Abstract

In a GaAs quantum well waveguide coupled by orthogonally polarized optical fields, the influence of spin coherence on the optical bistability (OB) and multistability is investigated. It is shown that OB and multistability are very sensitive to the relative phase between applied fields.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
    [CrossRef]
  2. B. S. Ham, “Potential application of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rates,” Appl. Phys. Lett. 78, 3382–3384 (2001).
    [CrossRef]
  3. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
    [CrossRef]
  4. M. Philips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831–834 (2003).
    [CrossRef]
  5. C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86, 201112 (2005).
    [CrossRef]
  6. J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Philips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
    [CrossRef]
  7. X. X. Yang, Z. W. Li, and Y. Wu, “Four-wave mixing via electron spin coherence in a quantum well waveguide,” Phys. Lett. A 340, 320–324 (2005).
    [CrossRef]
  8. Y. Niu, S. Gong, R. Li, Z. Xu, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonance,” Opt. Lett. 30, 3371–3374 (2005).
    [CrossRef]
  9. A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
    [CrossRef]
  10. J. Sheng, U. Khadka, and M. Xiao, “Realization of all-optical multistate switching in an atomic coherent medium,” Phys. Rev. Lett. 109, 223906 (2012).
    [CrossRef]
  11. T. K. Paraiso, M. Wouters, Y. Leger, F. Morier, and B. D. Pledran, “Multistability of a coherent spin ensemble in a semiconductor cavity,” Nat. Mater. 9, 655–660 (2010).
    [CrossRef]
  12. J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
    [CrossRef]
  13. A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
    [CrossRef]
  14. J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
    [CrossRef]
  15. A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
    [CrossRef]
  16. A. Joshi and M. Xiao, “Atomic optical bistability in two- and three-level systems: perspective and prospects,” J. Mod. Opt. 57, 1196–1220 (2010).
    [CrossRef]
  17. M. Sahrai, S. H. Asadpour, and R. Sadighi-Bonabi, “Optical bistability via quantum interference from incoherent pump and spontaneous emission,” J. Lumin. 131, 2395–2399 (2011).
    [CrossRef]
  18. J. H. Li, “Coherent control of optical bistability in tunnel-coupled double quantum wells,” Opt. Commun. 274, 366–371 (2007).
    [CrossRef]
  19. J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
    [CrossRef]
  20. J. H. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunneling-induced interference,” Phys. Lett. A 372, 716–720 (2008).
    [CrossRef]
  21. J. H. Li and X. Y. Hao, “Two color coherent control of optical bistability in asymmetric semiconductor quantum well,” Mod. Phys. Lett. B 22, 393–404 (2008).
    [CrossRef]
  22. S. H. Asadpour and A. Eslami-Majd, “Controlling of the optical bistability and transmission coefficient in a four-level atomic medium,” J. Lumin. 132, 1477–1482 (2012).
    [CrossRef]
  23. A. Chen, “Influence of quantum coherence on propagation of a pulsed light in a triple quantum well,” Opt. Express 19, 11944–11950 (2011).
    [CrossRef]
  24. X. Lu and J. Wu, “Three-mode entanglement via tunneling-induced interference in a coupled triple semiconductor quantum well structure,” Phys. Rev. A 82, 012323 (2010).
    [CrossRef]
  25. J. M. Tang, J. Levy, and M. E. Flatte, “All-electrical control of single ion spins in a semiconductor,” Phys. Rev. Lett. 97, 106803 (2006).
    [CrossRef]
  26. J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Philips, “AC stark splitting and quantum interference with intersubband transitions in a quantum well,” Phys. Rev. Lett. 94, 157403 (2005).
    [CrossRef]
  27. M. Philips and H. Wang, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
    [CrossRef]
  28. T. Li, H. Wang, N. H. Kwong, and R. Binder, “Electromagnetically induced transparency via electron spin coherence in a quantum well waveguide,” Opt. Express 11, 3298–3303 (2003).
    [CrossRef]
  29. H. Wang and S. Oleary, “Electromagnetically induced transparency from electron spin coherences in semiconductor quantum wells,” J. Opt. Soc. Am. B 29, A6–A16 (2012).
  30. M. Philips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89, 186401 (2002).
    [CrossRef]
  31. W. Harshawerdhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
    [CrossRef]
  32. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
    [CrossRef]
  33. A. T. Rosenberger, L. A. Orozco, and H. J. Kimble, “Observation of absorptive bistability with two-level atoms in ring cavity,” Phys. Rev. A 28, 2529–2531 (1983).
    [CrossRef]

2012 (3)

J. Sheng, U. Khadka, and M. Xiao, “Realization of all-optical multistate switching in an atomic coherent medium,” Phys. Rev. Lett. 109, 223906 (2012).
[CrossRef]

S. H. Asadpour and A. Eslami-Majd, “Controlling of the optical bistability and transmission coefficient in a four-level atomic medium,” J. Lumin. 132, 1477–1482 (2012).
[CrossRef]

H. Wang and S. Oleary, “Electromagnetically induced transparency from electron spin coherences in semiconductor quantum wells,” J. Opt. Soc. Am. B 29, A6–A16 (2012).

2011 (2)

A. Chen, “Influence of quantum coherence on propagation of a pulsed light in a triple quantum well,” Opt. Express 19, 11944–11950 (2011).
[CrossRef]

M. Sahrai, S. H. Asadpour, and R. Sadighi-Bonabi, “Optical bistability via quantum interference from incoherent pump and spontaneous emission,” J. Lumin. 131, 2395–2399 (2011).
[CrossRef]

2010 (3)

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier, and B. D. Pledran, “Multistability of a coherent spin ensemble in a semiconductor cavity,” Nat. Mater. 9, 655–660 (2010).
[CrossRef]

X. Lu and J. Wu, “Three-mode entanglement via tunneling-induced interference in a coupled triple semiconductor quantum well structure,” Phys. Rev. A 82, 012323 (2010).
[CrossRef]

A. Joshi and M. Xiao, “Atomic optical bistability in two- and three-level systems: perspective and prospects,” J. Mod. Opt. 57, 1196–1220 (2010).
[CrossRef]

2008 (3)

J. H. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunneling-induced interference,” Phys. Lett. A 372, 716–720 (2008).
[CrossRef]

J. H. Li and X. Y. Hao, “Two color coherent control of optical bistability in asymmetric semiconductor quantum well,” Mod. Phys. Lett. B 22, 393–404 (2008).
[CrossRef]

J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
[CrossRef]

2007 (2)

J. H. Li, “Coherent control of optical bistability in tunnel-coupled double quantum wells,” Opt. Commun. 274, 366–371 (2007).
[CrossRef]

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
[CrossRef]

2006 (2)

J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

J. M. Tang, J. Levy, and M. E. Flatte, “All-electrical control of single ion spins in a semiconductor,” Phys. Rev. Lett. 97, 106803 (2006).
[CrossRef]

2005 (6)

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Philips, “AC stark splitting and quantum interference with intersubband transitions in a quantum well,” Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef]

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef]

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86, 201112 (2005).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Philips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

X. X. Yang, Z. W. Li, and Y. Wu, “Four-wave mixing via electron spin coherence in a quantum well waveguide,” Phys. Lett. A 340, 320–324 (2005).
[CrossRef]

Y. Niu, S. Gong, R. Li, Z. Xu, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonance,” Opt. Lett. 30, 3371–3374 (2005).
[CrossRef]

2004 (1)

A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
[CrossRef]

2003 (5)

M. Philips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831–834 (2003).
[CrossRef]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef]

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

M. Philips and H. Wang, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

T. Li, H. Wang, N. H. Kwong, and R. Binder, “Electromagnetically induced transparency via electron spin coherence in a quantum well waveguide,” Opt. Express 11, 3298–3303 (2003).
[CrossRef]

2002 (1)

M. Philips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89, 186401 (2002).
[CrossRef]

2001 (1)

B. S. Ham, “Potential application of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rates,” Appl. Phys. Lett. 78, 3382–3384 (2001).
[CrossRef]

2000 (1)

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
[CrossRef]

1996 (1)

W. Harshawerdhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[CrossRef]

1983 (1)

A. T. Rosenberger, L. A. Orozco, and H. J. Kimble, “Observation of absorptive bistability with two-level atoms in ring cavity,” Phys. Rev. A 28, 2529–2531 (1983).
[CrossRef]

1976 (1)

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Agarwal, G. S.

W. Harshawerdhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[CrossRef]

Asadpour, S. H.

S. H. Asadpour and A. Eslami-Majd, “Controlling of the optical bistability and transmission coefficient in a four-level atomic medium,” J. Lumin. 132, 1477–1482 (2012).
[CrossRef]

M. Sahrai, S. H. Asadpour, and R. Sadighi-Bonabi, “Optical bistability via quantum interference from incoherent pump and spontaneous emission,” J. Lumin. 131, 2395–2399 (2011).
[CrossRef]

Beck, M.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Philips, “AC stark splitting and quantum interference with intersubband transitions in a quantum well,” Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef]

Binder, R.

Chen, A.

Clark, S. M.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef]

Dawes, A. M. C.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef]

Dynes, J. F.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Philips, “AC stark splitting and quantum interference with intersubband transitions in a quantum well,” Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Philips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

Eslami-Majd, A.

S. H. Asadpour and A. Eslami-Majd, “Controlling of the optical bistability and transmission coefficient in a four-level atomic medium,” J. Lumin. 132, 1477–1482 (2012).
[CrossRef]

Faist, J.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Philips, “AC stark splitting and quantum interference with intersubband transitions in a quantum well,” Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef]

Flatte, M. E.

J. M. Tang, J. Levy, and M. E. Flatte, “All-electrical control of single ion spins in a semiconductor,” Phys. Rev. Lett. 97, 106803 (2006).
[CrossRef]

Frogley, M. D.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Philips, “AC stark splitting and quantum interference with intersubband transitions in a quantum well,” Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Philips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

Gauthier, D. J.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Gong, S.

Ham, B. S.

B. S. Ham, “Potential application of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rates,” Appl. Phys. Lett. 78, 3382–3384 (2001).
[CrossRef]

Hao, X.

J. H. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunneling-induced interference,” Phys. Lett. A 372, 716–720 (2008).
[CrossRef]

Hao, X. Y.

J. H. Li and X. Y. Hao, “Two color coherent control of optical bistability in asymmetric semiconductor quantum well,” Mod. Phys. Lett. B 22, 393–404 (2008).
[CrossRef]

Harshawerdhan, W.

W. Harshawerdhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[CrossRef]

Huang, P.

J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
[CrossRef]

Huang, Q.-J.

J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Illing, L.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef]

Joshi, A.

A. Joshi and M. Xiao, “Atomic optical bistability in two- and three-level systems: perspective and prospects,” J. Mod. Opt. 57, 1196–1220 (2010).
[CrossRef]

A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
[CrossRef]

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef]

Khadka, U.

J. Sheng, U. Khadka, and M. Xiao, “Realization of all-optical multistate switching in an atomic coherent medium,” Phys. Rev. Lett. 109, 223906 (2012).
[CrossRef]

Kimble, H. J.

A. T. Rosenberger, L. A. Orozco, and H. J. Kimble, “Observation of absorptive bistability with two-level atoms in ring cavity,” Phys. Rev. A 28, 2529–2531 (1983).
[CrossRef]

Kwong, N. H.

Lee, C. R.

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86, 201112 (2005).
[CrossRef]

Leger, Y.

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier, and B. D. Pledran, “Multistability of a coherent spin ensemble in a semiconductor cavity,” Nat. Mater. 9, 655–660 (2010).
[CrossRef]

Levy, J.

J. M. Tang, J. Levy, and M. E. Flatte, “All-electrical control of single ion spins in a semiconductor,” Phys. Rev. Lett. 97, 106803 (2006).
[CrossRef]

Li, J.

J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
[CrossRef]

Li, J. H.

J. H. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunneling-induced interference,” Phys. Lett. A 372, 716–720 (2008).
[CrossRef]

J. H. Li and X. Y. Hao, “Two color coherent control of optical bistability in asymmetric semiconductor quantum well,” Mod. Phys. Lett. B 22, 393–404 (2008).
[CrossRef]

J. H. Li, “Coherent control of optical bistability in tunnel-coupled double quantum wells,” Opt. Commun. 274, 366–371 (2007).
[CrossRef]

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
[CrossRef]

Li, J.-H.

J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Li, R.

Li, T.

Li, Y.

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86, 201112 (2005).
[CrossRef]

Li, Z. W.

X. X. Yang, Z. W. Li, and Y. Wu, “Four-wave mixing via electron spin coherence in a quantum well waveguide,” Phys. Lett. A 340, 320–324 (2005).
[CrossRef]

Liang, X.

Liu, J.

J. H. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunneling-induced interference,” Phys. Lett. A 372, 716–720 (2008).
[CrossRef]

J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
[CrossRef]

Lu, X.

X. Lu and J. Wu, “Three-mode entanglement via tunneling-induced interference in a coupled triple semiconductor quantum well structure,” Phys. Rev. A 82, 012323 (2010).
[CrossRef]

Lü, X.-Y.

J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

Luo, J.-M.

J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

McCall, S. L.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Men, F. K.

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86, 201112 (2005).
[CrossRef]

Morier, F.

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier, and B. D. Pledran, “Multistability of a coherent spin ensemble in a semiconductor cavity,” Nat. Mater. 9, 655–660 (2010).
[CrossRef]

Niu, Y.

Oleary, S.

Orozco, L. A.

A. T. Rosenberger, L. A. Orozco, and H. J. Kimble, “Observation of absorptive bistability with two-level atoms in ring cavity,” Phys. Rev. A 28, 2529–2531 (1983).
[CrossRef]

Pao, C.

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86, 201112 (2005).
[CrossRef]

Paraiso, T. K.

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier, and B. D. Pledran, “Multistability of a coherent spin ensemble in a semiconductor cavity,” Nat. Mater. 9, 655–660 (2010).
[CrossRef]

Philips, C. C.

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Philips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Philips, “AC stark splitting and quantum interference with intersubband transitions in a quantum well,” Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef]

Philips, M.

M. Philips and H. Wang, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

M. Philips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831–834 (2003).
[CrossRef]

M. Philips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89, 186401 (2002).
[CrossRef]

Pledran, B. D.

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier, and B. D. Pledran, “Multistability of a coherent spin ensemble in a semiconductor cavity,” Nat. Mater. 9, 655–660 (2010).
[CrossRef]

Ram, R. J.

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
[CrossRef]

Rodger, J.

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Philips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

Rosenberger, A. T.

A. T. Rosenberger, L. A. Orozco, and H. J. Kimble, “Observation of absorptive bistability with two-level atoms in ring cavity,” Phys. Rev. A 28, 2529–2531 (1983).
[CrossRef]

Sadighi-Bonabi, R.

M. Sahrai, S. H. Asadpour, and R. Sadighi-Bonabi, “Optical bistability via quantum interference from incoherent pump and spontaneous emission,” J. Lumin. 131, 2395–2399 (2011).
[CrossRef]

Sahrai, M.

M. Sahrai, S. H. Asadpour, and R. Sadighi-Bonabi, “Optical bistability via quantum interference from incoherent pump and spontaneous emission,” J. Lumin. 131, 2395–2399 (2011).
[CrossRef]

Schmidt, H.

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
[CrossRef]

Sheng, J.

J. Sheng, U. Khadka, and M. Xiao, “Realization of all-optical multistate switching in an atomic coherent medium,” Phys. Rev. Lett. 109, 223906 (2012).
[CrossRef]

Tang, J. M.

J. M. Tang, J. Levy, and M. E. Flatte, “All-electrical control of single ion spins in a semiconductor,” Phys. Rev. Lett. 97, 106803 (2006).
[CrossRef]

Tsai, Y.

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86, 201112 (2005).
[CrossRef]

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Wang, H.

Wang, J.

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86, 201112 (2005).
[CrossRef]

Wouters, M.

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier, and B. D. Pledran, “Multistability of a coherent spin ensemble in a semiconductor cavity,” Nat. Mater. 9, 655–660 (2010).
[CrossRef]

Wu, J.

X. Lu and J. Wu, “Three-mode entanglement via tunneling-induced interference in a coupled triple semiconductor quantum well structure,” Phys. Rev. A 82, 012323 (2010).
[CrossRef]

Wu, Y.

X. X. Yang, Z. W. Li, and Y. Wu, “Four-wave mixing via electron spin coherence in a quantum well waveguide,” Phys. Lett. A 340, 320–324 (2005).
[CrossRef]

Xiao, M.

J. Sheng, U. Khadka, and M. Xiao, “Realization of all-optical multistate switching in an atomic coherent medium,” Phys. Rev. Lett. 109, 223906 (2012).
[CrossRef]

A. Joshi and M. Xiao, “Atomic optical bistability in two- and three-level systems: perspective and prospects,” J. Mod. Opt. 57, 1196–1220 (2010).
[CrossRef]

A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
[CrossRef]

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef]

Xu, Z.

Yang, W.

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

Yang, X.

J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
[CrossRef]

J. H. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunneling-induced interference,” Phys. Lett. A 372, 716–720 (2008).
[CrossRef]

Yang, X. X.

X. X. Yang, Z. W. Li, and Y. Wu, “Four-wave mixing via electron spin coherence in a quantum well waveguide,” Phys. Lett. A 340, 320–324 (2005).
[CrossRef]

Yu, R.

J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
[CrossRef]

Appl. Phys. B (1)

A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
[CrossRef]

B. S. Ham, “Potential application of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rates,” Appl. Phys. Lett. 78, 3382–3384 (2001).
[CrossRef]

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86, 201112 (2005).
[CrossRef]

J. Lumin. (2)

M. Sahrai, S. H. Asadpour, and R. Sadighi-Bonabi, “Optical bistability via quantum interference from incoherent pump and spontaneous emission,” J. Lumin. 131, 2395–2399 (2011).
[CrossRef]

S. H. Asadpour and A. Eslami-Majd, “Controlling of the optical bistability and transmission coefficient in a four-level atomic medium,” J. Lumin. 132, 1477–1482 (2012).
[CrossRef]

J. Mod. Opt. (1)

A. Joshi and M. Xiao, “Atomic optical bistability in two- and three-level systems: perspective and prospects,” J. Mod. Opt. 57, 1196–1220 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mod. Phys. Lett. B (1)

J. H. Li and X. Y. Hao, “Two color coherent control of optical bistability in asymmetric semiconductor quantum well,” Mod. Phys. Lett. B 22, 393–404 (2008).
[CrossRef]

Nat. Mater. (1)

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier, and B. D. Pledran, “Multistability of a coherent spin ensemble in a semiconductor cavity,” Nat. Mater. 9, 655–660 (2010).
[CrossRef]

Opt. Commun. (1)

J. H. Li, “Coherent control of optical bistability in tunnel-coupled double quantum wells,” Opt. Commun. 274, 366–371 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Lett. A (2)

J. H. Li, X. Hao, J. Liu, and X. Yang, “Optical bistability in a triple semiconductor quantum well structure with tunneling-induced interference,” Phys. Lett. A 372, 716–720 (2008).
[CrossRef]

X. X. Yang, Z. W. Li, and Y. Wu, “Four-wave mixing via electron spin coherence in a quantum well waveguide,” Phys. Lett. A 340, 320–324 (2005).
[CrossRef]

Phys. Rev. A (5)

A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003).
[CrossRef]

J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006).
[CrossRef]

A. T. Rosenberger, L. A. Orozco, and H. J. Kimble, “Observation of absorptive bistability with two-level atoms in ring cavity,” Phys. Rev. A 28, 2529–2531 (1983).
[CrossRef]

W. Harshawerdhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996).
[CrossRef]

X. Lu and J. Wu, “Three-mode entanglement via tunneling-induced interference in a coupled triple semiconductor quantum well structure,” Phys. Rev. A 82, 012323 (2010).
[CrossRef]

Phys. Rev. B (2)

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Philips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005).
[CrossRef]

Phys. Rev. Lett. (7)

J. Sheng, U. Khadka, and M. Xiao, “Realization of all-optical multistate switching in an atomic coherent medium,” Phys. Rev. Lett. 109, 223906 (2012).
[CrossRef]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef]

J. M. Tang, J. Levy, and M. E. Flatte, “All-electrical control of single ion spins in a semiconductor,” Phys. Rev. Lett. 97, 106803 (2006).
[CrossRef]

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Philips, “AC stark splitting and quantum interference with intersubband transitions in a quantum well,” Phys. Rev. Lett. 94, 157403 (2005).
[CrossRef]

M. Philips and H. Wang, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).
[CrossRef]

M. Philips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89, 186401 (2002).
[CrossRef]

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Physica E (1)

J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008).
[CrossRef]

Science (1)

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Energy levels and optical transitions involved in QW waveguide. The LH valence-band states are labeled with Jz=±1/2, and the conduction-band states are labeled with Sz=1/2 (spin up) and Sz=1/2 (spin down). The transitions with SzJz=±1 are coupled by a weak σ-probe field and transitions SzJz=0 are coherently driven by a strong π-polarized control field. (b) Unidirectional ring cavity with atomic sample of length L.

Fig. 2.
Fig. 2.

Input–output field curves for weak σ-probe beam. Solid line corresponds to Ωc=3meV, and dashed line corresponds to Ωc=4meV. The selected parameters are Δ=0, ϕ=0.

Fig. 3.
Fig. 3.

(a) Absorption and (b) dispersion profiles of weak probe field. Solid line corresponds to Ωc=3meV, and dashed line corresponds to Ωc=4meV. The selected parameters are the same as Fig. 2.

Fig. 4.
Fig. 4.

Input–output field curves for weak σ-probe beam. Solid line corresponds to Δ=0, dashed line corresponds to Δ=1, and dotted line corresponds to Δ=2. Ωc=4meV. Other parameters are the same as Fig. 2.

Fig. 5.
Fig. 5.

Input–output field curves for weak σ-probe beam. Solid line corresponds to ϕ=0, dashed line corresponds to ϕ=π/4, and dotted line corresponds to ϕ=π/2. Ωc=4meV. Other parameters are the same as Fig. 2.

Fig. 6.
Fig. 6.

(a) Absorption and (b) dispersion profiles of weak probe field. Solid line corresponds to ϕ=0, dashed line corresponds to ϕ=π/4, and dotted line corresponds to ϕ=π/2. The selected parameters are the same as Fig. 5.

Fig. 7.
Fig. 7.

Input–output field curves for weak σ-probe beam. Solid line corresponds to ϕ=0, dashed line corresponds to ϕ=π/6, and dotted line corresponds to ϕ=π/4. The other parameters are Δ=1meV, Ωc=1.5meV.

Fig. 8.
Fig. 8.

Probe absorption as a function of the relative phase ϕ. Ωc=4meV, and the other parameters are the same as Fig. 2.

Fig. 9.
Fig. 9.

Interpretation of quantum paths that contribute to the coherences ρ41, which can modify the σ-polarized field behaviors. (a) ESC-type path and (b) wave-mixing-type path.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ρ˙31=(γ31+γ32/2+iΔ)ρ31+iΩceiϕ(ρ11ρ33)+iΩp(ρ21ρ34),ρ˙32=(γ31+γ32/2+iΔ)ρ32+iΩceiϕ(ρ12+ρ34)+iΩp(ρ22ρ33),ρ˙21=iΩpρ31iΩceiϕρ23iΩceiϕρ41iΩpρ24,ρ˙41=(γ41+γ42/2+iΔ)ρ41+iΩp(ρ11ρ44)iΩceiϕ(ρ21+ρ43),ρ˙42=(γ41+γ42/2+iΔ)ρ42+iΩp(ρ12ρ43)iΩceiϕ(ρ22ρ44),
E=Eσpeiωpt+Eπeiωct+C·C,
Eσpt+cEσpz=iωp2ε0P(ωp).
P(ωp)=Nμ(ρ41+ρ32).
Eσpz=iNωpμ2cε0(ρ41+ρ32).
Eσp(L)=EσpTT,
Eσp(0)=TEσPI+REσp(L),
y=2xiC(ρ41+ρ32),

Metrics