
v(ξ,τ)ξ=iα2γ2Ω20ρ20,
ρ10(1)=(|Ωc2|2d2d3)Ωp1Ωc1*Ωc2eiϕΩp2d1d2d3+d2|Ωc1|2+d1|Ωc2|2,
ρ20(1)=(|Ωc1|2d1d3)Ωp2Ωc1Ωc2*eiϕΩp1d1d2d3+d2|Ωc1|2+d1|Ωc2|2.
ρ10(1)=Ωc2Ωc2*Ωp1Ωc1*eiϕΩp2d2|Ωc1|2+d1|Ωc2|2,
ρ20(1)=Ωc1Ωc1*Ωp2Ωc2*eiϕΩp1d2|Ωc1|2+d1|Ωc2|2.

Metrics