Abstract

Precision of two-dimensional (2D) electronic spectroscopy can be affected by imprecise calibration of the optical spectrometer and coherence time delay line. This would result in 2D spectral line shapes with twisted phase, where absorptive and dispersive parts of the signal are mixed and unrecoverable. We demonstrate two efficient and easily implementable techniques for precise spectrometer and wedge-based delay line calibration that assure acquisition of correct spectral phase in 2D spectroscopy measurements.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Lepetit and M. Joffre, “Two-dimensional nonlinear optics using Fourier-transform spectral interferometry,” Opt. Lett. 21, 564–566 (1996).
    [CrossRef]
  2. J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
    [CrossRef]
  3. S. M. Gallagher, A. W. Albrecht, T. D. Hybl, B. L. Landin, B. Rajaram, and D. M. Jonas, “Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals,” J. Opt. Soc. Am. B 15, 2338–2345 (1998).
    [CrossRef]
  4. T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29, 884–886 (2004).
    [CrossRef]
  5. G. Aubock, C. Consani, F. van Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37, 2337–2339 (2012).
    [CrossRef]
  6. U. Selig, F. Langhojer, F. Dimler, T. Lohrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33, 2851–2853 (2008).
    [CrossRef]
  7. V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17, 9764–9779 (2009).
    [CrossRef]
  8. E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681–16689 (2007).
    [CrossRef]
  9. D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
    [CrossRef]
  10. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
    [CrossRef]
  11. V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Vibrational vs. electronic coherences in 2D spectrum of molecular systems,” Chem. Phys. Lett. 545, 40–43 (2012).
    [CrossRef]
  12. T. Mancal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent signatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett. 3, 1497–1502 (2012).
    [CrossRef]
  13. V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. USA 110, 1203–1208 (2013).
    [CrossRef]
  14. G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
    [CrossRef]
  15. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
    [CrossRef]
  16. C. Dorrer, “Influence of the calibration of the detector on spectral interferometry,” J. Opt. Soc. Am. B 16, 1160–1168 (1999).
    [CrossRef]
  17. I. H. Malitson, “Interspecimen comparison of refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
    [CrossRef]
  18. D. B. Turner, R. Dinshaw, K. K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
    [CrossRef]
  19. R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19, 13126–13133 (2011).
    [CrossRef]

2013 (1)

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. USA 110, 1203–1208 (2013).
[CrossRef]

2012 (4)

D. B. Turner, R. Dinshaw, K. K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[CrossRef]

V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Vibrational vs. electronic coherences in 2D spectrum of molecular systems,” Chem. Phys. Lett. 545, 40–43 (2012).
[CrossRef]

T. Mancal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent signatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett. 3, 1497–1502 (2012).
[CrossRef]

G. Aubock, C. Consani, F. van Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett. 37, 2337–2339 (2012).
[CrossRef]

2011 (3)

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19, 13126–13133 (2011).
[CrossRef]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[CrossRef]

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[CrossRef]

2009 (1)

2008 (1)

2007 (1)

2004 (1)

2003 (1)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef]

2000 (1)

1999 (1)

1998 (2)

1996 (1)

1965 (1)

Abramavicius, D.

V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Vibrational vs. electronic coherences in 2D spectrum of molecular systems,” Chem. Phys. Lett. 545, 40–43 (2012).
[CrossRef]

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[CrossRef]

Albrecht, A. W.

Aubock, G.

Augulis, R.

Belabas, N.

Belsley, M. S.

D. B. Turner, R. Dinshaw, K. K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[CrossRef]

Bixner, O.

T. Mancal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent signatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett. 3, 1497–1502 (2012).
[CrossRef]

Brixner, T.

Butkus, V.

V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Vibrational vs. electronic coherences in 2D spectrum of molecular systems,” Chem. Phys. Lett. 545, 40–43 (2012).
[CrossRef]

Caram, J. R.

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[CrossRef]

Chergui, M.

Christensson, N.

T. Mancal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent signatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett. 3, 1497–1502 (2012).
[CrossRef]

Consani, C.

Curmi, P. M. G.

D. B. Turner, R. Dinshaw, K. K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[CrossRef]

Damrauer, N. H.

Dimler, F.

Dinshaw, R.

D. B. Turner, R. Dinshaw, K. K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[CrossRef]

Dorrer, C.

Engel, G. S.

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[CrossRef]

Faeder, S. M. G.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[CrossRef]

Fleming, G. R.

Gallagher, S. M.

Gieseking, B.

Grumstrup, E. M.

Gundogdu, K.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[CrossRef]

Halpin, A.

Hauer, J.

T. Mancal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent signatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett. 3, 1497–1502 (2012).
[CrossRef]

Hybl, J. D.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[CrossRef]

Hybl, T. D.

Joffre, M.

Jonas, D. M.

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. USA 110, 1203–1208 (2013).
[CrossRef]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[CrossRef]

S. M. Gallagher, A. W. Albrecht, T. D. Hybl, B. L. Landin, B. Rajaram, and D. M. Jonas, “Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals,” J. Opt. Soc. Am. B 15, 2338–2345 (1998).
[CrossRef]

Kauffmann, H. F.

T. Mancal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent signatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett. 3, 1497–1502 (2012).
[CrossRef]

Landin, B. L.

Langhojer, F.

Lee, K. K.

D. B. Turner, R. Dinshaw, K. K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[CrossRef]

Lepetit, L.

Lewis, N. H. C.

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[CrossRef]

Likforman, J. P.

Lohrig, T.

Lukes, V.

T. Mancal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent signatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett. 3, 1497–1502 (2012).
[CrossRef]

Malitson, I. H.

Mancal, T.

T. Mancal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent signatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett. 3, 1497–1502 (2012).
[CrossRef]

Miller, R. J. D.

Milota, F.

T. Mancal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent signatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett. 3, 1497–1502 (2012).
[CrossRef]

Montgomery, M. A.

Mukamel, S.

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[CrossRef]

Nelson, K. A.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[CrossRef]

Panitchayangkoon, G.

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[CrossRef]

Peters, W. K.

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. USA 110, 1203–1208 (2013).
[CrossRef]

Prokhorenko, V. I.

Rajaram, B.

Scholes, G. D.

D. B. Turner, R. Dinshaw, K. K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[CrossRef]

Schwarz, C.

Selig, U.

Shim, S. H.

Stiopkin, I. V.

Stone, K. W.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[CrossRef]

Tiwari, V.

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. USA 110, 1203–1208 (2013).
[CrossRef]

Turner, D. B.

D. B. Turner, R. Dinshaw, K. K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[CrossRef]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[CrossRef]

Valkunas, L.

V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Vibrational vs. electronic coherences in 2D spectrum of molecular systems,” Chem. Phys. Lett. 545, 40–43 (2012).
[CrossRef]

van Mourik, F.

Voronine, D. V.

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[CrossRef]

Wilk, K. E.

D. B. Turner, R. Dinshaw, K. K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[CrossRef]

Zanni, M. T.

Zigmantas, D.

V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Vibrational vs. electronic coherences in 2D spectrum of molecular systems,” Chem. Phys. Lett. 545, 40–43 (2012).
[CrossRef]

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19, 13126–13133 (2011).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[CrossRef]

Chem. Phys. Lett. (2)

V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, “Vibrational vs. electronic coherences in 2D spectrum of molecular systems,” Chem. Phys. Lett. 545, 40–43 (2012).
[CrossRef]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

J. Phys. Chem. Lett. (1)

T. Mancal, N. Christensson, V. Lukes, F. Milota, O. Bixner, H. F. Kauffmann, and J. Hauer, “System-dependent signatures of electronic and vibrational coherences in electronic two-dimensional spectra,” J. Phys. Chem. Lett. 3, 1497–1502 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Chem. Chem. Phys. (1)

D. B. Turner, R. Dinshaw, K. K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis,” Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).
[CrossRef]

Proc. Natl. Acad. Sci. USA (2)

V. Tiwari, W. K. Peters, and D. M. Jonas, “Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework,” Proc. Natl. Acad. Sci. USA 110, 1203–1208 (2013).
[CrossRef]

G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Caram, N. H. C. Lewis, S. Mukamel, and G. S. Engel, “Direct evidence of quantum transport in photosynthetic light-harvesting complexes,” Proc. Natl. Acad. Sci. USA 108, 20908–20912 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Pulse train generation by means of a transparent cell and the generated pulse train (inset at lower right). The backreflected beams are tilted upward for clarity. Only the first two pulses are taken into account in the analysis (marked by dashed contours).

Fig. 2.
Fig. 2.

Solid curve, a typical spectrometer calibration error e(ωm)τ obtained by the interferometric procedure with a 0.2 mm cell. Dashed–dotted curve, smoothed result (fifth-order polynomial fit). Dotted curve, calibration error of the same spectrometer reduced after the interferometric calibration.

Fig. 3.
Fig. 3.

Solid and dashed curves correspond to the surface roughness curves of two 1° fused silica wedges obtained by the interferometric calibration method. Here d is the displacement of the wedges along the translational stage, and Δl(d) equals l(d) without the linear part and indicates the deviation from delays created by perfectly linear wedges. The right-hand scale shows the corresponding phase errors for the 600 nm light wave.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I(ω)=|E1(ω)+E2(ω)exp(iωτ)|2=|E1(ω)|2+|E2(ω)|2+E1*(ω)E2(ω)exp(iωτ)+c.c.
f(ω)=E1*(ω)E2(ω)exp(iωτ).
Δφ(ω)=Δφ0(ω)+ωτ=arg(f(ω))+C,
Δφ0(ω)+ωτ=Δφ0(ωm+e(ωm))+(ωm+e(ωm))τ.
ω=ωm+arg(f(ωm))linfit(arg(f(ωm)))slope(arg(f(ωm))).
Δt(d)=arg(f(τ(d)))ω+Δt0,
l(d)=arg(f(τ(d)))·cω(nmat.(ω)nair(ω))+l0,

Metrics