Abstract

The thermal response of optical fibers during CO2 laser irradiation has been characterized by using thermally stable short-period fiber Bragg gratings, referred to as chemical composition gratings. CO2 laser beam profiling was performed by scanning the beam across a 1 mm long grating, providing a spatial resolution given by the fiber diameter. The thermal dynamics during square pulse irradiation has been recorded for temperatures in excess of 1700°C, with heating and cooling rates as high as 10,500°Cs1 and 6500°Cs1, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [CrossRef]
  2. M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, X. Liu, E. M. Monberg, and T. F. Taunay, “Surface nanoscale axial photonics: robust fabrication of high-quality-factor microresonators,” Opt. Lett. 36, 4824–4826 (2011).
    [CrossRef]
  3. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
    [CrossRef]
  4. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19, 1574–1579 (2001).
    [CrossRef]
  5. G. M. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Estimation of the fibre temperature during the inscription of arc-induced long-period gratings,” Opt. Commun. 259, 620–625 (2006).
    [CrossRef]
  6. G. Rego, L. M. N. B. F. Santos, and B. Schröder, “Estimation of the fiber temperature during an arc-discharge,” Microwave Opt. Technol. Lett. 50, 2020–2025 (2008).
    [CrossRef]
  7. T. L. Lowder, J. A. Newman, W. M. Kunzler, J. D. Young, R. H. Selfridge, and S. M. Schultz, “Temporal response of surface-relief fiber Bragg gratings to high temperature CO2 laser heating,” Appl. Opt. 47, 3568–3573 (2008).
    [CrossRef]
  8. C. Liao, D. N. Wang, Y. Li, T. Sun, and K. T. V. Grattan, “Temporal thermal response of Type II-IR fiber Bragg gratings,” Appl. Opt. 48, 3001–3007 (2009).
    [CrossRef]
  9. O. V. Butov, K. M. Golant, and I. V. Nikolin, “Ultra thermo resistant Bragg gratings written in nitrogen-doped silica fibres,” Electron. Lett. 38, 523–525 (2002).
    [CrossRef]
  10. R. Kashyap, Fiber Bragg Gratings (Academic, 2010), pp. 15–41.
  11. A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), pp. 110–113.
  12. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B 19, 1759–1765 (2002).
    [CrossRef]
  13. M. Fokine, “Underlying mechanisms, applications, and limitations of chemical composition gratings in silica based fibers,” J. Non-Cryst. Solids 349, 98–104 (2004).
    [CrossRef]
  14. M. Fokine, “Thermal stability of oxygen-modulated chemical-composition gratings in standard telecommunication fiber,” Opt. Lett. 29, 1185–1187 (2004).
    [CrossRef]
  15. M. Fokine, “Thermal stability of chemical composition gratings in fluorine-germanium-doped silica fibers,” Opt. Lett. 27, 1016–1018 (2002).
    [CrossRef]
  16. M. Fokine, “Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers,” Opt. Lett. 27, 1974–1976 (2002).
    [CrossRef]
  17. K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express 2, 1101–1110 (2012).
    [CrossRef]
  18. A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998).
    [CrossRef]
  19. A. D. McLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths,” Appl. Opt. 26, 1728–1731 (1987).
    [CrossRef]
  20. U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stresses in drawing of optical fibers,” J. Am. Ceram. Soc. 58, 330–335 (1975).
    [CrossRef]

2012 (1)

2011 (1)

2009 (1)

2008 (2)

G. Rego, L. M. N. B. F. Santos, and B. Schröder, “Estimation of the fiber temperature during an arc-discharge,” Microwave Opt. Technol. Lett. 50, 2020–2025 (2008).
[CrossRef]

T. L. Lowder, J. A. Newman, W. M. Kunzler, J. D. Young, R. H. Selfridge, and S. M. Schultz, “Temporal response of surface-relief fiber Bragg gratings to high temperature CO2 laser heating,” Appl. Opt. 47, 3568–3573 (2008).
[CrossRef]

2006 (1)

G. M. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Estimation of the fibre temperature during the inscription of arc-induced long-period gratings,” Opt. Commun. 259, 620–625 (2006).
[CrossRef]

2004 (2)

M. Fokine, “Underlying mechanisms, applications, and limitations of chemical composition gratings in silica based fibers,” J. Non-Cryst. Solids 349, 98–104 (2004).
[CrossRef]

M. Fokine, “Thermal stability of oxygen-modulated chemical-composition gratings in standard telecommunication fiber,” Opt. Lett. 29, 1185–1187 (2004).
[CrossRef]

2002 (4)

2001 (1)

1998 (2)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998).
[CrossRef]

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

1987 (1)

1975 (1)

U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stresses in drawing of optical fibers,” J. Am. Ceram. Soc. 58, 330–335 (1975).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Boyd, K.

Butov, O. V.

O. V. Butov, K. M. Golant, and I. V. Nikolin, “Ultra thermo resistant Bragg gratings written in nitrogen-doped silica fibres,” Electron. Lett. 38, 523–525 (2002).
[CrossRef]

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Dianov, E.

DiGiovanni, D. J.

Dulashko, Y.

Ebendorff-Heidepriem, H.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Fini, J. M.

Fokine, M.

Gaylord, T. K.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Golant, K. M.

O. V. Butov, K. M. Golant, and I. V. Nikolin, “Ultra thermo resistant Bragg gratings written in nitrogen-doped silica fibres,” Electron. Lett. 38, 523–525 (2002).
[CrossRef]

Grattan, K. T. V.

Grellier, A. J. C.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), pp. 110–113.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 2010), pp. 15–41.

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Kunzler, W. M.

Kurkjian, C. R.

U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stresses in drawing of optical fibers,” J. Am. Ceram. Soc. 58, 330–335 (1975).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Li, Y.

Liao, C.

Liu, X.

Lowder, T. L.

Marques, P. V. S.

G. M. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Estimation of the fibre temperature during the inscription of arc-induced long-period gratings,” Opt. Commun. 259, 620–625 (2006).
[CrossRef]

McLachlan, A. D.

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Meyer, F. P.

Monberg, E. M.

Monro, T. M.

Munch, J.

Newman, J. A.

Nikolin, I. V.

O. V. Butov, K. M. Golant, and I. V. Nikolin, “Ultra thermo resistant Bragg gratings written in nitrogen-doped silica fibres,” Electron. Lett. 38, 523–525 (2002).
[CrossRef]

Okhotnikov, O.

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), pp. 110–113.

Paek, U. C.

U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stresses in drawing of optical fibers,” J. Am. Ceram. Soc. 58, 330–335 (1975).
[CrossRef]

Pannell, C. N.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998).
[CrossRef]

Rego, G.

G. Rego, L. M. N. B. F. Santos, and B. Schröder, “Estimation of the fiber temperature during an arc-discharge,” Microwave Opt. Technol. Lett. 50, 2020–2025 (2008).
[CrossRef]

G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19, 1574–1579 (2001).
[CrossRef]

Rego, G. M.

G. M. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Estimation of the fibre temperature during the inscription of arc-induced long-period gratings,” Opt. Commun. 259, 620–625 (2006).
[CrossRef]

Salgado, H. M.

G. M. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Estimation of the fibre temperature during the inscription of arc-induced long-period gratings,” Opt. Commun. 259, 620–625 (2006).
[CrossRef]

Santos, J. L.

G. M. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Estimation of the fibre temperature during the inscription of arc-induced long-period gratings,” Opt. Commun. 259, 620–625 (2006).
[CrossRef]

Santos, L. M. N. B. F.

G. Rego, L. M. N. B. F. Santos, and B. Schröder, “Estimation of the fiber temperature during an arc-discharge,” Microwave Opt. Technol. Lett. 50, 2020–2025 (2008).
[CrossRef]

Schröder, B.

G. Rego, L. M. N. B. F. Santos, and B. Schröder, “Estimation of the fiber temperature during an arc-discharge,” Microwave Opt. Technol. Lett. 50, 2020–2025 (2008).
[CrossRef]

Schultz, S. M.

Selfridge, R. H.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Sulimov, V.

Sumetsky, M.

Sun, T.

Taunay, T. F.

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Wang, D. N.

Young, J. D.

Zayer, N. K.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (2)

O. V. Butov, K. M. Golant, and I. V. Nikolin, “Ultra thermo resistant Bragg gratings written in nitrogen-doped silica fibres,” Electron. Lett. 38, 523–525 (2002).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

J. Am. Ceram. Soc. (1)

U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stresses in drawing of optical fibers,” J. Am. Ceram. Soc. 58, 330–335 (1975).
[CrossRef]

J. Lightwave Technol. (2)

G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19, 1574–1579 (2001).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

J. Non-Cryst. Solids (1)

M. Fokine, “Underlying mechanisms, applications, and limitations of chemical composition gratings in silica based fibers,” J. Non-Cryst. Solids 349, 98–104 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

G. Rego, L. M. N. B. F. Santos, and B. Schröder, “Estimation of the fiber temperature during an arc-discharge,” Microwave Opt. Technol. Lett. 50, 2020–2025 (2008).
[CrossRef]

Opt. Commun. (2)

G. M. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Estimation of the fibre temperature during the inscription of arc-induced long-period gratings,” Opt. Commun. 259, 620–625 (2006).
[CrossRef]

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152, 324–328 (1998).
[CrossRef]

Opt. Lett. (4)

Opt. Mater. Express (1)

Other (2)

R. Kashyap, Fiber Bragg Gratings (Academic, 2010), pp. 15–41.

A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), pp. 110–113.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic of experimental layout. M1, M2, beam steering mirrors; M3, mirror for guide laser; BC, ZnSe beam combiner for guide laser (λ=633nm) and 1% tap for λ=10.6μm; BD, beam dump; EC, electronic shutter; PM, thermal powermeter; PC, pyroelectric camera. The fiber is placed in either a horizontal position (HP, shown to the left) or vertical position (VP, side view shown to the right).

Fig. 2.
Fig. 2.

Schematic showing the position and orientation of the fiber when scanning the CO2-laser beam, shown as a 2D contour plot. The grating is positioned on the centerline of the beam, along the scan direction indicated by the arrow. Note a slight asymmetry of the beam, measured with the pyroelectric camera.

Fig. 3.
Fig. 3.

Schematic of beam recycling setup with the three beams having an angular separation of 120° resulting in symmetric heating.

Fig. 4.
Fig. 4.

Plot of temperature-wavelength calibration for the CCG with experimental values shown as symbols (error bars are included). The dashed line is a quadratic fit to experimental data, with values extrapolated to 1800°C.

Fig. 5.
Fig. 5.

Experimentally determined fiber temperature versus CO2-laser intensity using a 1 mm long CCG in HP (filled squares). For triple beam measurements (open diamonds) the fiber was positioned vertically. Error bars are included in the figure, indicating the irreversible changes in Bragg wavelength.

Fig. 6.
Fig. 6.

Spectral characteristics for (a) a 1 mm long grating in VP, parallel to the contour lines of the laser beam and (b) a 5 mm long grating in HP parallel to the scan direction with the grating perpendicular to the contour lines of the laser beam.

Fig. 7.
Fig. 7.

CO2-laser beam profiling (a) acquired by scanning the beam across a 1 mm long CCG, and a 1 mm diameter pinhole. The dashed line is the extracted centerline data from a 2D pyroelectric camera image. The same data are plotted in (b) on a linear-log scale to highlight resolving capabilities.

Fig. 8.
Fig. 8.

Thermal dynamics during square pulsed irradiation (heating and cooling). The numerals below each curve in the graph represent the corresponding pulse intensities. The pulse duration for the upper curve labeled 3X (triple beam setup) was 1.2 s and has been extended for clarity (dashed line).

Fig. 9.
Fig. 9.

Bragg wavelength dynamics during a 1.2 s long pulse at 4.4W/mm2, reaching a peak temperature of 1750°C. The dynamics of the grating reflectivity is also included, showing a thermally activated decay of 30%.

Fig. 10.
Fig. 10.

Summary of 1/e time constants for heating and cooling as a function of peak temperature, derived from data in shown in Figs. 8 and 9.

Fig. 11.
Fig. 11.

Thermal response of the Bragg wavelength during symmetric square-wave irradiation. The temperature response for continuous exposure is included in each subgraph for comparison.

Fig. 12.
Fig. 12.

Arrhenius plot for diffusion coefficients extracted from CCG decay studies from the fiber used in this study. Open circles are previously reported data [15], while the filled diamond is extracted from Fig. 9 (T1750°C).

Fig. 13.
Fig. 13.

Intensity profile of the laser beam and the resulting fiber temperature as a function of position, with measurements in VP and HP being proportional to the intensity and local fiber temperature, respectively.

Fig. 14.
Fig. 14.

Comparison of cooling dynamics from this work, with simulated values for cooling during fiber drawing [20].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λB=1549.4+0.012·T+2.9·106·T2
Ψ(t)=exp[(4hρCpd)],

Metrics