Abstract

We consider the model of a dual-core spatial-domain coupler with χ(2) and χ(3) nonlinearities acting in two parallel cores. We construct families of symmetric and asymmetric solitons in the system with self-defocusing χ(3) terms and test their stability. The transition from symmetric to asymmetric soliton branches and back to the symmetric ones proceeds via a bifurcation loop. Namely, a pair of stable asymmetric branches emerges from the symmetric family via a supercritical bifurcation; eventually, the asymmetric branches merge back into the symmetric one through a reverse bifurcation. The existence of the loop is explained by means of an extended version of the cascading approximation for the χ(2) interaction, which takes into regard the cross-phase modulation part of the χ(3) interaction. When the intercore coupling is weak, the bifurcation loop features a concave shape, with the asymmetric branches losing their stability at the turning points. In addition to the two-color solitons, which are built of the fundamental-frequency (FF) and second-harmonic (SH) components, in the case of the self-focusing χ(3) nonlinearity we also consider single-color solitons, which contain only the SH component but may be subject to the instability against FF perturbations. Asymmetric single-color solitons are always unstable, whereas the symmetric ones are stable, provided that they do not coexist with two-color counterparts. Collisions between tilted solitons are studied, too.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription