Abstract

A series of emission-tunable nanophosphors with nominal composition of Sr0.96Zn2xSi2O7:0.04Eu2+, xMn2+ (0x0.15) were designed and synthesized by solgel technique for application in white-light-emitting diodes. The structural, morphological, and optical properties were investigated using comprehensive characterization methods, such as x-ray diffraction, scanning and transmission electron microscopy, energy-dispersive x-ray spectroscopy, and photoluminescence spectroscopy. The results indicate that the calcination temperature has strong effect on the crystalinity and morphology. Moreover, the calcination temperature can change grain size and microstrain. SrZn2Si2O7:Eu2+, Mn2+ phosphors show two emission bands excited by near ultraviolet light: blue (around 480 nm) and orange–yellow (around 595 nm) emissions. These emissions are photophysically originated from 4f65d1(D2)4f7(S7/28) transition of Eu2+ sensitizer ions and T41(G4)A16(S6) transition of Mn2+ activator ions, respectively. The phosphors can generate various lights with different color coordinates and relative color temperatures by properly tuning the relative ratio of the Eu2+ to Mn2+ ions through the principle of energy transfer. The energy transfer from Eu2+ to Mn2+ in SrZn2Si2O7 host matrix was confirmed by several experimental results, such as the luminescence spectra, energy transfer efficiency, and decay curve of the phosphors. Furthermore, the mechanism of this phenomenon was demonstrated as resonant type via a dipole–quadrupole reaction and the critical distance between Eu2+ and Mn2+ ions was calculated at about 10.7 Å. Eventually, when the dopant content of Mn2+ is 0.09, the color coordinate of the phosphor (x=0.345, y=0.301) is close to the normal white light and can be considered as a suitable UV-converting phosphor for white light-emitting diodes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Park, G. C. Kim, and T. W. Kim, “White-light generation through ultraviolet-emitting diode and white emitting phosphor,” Appl. Phys. Lett. 85, 3696–3698 (2004).
    [CrossRef]
  2. P. Uthirakumar, H. G. Kim, and C. H. Hong, “Zinc oxide nanostructures derived from a simple solution method for solar cells and LEDs,” Chem. Eng. J. 155, 910–915 (2009).
    [CrossRef]
  3. G. M. Salley, O. S. Wenger, K. W. Kramer, and H. U. Gudel, “Inorganic solid state optical materials: major recent advances,” Curr. Opin. Solid State Mater. Sci. 6, 487–493 (2002).
    [CrossRef]
  4. S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng., R 71, 1–34 (2010).
    [CrossRef]
  5. X. Q. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white lightemitting-diode illumination,” Appl. Phys. Lett. 88, 161908 (2006).
    [CrossRef]
  6. P. K. Sharma, M. Kumar, and A. C. Pandey, “Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs,” J. Nanopart. Res. 13, 1629–1637 (2011).
    [CrossRef]
  7. N. Guo, Y. Zheng, Y. Jia, H. Qiao, and H. You, “Warm-white emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116, 1329–1334 (2012).
    [CrossRef]
  8. Y. Liu, M. Nishiura, Y. Wang, and Z. M. Hou, “Pi-conjugated aromatic enynes as a single-emitting component for white electroluminescence,” J. Am. Chem. Soc. 128, 5592–5593 (2006).
    [CrossRef]
  9. C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single phase emission-tunable phosphor Ca9Y(PO4)7:Eu2+, Mn2+ with efficient energy transfer for white light emitting diodes,” ACS Appl. Mater. Int. 2, 259–264 (2010).
  10. J. S. Kim, K. T. Lim, Y. S. Jeong, P. E. Jeon, J. C. Choi, and H. L. Park, “Full color Ba3MgSi2O8:Eu2+, Mn2+ phosphor for white light emitting diodes,” Solid State Commun. 135, 21–24 (2005).
    [CrossRef]
  11. W. J. Yang and T. M. Chen, “White-light generation and energy transfer in SrZn2(PO4)2:Eu, Mn phosphor for ultraviolet light-emitting diodes,” Appl. Phys. Lett. 88, 101903 (2006).
    [CrossRef]
  12. J. Kuang, Y. Liu, J. Zhang, L. Huang, J. Rong, and D. Yuan, “Blue-emitting long-lasting phosphor, Sr3Al10SiO20:Eu2+, Ho3+,” Solid State Commun. 136, 6–10 (2005).
    [CrossRef]
  13. H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Evaluation of sol-gel derived Eu2+ activated SrMgAl2SiO7 as a novel nanostructure luminescent pigment,” Physica B 405, 4796–4800 (2010).
  14. T. Yamashita and Y. Ohishi, “Analysis of energy transfers between Tb3+ and Yb3+ codoped in borosilicate glasses,” J. Opt. Soc. Am. B 26, 819–829 (2009).
    [CrossRef]
  15. R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Sol-gel synthesis, characterization and luminescence properties of SrMgAl2SiO7:Eu2+ as a novel nanocrystalline phosphor,” Luminescence 26, 449–455 (2011).
  16. J. S. Kim, A. K. Kown, Y. H. Park, J. C. Choi, H. L. Park, and G. C. Kim, “Luminescent and thermal properties of full-color emitting X3MgSi2O8:Eu, Mn (X=Ba, Sr, Ca) phosphors for white LED,” J. Lumin. 122–123, 583–586 (2007).
    [CrossRef]
  17. B. Wang, L. Sun, H. Ju, S. Zhao, D. Deng, H. Wang, and Sh. Xu, “Sol-gel synthesis of single-phase Ca5MgSi3O12:Eu2+, Mn2+ phosphors for white-light emitting diodes,” Mater. Lett. 63, 1329–1331 (2009).
    [CrossRef]
  18. U. G. Caldino, A. F. Muoz, and J. O. Rubio, “Energy transfer in CaCl2:Eu:Mn crystals,” J. Phys. Condens. Matter 5, 2195–2202 (1993).
    [CrossRef]
  19. G. Q. Yao, J. H. Lin, L. Zhang, G. X. Lu, M. L. Gong, and M. Z. Su, “Luminescent properties of BaMg2Si3O7:Eu2+, Mn2+,” J. Mater. Chem. 8, 585–588 (1998).
    [CrossRef]
  20. W. J. Yang, L. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17, 3883–3888 (2005).
    [CrossRef]
  21. Y. Chuangtao, X. Lijuan, X. Quanlan, L. Guanxi, P. Wenfang, and M. Jianxin, “Ba1xSrxMgSiO4:Eu2+, Mn2+: a novel tunable single-matrix tricolor phosphor for w-LED,” J. Rare Earths 30, 110–113 (2012).
    [CrossRef]
  22. W. Lu, Zh. Hao, X. Zhang, X. Liu, X. Wang, and J. Zhang, “Ca3Al2(SiO4)3−δCl4δ:Eu2+, Mn2+: a potential phosphor with energy transfer for near-UV pumped white-LEDs,” Opt. Mater. 33, 1262–1265 (2011).
    [CrossRef]
  23. B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley VCH, 2001), pp. 155–172.
  24. M. Pang, X. Liu, and J. Lin, “Luminescence properties of R2MoO6:Eu3+ (R=Gd, Y, La) phosphors prepared by Pechini sol-gel process,” J. Mater. Res. 20, 2676–2681 (2005).
    [CrossRef]
  25. R. P. Rao, “Preparation and characterization of fine‐grain yttrium‐based phosphors by sol-gel process,” J. Electrochem. Soc. 143, 189–197 (1996).
    [CrossRef]
  26. J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, and K. S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77, 2162–2164 (2000).
    [CrossRef]
  27. P. Scardi, R. E. Dinnebier, and S. J. L. Billinge, Powder Diffraction: Theory and Practice (RSC, 2008).
  28. C. E. Kril and R. Birringer, “Estimating grain-size distributions in nanocrystalline materials from x-ray diffraction profile analysis,” Philos. Mag. A 77(3), 621–640 (1998).
    [CrossRef]
  29. M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, and P. P. Vaishnava, “Bandgap engineering by tuning particle size and crystallinity of SnO2-Fe2O3 nanocrystalline composite thin films,” Appl. Phys. Lett. 93, 231909 (2008).
    [CrossRef]
  30. G. Seeta, R. Raju, and S. Buddhudu, “Emission analysis of Tb3+:MgLaLiSi2O7 powder phosphor,” Mater. Lett. 62, 1259–1262 (2008).
    [CrossRef]
  31. K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park, and Y. S. Yang, “Luminescent properties of (Ba,Sr)MgAl10O17:Mn, Eu green phosphor prepared by spray pyrolysis under VUV excitation,” Chem. Mater. 17, 2729–2734 (2005).
    [CrossRef]
  32. R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, H. Eivaz Mohammadloo, F. Nargesian, and M. Tahriri, “Sol-gel synthesis, structural and optical characteristics of Sr1−xZn2Si2yO7+δEu2+ as a potential nanocrystalline phosphor for near-ultraviolet white light-emitting diodes,” J. Mater. Sci. 47, 2658–2664 (2012).
    [CrossRef]
  33. H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, M. A. M. Farsi, H. E. Mohammadloo, M. S. Alvani, and M. Tahriri, “A nanostructure phosphor: effect of process parameters on the photoluminescence properties for near-UV WLED applications,” J. Inorg. Organomet. Polym. Mater. 22, 737–743 (2012).
    [CrossRef]
  34. P. Huang, C. Cui, and S. Wang, “Influence of calcination temperature on luminescent properties of Sr3Al2O6:Eu2+, Dy3+ phosphors prepared by sol-gel-combustion processing,” Opt. Mater. 32, 184–189 (2009).
    [CrossRef]
  35. S. Ye, Z. S. Liu, X. T. Wang, J. G. Wang, L. X. Wang, and X. P. Jing, “Emission properties of Eu2+, Mn2+ in MAl2Si2O8 (M=Sr, Ba),” J. Lumin. 129, 50–54 (2009).
    [CrossRef]
  36. C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Photoluminescence of Eu2+ in SrGa2S4”, J. Lumin. 111, 147–158 (2005).
    [CrossRef]
  37. R. Pang, C. Li, L. Shi, and Q. A. Su, “Novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70, 303–306 (2009).
  38. P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids Suppl. 64, 841–846 (2003).
  39. R. Reisfeld, E. Greenberg, R. Velapoldi, and B. Barnett, “Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them,” J. Chem. Phys. 56, 1698–1715 (1972).
    [CrossRef]
  40. G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).
  41. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [CrossRef]
  42. H. P. You, J. L. Zhang, G. Y. Hong, and H. J. Zhang, “Luminescent properties of Mn2+ in hexagonal aluminates under ultraviolet and vacuum ultraviolet excitation,” J. Phys. Chem. C 111, 10657–10661 (2007).
    [CrossRef]
  43. K. H. Kwon, W. B. Im, H. S. Jang, H. S. Yoo, and D. Y. Jeon, “Luminescence properties and energy transfer of site-sensitive Ca6−x–yMgx–z(PO4)4:Euy2+, Mnz2+ phosphors and their application to near-UV LED-based white LEDs,” Inorg. Chem. 48, 11525–11532 (2009).
    [CrossRef]
  44. C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17, 142–144 (1992).
    [CrossRef]

2012 (4)

Y. Chuangtao, X. Lijuan, X. Quanlan, L. Guanxi, P. Wenfang, and M. Jianxin, “Ba1xSrxMgSiO4:Eu2+, Mn2+: a novel tunable single-matrix tricolor phosphor for w-LED,” J. Rare Earths 30, 110–113 (2012).
[CrossRef]

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, H. Eivaz Mohammadloo, F. Nargesian, and M. Tahriri, “Sol-gel synthesis, structural and optical characteristics of Sr1−xZn2Si2yO7+δEu2+ as a potential nanocrystalline phosphor for near-ultraviolet white light-emitting diodes,” J. Mater. Sci. 47, 2658–2664 (2012).
[CrossRef]

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, M. A. M. Farsi, H. E. Mohammadloo, M. S. Alvani, and M. Tahriri, “A nanostructure phosphor: effect of process parameters on the photoluminescence properties for near-UV WLED applications,” J. Inorg. Organomet. Polym. Mater. 22, 737–743 (2012).
[CrossRef]

N. Guo, Y. Zheng, Y. Jia, H. Qiao, and H. You, “Warm-white emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116, 1329–1334 (2012).
[CrossRef]

2011 (3)

W. Lu, Zh. Hao, X. Zhang, X. Liu, X. Wang, and J. Zhang, “Ca3Al2(SiO4)3−δCl4δ:Eu2+, Mn2+: a potential phosphor with energy transfer for near-UV pumped white-LEDs,” Opt. Mater. 33, 1262–1265 (2011).
[CrossRef]

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Sol-gel synthesis, characterization and luminescence properties of SrMgAl2SiO7:Eu2+ as a novel nanocrystalline phosphor,” Luminescence 26, 449–455 (2011).

P. K. Sharma, M. Kumar, and A. C. Pandey, “Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs,” J. Nanopart. Res. 13, 1629–1637 (2011).
[CrossRef]

2010 (3)

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Evaluation of sol-gel derived Eu2+ activated SrMgAl2SiO7 as a novel nanostructure luminescent pigment,” Physica B 405, 4796–4800 (2010).

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single phase emission-tunable phosphor Ca9Y(PO4)7:Eu2+, Mn2+ with efficient energy transfer for white light emitting diodes,” ACS Appl. Mater. Int. 2, 259–264 (2010).

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng., R 71, 1–34 (2010).
[CrossRef]

2009 (7)

P. Uthirakumar, H. G. Kim, and C. H. Hong, “Zinc oxide nanostructures derived from a simple solution method for solar cells and LEDs,” Chem. Eng. J. 155, 910–915 (2009).
[CrossRef]

R. Pang, C. Li, L. Shi, and Q. A. Su, “Novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70, 303–306 (2009).

K. H. Kwon, W. B. Im, H. S. Jang, H. S. Yoo, and D. Y. Jeon, “Luminescence properties and energy transfer of site-sensitive Ca6−x–yMgx–z(PO4)4:Euy2+, Mnz2+ phosphors and their application to near-UV LED-based white LEDs,” Inorg. Chem. 48, 11525–11532 (2009).
[CrossRef]

B. Wang, L. Sun, H. Ju, S. Zhao, D. Deng, H. Wang, and Sh. Xu, “Sol-gel synthesis of single-phase Ca5MgSi3O12:Eu2+, Mn2+ phosphors for white-light emitting diodes,” Mater. Lett. 63, 1329–1331 (2009).
[CrossRef]

P. Huang, C. Cui, and S. Wang, “Influence of calcination temperature on luminescent properties of Sr3Al2O6:Eu2+, Dy3+ phosphors prepared by sol-gel-combustion processing,” Opt. Mater. 32, 184–189 (2009).
[CrossRef]

S. Ye, Z. S. Liu, X. T. Wang, J. G. Wang, L. X. Wang, and X. P. Jing, “Emission properties of Eu2+, Mn2+ in MAl2Si2O8 (M=Sr, Ba),” J. Lumin. 129, 50–54 (2009).
[CrossRef]

T. Yamashita and Y. Ohishi, “Analysis of energy transfers between Tb3+ and Yb3+ codoped in borosilicate glasses,” J. Opt. Soc. Am. B 26, 819–829 (2009).
[CrossRef]

2008 (2)

M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, and P. P. Vaishnava, “Bandgap engineering by tuning particle size and crystallinity of SnO2-Fe2O3 nanocrystalline composite thin films,” Appl. Phys. Lett. 93, 231909 (2008).
[CrossRef]

G. Seeta, R. Raju, and S. Buddhudu, “Emission analysis of Tb3+:MgLaLiSi2O7 powder phosphor,” Mater. Lett. 62, 1259–1262 (2008).
[CrossRef]

2007 (2)

H. P. You, J. L. Zhang, G. Y. Hong, and H. J. Zhang, “Luminescent properties of Mn2+ in hexagonal aluminates under ultraviolet and vacuum ultraviolet excitation,” J. Phys. Chem. C 111, 10657–10661 (2007).
[CrossRef]

J. S. Kim, A. K. Kown, Y. H. Park, J. C. Choi, H. L. Park, and G. C. Kim, “Luminescent and thermal properties of full-color emitting X3MgSi2O8:Eu, Mn (X=Ba, Sr, Ca) phosphors for white LED,” J. Lumin. 122–123, 583–586 (2007).
[CrossRef]

2006 (3)

X. Q. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white lightemitting-diode illumination,” Appl. Phys. Lett. 88, 161908 (2006).
[CrossRef]

Y. Liu, M. Nishiura, Y. Wang, and Z. M. Hou, “Pi-conjugated aromatic enynes as a single-emitting component for white electroluminescence,” J. Am. Chem. Soc. 128, 5592–5593 (2006).
[CrossRef]

W. J. Yang and T. M. Chen, “White-light generation and energy transfer in SrZn2(PO4)2:Eu, Mn phosphor for ultraviolet light-emitting diodes,” Appl. Phys. Lett. 88, 101903 (2006).
[CrossRef]

2005 (6)

J. Kuang, Y. Liu, J. Zhang, L. Huang, J. Rong, and D. Yuan, “Blue-emitting long-lasting phosphor, Sr3Al10SiO20:Eu2+, Ho3+,” Solid State Commun. 136, 6–10 (2005).
[CrossRef]

J. S. Kim, K. T. Lim, Y. S. Jeong, P. E. Jeon, J. C. Choi, and H. L. Park, “Full color Ba3MgSi2O8:Eu2+, Mn2+ phosphor for white light emitting diodes,” Solid State Commun. 135, 21–24 (2005).
[CrossRef]

K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park, and Y. S. Yang, “Luminescent properties of (Ba,Sr)MgAl10O17:Mn, Eu green phosphor prepared by spray pyrolysis under VUV excitation,” Chem. Mater. 17, 2729–2734 (2005).
[CrossRef]

M. Pang, X. Liu, and J. Lin, “Luminescence properties of R2MoO6:Eu3+ (R=Gd, Y, La) phosphors prepared by Pechini sol-gel process,” J. Mater. Res. 20, 2676–2681 (2005).
[CrossRef]

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Photoluminescence of Eu2+ in SrGa2S4”, J. Lumin. 111, 147–158 (2005).
[CrossRef]

W. J. Yang, L. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17, 3883–3888 (2005).
[CrossRef]

2004 (1)

J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Park, G. C. Kim, and T. W. Kim, “White-light generation through ultraviolet-emitting diode and white emitting phosphor,” Appl. Phys. Lett. 85, 3696–3698 (2004).
[CrossRef]

2003 (1)

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids Suppl. 64, 841–846 (2003).

2002 (1)

G. M. Salley, O. S. Wenger, K. W. Kramer, and H. U. Gudel, “Inorganic solid state optical materials: major recent advances,” Curr. Opin. Solid State Mater. Sci. 6, 487–493 (2002).
[CrossRef]

2000 (1)

J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, and K. S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77, 2162–2164 (2000).
[CrossRef]

1998 (2)

C. E. Kril and R. Birringer, “Estimating grain-size distributions in nanocrystalline materials from x-ray diffraction profile analysis,” Philos. Mag. A 77(3), 621–640 (1998).
[CrossRef]

G. Q. Yao, J. H. Lin, L. Zhang, G. X. Lu, M. L. Gong, and M. Z. Su, “Luminescent properties of BaMg2Si3O7:Eu2+, Mn2+,” J. Mater. Chem. 8, 585–588 (1998).
[CrossRef]

1996 (1)

R. P. Rao, “Preparation and characterization of fine‐grain yttrium‐based phosphors by sol-gel process,” J. Electrochem. Soc. 143, 189–197 (1996).
[CrossRef]

1993 (1)

U. G. Caldino, A. F. Muoz, and J. O. Rubio, “Energy transfer in CaCl2:Eu:Mn crystals,” J. Phys. Condens. Matter 5, 2195–2202 (1993).
[CrossRef]

1992 (1)

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17, 142–144 (1992).
[CrossRef]

1972 (1)

R. Reisfeld, E. Greenberg, R. Velapoldi, and B. Barnett, “Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them,” J. Chem. Phys. 56, 1698–1715 (1972).
[CrossRef]

1969 (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Alvani, A. A. S.

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, H. Eivaz Mohammadloo, F. Nargesian, and M. Tahriri, “Sol-gel synthesis, structural and optical characteristics of Sr1−xZn2Si2yO7+δEu2+ as a potential nanocrystalline phosphor for near-ultraviolet white light-emitting diodes,” J. Mater. Sci. 47, 2658–2664 (2012).
[CrossRef]

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, M. A. M. Farsi, H. E. Mohammadloo, M. S. Alvani, and M. Tahriri, “A nanostructure phosphor: effect of process parameters on the photoluminescence properties for near-UV WLED applications,” J. Inorg. Organomet. Polym. Mater. 22, 737–743 (2012).
[CrossRef]

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Sol-gel synthesis, characterization and luminescence properties of SrMgAl2SiO7:Eu2+ as a novel nanocrystalline phosphor,” Luminescence 26, 449–455 (2011).

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Evaluation of sol-gel derived Eu2+ activated SrMgAl2SiO7 as a novel nanostructure luminescent pigment,” Physica B 405, 4796–4800 (2010).

Alvani, M. S.

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, M. A. M. Farsi, H. E. Mohammadloo, M. S. Alvani, and M. Tahriri, “A nanostructure phosphor: effect of process parameters on the photoluminescence properties for near-UV WLED applications,” J. Inorg. Organomet. Polym. Mater. 22, 737–743 (2012).
[CrossRef]

Barnett, B.

R. Reisfeld, E. Greenberg, R. Velapoldi, and B. Barnett, “Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them,” J. Chem. Phys. 56, 1698–1715 (1972).
[CrossRef]

Barthou, C.

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Photoluminescence of Eu2+ in SrGa2S4”, J. Lumin. 111, 147–158 (2005).
[CrossRef]

Benalloul, P.

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Photoluminescence of Eu2+ in SrGa2S4”, J. Lumin. 111, 147–158 (2005).
[CrossRef]

Billinge, S. J. L.

P. Scardi, R. E. Dinnebier, and S. J. L. Billinge, Powder Diffraction: Theory and Practice (RSC, 2008).

Birringer, R.

C. E. Kril and R. Birringer, “Estimating grain-size distributions in nanocrystalline materials from x-ray diffraction profile analysis,” Philos. Mag. A 77(3), 621–640 (1998).
[CrossRef]

Blasse, G.

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

Buddhudu, S.

G. Seeta, R. Raju, and S. Buddhudu, “Emission analysis of Tb3+:MgLaLiSi2O7 powder phosphor,” Mater. Lett. 62, 1259–1262 (2008).
[CrossRef]

Byeon, S. H.

J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, and K. S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77, 2162–2164 (2000).
[CrossRef]

Caldino, U. G.

U. G. Caldino, A. F. Muoz, and J. O. Rubio, “Energy transfer in CaCl2:Eu:Mn crystals,” J. Phys. Condens. Matter 5, 2195–2202 (1993).
[CrossRef]

Chartier, C.

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Photoluminescence of Eu2+ in SrGa2S4”, J. Lumin. 111, 147–158 (2005).
[CrossRef]

Chen, T. M.

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single phase emission-tunable phosphor Ca9Y(PO4)7:Eu2+, Mn2+ with efficient energy transfer for white light emitting diodes,” ACS Appl. Mater. Int. 2, 259–264 (2010).

W. J. Yang and T. M. Chen, “White-light generation and energy transfer in SrZn2(PO4)2:Eu, Mn phosphor for ultraviolet light-emitting diodes,” Appl. Phys. Lett. 88, 101903 (2006).
[CrossRef]

W. J. Yang, L. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17, 3883–3888 (2005).
[CrossRef]

Chiu, Y. C.

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single phase emission-tunable phosphor Ca9Y(PO4)7:Eu2+, Mn2+ with efficient energy transfer for white light emitting diodes,” ACS Appl. Mater. Int. 2, 259–264 (2010).

Choi, J. C.

J. S. Kim, A. K. Kown, Y. H. Park, J. C. Choi, H. L. Park, and G. C. Kim, “Luminescent and thermal properties of full-color emitting X3MgSi2O8:Eu, Mn (X=Ba, Sr, Ca) phosphors for white LED,” J. Lumin. 122–123, 583–586 (2007).
[CrossRef]

J. S. Kim, K. T. Lim, Y. S. Jeong, P. E. Jeon, J. C. Choi, and H. L. Park, “Full color Ba3MgSi2O8:Eu2+, Mn2+ phosphor for white light emitting diodes,” Solid State Commun. 135, 21–24 (2005).
[CrossRef]

J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Park, G. C. Kim, and T. W. Kim, “White-light generation through ultraviolet-emitting diode and white emitting phosphor,” Appl. Phys. Lett. 85, 3696–3698 (2004).
[CrossRef]

Chuangtao, Y.

Y. Chuangtao, X. Lijuan, X. Quanlan, L. Guanxi, P. Wenfang, and M. Jianxin, “Ba1xSrxMgSiO4:Eu2+, Mn2+: a novel tunable single-matrix tricolor phosphor for w-LED,” J. Rare Earths 30, 110–113 (2012).
[CrossRef]

Cui, C.

P. Huang, C. Cui, and S. Wang, “Influence of calcination temperature on luminescent properties of Sr3Al2O6:Eu2+, Dy3+ phosphors prepared by sol-gel-combustion processing,” Opt. Mater. 32, 184–189 (2009).
[CrossRef]

Deng, D.

B. Wang, L. Sun, H. Ju, S. Zhao, D. Deng, H. Wang, and Sh. Xu, “Sol-gel synthesis of single-phase Ca5MgSi3O12:Eu2+, Mn2+ phosphors for white-light emitting diodes,” Mater. Lett. 63, 1329–1331 (2009).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Dinnebier, R. E.

P. Scardi, R. E. Dinnebier, and S. J. L. Billinge, Powder Diffraction: Theory and Practice (RSC, 2008).

Dixit, A.

M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, and P. P. Vaishnava, “Bandgap engineering by tuning particle size and crystallinity of SnO2-Fe2O3 nanocrystalline composite thin films,” Appl. Phys. Lett. 93, 231909 (2008).
[CrossRef]

Eivaz Mohammadloo, H.

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, H. Eivaz Mohammadloo, F. Nargesian, and M. Tahriri, “Sol-gel synthesis, structural and optical characteristics of Sr1−xZn2Si2yO7+δEu2+ as a potential nanocrystalline phosphor for near-ultraviolet white light-emitting diodes,” J. Mater. Sci. 47, 2658–2664 (2012).
[CrossRef]

Farsi, M. A. M.

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, M. A. M. Farsi, H. E. Mohammadloo, M. S. Alvani, and M. Tahriri, “A nanostructure phosphor: effect of process parameters on the photoluminescence properties for near-UV WLED applications,” J. Inorg. Organomet. Polym. Mater. 22, 737–743 (2012).
[CrossRef]

Frigerio, J. M.

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Photoluminescence of Eu2+ in SrGa2S4”, J. Lumin. 111, 147–158 (2005).
[CrossRef]

Gong, M. L.

G. Q. Yao, J. H. Lin, L. Zhang, G. X. Lu, M. L. Gong, and M. Z. Su, “Luminescent properties of BaMg2Si3O7:Eu2+, Mn2+,” J. Mater. Chem. 8, 585–588 (1998).
[CrossRef]

Greenberg, E.

R. Reisfeld, E. Greenberg, R. Velapoldi, and B. Barnett, “Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them,” J. Chem. Phys. 56, 1698–1715 (1972).
[CrossRef]

Guanxi, L.

Y. Chuangtao, X. Lijuan, X. Quanlan, L. Guanxi, P. Wenfang, and M. Jianxin, “Ba1xSrxMgSiO4:Eu2+, Mn2+: a novel tunable single-matrix tricolor phosphor for w-LED,” J. Rare Earths 30, 110–113 (2012).
[CrossRef]

Gudel, H. U.

G. M. Salley, O. S. Wenger, K. W. Kramer, and H. U. Gudel, “Inorganic solid state optical materials: major recent advances,” Curr. Opin. Solid State Mater. Sci. 6, 487–493 (2002).
[CrossRef]

Guo, N.

N. Guo, Y. Zheng, Y. Jia, H. Qiao, and H. You, “Warm-white emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116, 1329–1334 (2012).
[CrossRef]

Hanzawa, H.

X. Q. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white lightemitting-diode illumination,” Appl. Phys. Lett. 88, 161908 (2006).
[CrossRef]

Hao, Zh.

W. Lu, Zh. Hao, X. Zhang, X. Liu, X. Wang, and J. Zhang, “Ca3Al2(SiO4)3−δCl4δ:Eu2+, Mn2+: a potential phosphor with energy transfer for near-UV pumped white-LEDs,” Opt. Mater. 33, 1262–1265 (2011).
[CrossRef]

Hong, C. H.

P. Uthirakumar, H. G. Kim, and C. H. Hong, “Zinc oxide nanostructures derived from a simple solution method for solar cells and LEDs,” Chem. Eng. J. 155, 910–915 (2009).
[CrossRef]

Hong, G. Y.

H. P. You, J. L. Zhang, G. Y. Hong, and H. J. Zhang, “Luminescent properties of Mn2+ in hexagonal aluminates under ultraviolet and vacuum ultraviolet excitation,” J. Phys. Chem. C 111, 10657–10661 (2007).
[CrossRef]

Horikawa, T.

X. Q. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white lightemitting-diode illumination,” Appl. Phys. Lett. 88, 161908 (2006).
[CrossRef]

Hou, Z. M.

Y. Liu, M. Nishiura, Y. Wang, and Z. M. Hou, “Pi-conjugated aromatic enynes as a single-emitting component for white electroluminescence,” J. Am. Chem. Soc. 128, 5592–5593 (2006).
[CrossRef]

Huang, C. H.

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single phase emission-tunable phosphor Ca9Y(PO4)7:Eu2+, Mn2+ with efficient energy transfer for white light emitting diodes,” ACS Appl. Mater. Int. 2, 259–264 (2010).

Huang, L.

J. Kuang, Y. Liu, J. Zhang, L. Huang, J. Rong, and D. Yuan, “Blue-emitting long-lasting phosphor, Sr3Al10SiO20:Eu2+, Ho3+,” Solid State Commun. 136, 6–10 (2005).
[CrossRef]

Huang, P.

P. Huang, C. Cui, and S. Wang, “Influence of calcination temperature on luminescent properties of Sr3Al2O6:Eu2+, Dy3+ phosphors prepared by sol-gel-combustion processing,” Opt. Mater. 32, 184–189 (2009).
[CrossRef]

Im, W. B.

K. H. Kwon, W. B. Im, H. S. Jang, H. S. Yoo, and D. Y. Jeon, “Luminescence properties and energy transfer of site-sensitive Ca6−x–yMgx–z(PO4)4:Euy2+, Mnz2+ phosphors and their application to near-UV LED-based white LEDs,” Inorg. Chem. 48, 11525–11532 (2009).
[CrossRef]

Jang, H. S.

K. H. Kwon, W. B. Im, H. S. Jang, H. S. Yoo, and D. Y. Jeon, “Luminescence properties and energy transfer of site-sensitive Ca6−x–yMgx–z(PO4)4:Euy2+, Mnz2+ phosphors and their application to near-UV LED-based white LEDs,” Inorg. Chem. 48, 11525–11532 (2009).
[CrossRef]

Jang, S. M.

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single phase emission-tunable phosphor Ca9Y(PO4)7:Eu2+, Mn2+ with efficient energy transfer for white light emitting diodes,” ACS Appl. Mater. Int. 2, 259–264 (2010).

Jeon, D. Y.

K. H. Kwon, W. B. Im, H. S. Jang, H. S. Yoo, and D. Y. Jeon, “Luminescence properties and energy transfer of site-sensitive Ca6−x–yMgx–z(PO4)4:Euy2+, Mnz2+ phosphors and their application to near-UV LED-based white LEDs,” Inorg. Chem. 48, 11525–11532 (2009).
[CrossRef]

Jeon, P. E.

J. S. Kim, K. T. Lim, Y. S. Jeong, P. E. Jeon, J. C. Choi, and H. L. Park, “Full color Ba3MgSi2O8:Eu2+, Mn2+ phosphor for white light emitting diodes,” Solid State Commun. 135, 21–24 (2005).
[CrossRef]

J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Park, G. C. Kim, and T. W. Kim, “White-light generation through ultraviolet-emitting diode and white emitting phosphor,” Appl. Phys. Lett. 85, 3696–3698 (2004).
[CrossRef]

Jeong, Y. S.

J. S. Kim, K. T. Lim, Y. S. Jeong, P. E. Jeon, J. C. Choi, and H. L. Park, “Full color Ba3MgSi2O8:Eu2+, Mn2+ phosphor for white light emitting diodes,” Solid State Commun. 135, 21–24 (2005).
[CrossRef]

Jia, Y.

N. Guo, Y. Zheng, Y. Jia, H. Qiao, and H. You, “Warm-white emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116, 1329–1334 (2012).
[CrossRef]

Jianxin, M.

Y. Chuangtao, X. Lijuan, X. Quanlan, L. Guanxi, P. Wenfang, and M. Jianxin, “Ba1xSrxMgSiO4:Eu2+, Mn2+: a novel tunable single-matrix tricolor phosphor for w-LED,” J. Rare Earths 30, 110–113 (2012).
[CrossRef]

Jing, X. P.

S. Ye, Z. S. Liu, X. T. Wang, J. G. Wang, L. X. Wang, and X. P. Jing, “Emission properties of Eu2+, Mn2+ in MAl2Si2O8 (M=Sr, Ba),” J. Lumin. 129, 50–54 (2009).
[CrossRef]

Jose, G.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids Suppl. 64, 841–846 (2003).

Ju, H.

B. Wang, L. Sun, H. Ju, S. Zhao, D. Deng, H. Wang, and Sh. Xu, “Sol-gel synthesis of single-phase Ca5MgSi3O12:Eu2+, Mn2+ phosphors for white-light emitting diodes,” Mater. Lett. 63, 1329–1331 (2009).
[CrossRef]

Jung, K. Y.

K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park, and Y. S. Yang, “Luminescent properties of (Ba,Sr)MgAl10O17:Mn, Eu green phosphor prepared by spray pyrolysis under VUV excitation,” Chem. Mater. 17, 2729–2734 (2005).
[CrossRef]

Kang, Y. C.

K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park, and Y. S. Yang, “Luminescent properties of (Ba,Sr)MgAl10O17:Mn, Eu green phosphor prepared by spray pyrolysis under VUV excitation,” Chem. Mater. 17, 2729–2734 (2005).
[CrossRef]

Kim, B. C.

J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, and K. S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77, 2162–2164 (2000).
[CrossRef]

Kim, D. K.

J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, and K. S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77, 2162–2164 (2000).
[CrossRef]

Kim, G. C.

J. S. Kim, A. K. Kown, Y. H. Park, J. C. Choi, H. L. Park, and G. C. Kim, “Luminescent and thermal properties of full-color emitting X3MgSi2O8:Eu, Mn (X=Ba, Sr, Ca) phosphors for white LED,” J. Lumin. 122–123, 583–586 (2007).
[CrossRef]

J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Park, G. C. Kim, and T. W. Kim, “White-light generation through ultraviolet-emitting diode and white emitting phosphor,” Appl. Phys. Lett. 85, 3696–3698 (2004).
[CrossRef]

Kim, H. G.

P. Uthirakumar, H. G. Kim, and C. H. Hong, “Zinc oxide nanostructures derived from a simple solution method for solar cells and LEDs,” Chem. Eng. J. 155, 910–915 (2009).
[CrossRef]

Kim, J. S.

J. S. Kim, A. K. Kown, Y. H. Park, J. C. Choi, H. L. Park, and G. C. Kim, “Luminescent and thermal properties of full-color emitting X3MgSi2O8:Eu, Mn (X=Ba, Sr, Ca) phosphors for white LED,” J. Lumin. 122–123, 583–586 (2007).
[CrossRef]

J. S. Kim, K. T. Lim, Y. S. Jeong, P. E. Jeon, J. C. Choi, and H. L. Park, “Full color Ba3MgSi2O8:Eu2+, Mn2+ phosphor for white light emitting diodes,” Solid State Commun. 135, 21–24 (2005).
[CrossRef]

J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Park, G. C. Kim, and T. W. Kim, “White-light generation through ultraviolet-emitting diode and white emitting phosphor,” Appl. Phys. Lett. 85, 3696–3698 (2004).
[CrossRef]

Kim, T. W.

J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Park, G. C. Kim, and T. W. Kim, “White-light generation through ultraviolet-emitting diode and white emitting phosphor,” Appl. Phys. Lett. 85, 3696–3698 (2004).
[CrossRef]

Kown, A. K.

J. S. Kim, A. K. Kown, Y. H. Park, J. C. Choi, H. L. Park, and G. C. Kim, “Luminescent and thermal properties of full-color emitting X3MgSi2O8:Eu, Mn (X=Ba, Sr, Ca) phosphors for white LED,” J. Lumin. 122–123, 583–586 (2007).
[CrossRef]

Kramer, K. W.

G. M. Salley, O. S. Wenger, K. W. Kramer, and H. U. Gudel, “Inorganic solid state optical materials: major recent advances,” Curr. Opin. Solid State Mater. Sci. 6, 487–493 (2002).
[CrossRef]

Kril, C. E.

C. E. Kril and R. Birringer, “Estimating grain-size distributions in nanocrystalline materials from x-ray diffraction profile analysis,” Philos. Mag. A 77(3), 621–640 (1998).
[CrossRef]

Kuang, J.

J. Kuang, Y. Liu, J. Zhang, L. Huang, J. Rong, and D. Yuan, “Blue-emitting long-lasting phosphor, Sr3Al10SiO20:Eu2+, Ho3+,” Solid State Commun. 136, 6–10 (2005).
[CrossRef]

Kumar, M.

P. K. Sharma, M. Kumar, and A. C. Pandey, “Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs,” J. Nanopart. Res. 13, 1629–1637 (2011).
[CrossRef]

Kwon, K. H.

K. H. Kwon, W. B. Im, H. S. Jang, H. S. Yoo, and D. Y. Jeon, “Luminescence properties and energy transfer of site-sensitive Ca6−x–yMgx–z(PO4)4:Euy2+, Mnz2+ phosphors and their application to near-UV LED-based white LEDs,” Inorg. Chem. 48, 11525–11532 (2009).
[CrossRef]

Lawes, G.

M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, and P. P. Vaishnava, “Bandgap engineering by tuning particle size and crystallinity of SnO2-Fe2O3 nanocrystalline composite thin films,” Appl. Phys. Lett. 93, 231909 (2008).
[CrossRef]

Lee, H. W.

K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park, and Y. S. Yang, “Luminescent properties of (Ba,Sr)MgAl10O17:Mn, Eu green phosphor prepared by spray pyrolysis under VUV excitation,” Chem. Mater. 17, 2729–2734 (2005).
[CrossRef]

Li, C.

R. Pang, C. Li, L. Shi, and Q. A. Su, “Novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70, 303–306 (2009).

Lijuan, X.

Y. Chuangtao, X. Lijuan, X. Quanlan, L. Guanxi, P. Wenfang, and M. Jianxin, “Ba1xSrxMgSiO4:Eu2+, Mn2+: a novel tunable single-matrix tricolor phosphor for w-LED,” J. Rare Earths 30, 110–113 (2012).
[CrossRef]

Lim, K. T.

J. S. Kim, K. T. Lim, Y. S. Jeong, P. E. Jeon, J. C. Choi, and H. L. Park, “Full color Ba3MgSi2O8:Eu2+, Mn2+ phosphor for white light emitting diodes,” Solid State Commun. 135, 21–24 (2005).
[CrossRef]

Lin, J.

M. Pang, X. Liu, and J. Lin, “Luminescence properties of R2MoO6:Eu3+ (R=Gd, Y, La) phosphors prepared by Pechini sol-gel process,” J. Mater. Res. 20, 2676–2681 (2005).
[CrossRef]

Lin, J. H.

G. Q. Yao, J. H. Lin, L. Zhang, G. X. Lu, M. L. Gong, and M. Z. Su, “Luminescent properties of BaMg2Si3O7:Eu2+, Mn2+,” J. Mater. Chem. 8, 585–588 (1998).
[CrossRef]

Liu, W. R.

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single phase emission-tunable phosphor Ca9Y(PO4)7:Eu2+, Mn2+ with efficient energy transfer for white light emitting diodes,” ACS Appl. Mater. Int. 2, 259–264 (2010).

Liu, X.

W. Lu, Zh. Hao, X. Zhang, X. Liu, X. Wang, and J. Zhang, “Ca3Al2(SiO4)3−δCl4δ:Eu2+, Mn2+: a potential phosphor with energy transfer for near-UV pumped white-LEDs,” Opt. Mater. 33, 1262–1265 (2011).
[CrossRef]

M. Pang, X. Liu, and J. Lin, “Luminescence properties of R2MoO6:Eu3+ (R=Gd, Y, La) phosphors prepared by Pechini sol-gel process,” J. Mater. Res. 20, 2676–2681 (2005).
[CrossRef]

Liu, Y.

Y. Liu, M. Nishiura, Y. Wang, and Z. M. Hou, “Pi-conjugated aromatic enynes as a single-emitting component for white electroluminescence,” J. Am. Chem. Soc. 128, 5592–5593 (2006).
[CrossRef]

J. Kuang, Y. Liu, J. Zhang, L. Huang, J. Rong, and D. Yuan, “Blue-emitting long-lasting phosphor, Sr3Al10SiO20:Eu2+, Ho3+,” Solid State Commun. 136, 6–10 (2005).
[CrossRef]

Liu, Z. S.

S. Ye, Z. S. Liu, X. T. Wang, J. G. Wang, L. X. Wang, and X. P. Jing, “Emission properties of Eu2+, Mn2+ in MAl2Si2O8 (M=Sr, Ba),” J. Lumin. 129, 50–54 (2009).
[CrossRef]

Lu, G. X.

G. Q. Yao, J. H. Lin, L. Zhang, G. X. Lu, M. L. Gong, and M. Z. Su, “Luminescent properties of BaMg2Si3O7:Eu2+, Mn2+,” J. Mater. Chem. 8, 585–588 (1998).
[CrossRef]

Lu, W.

W. Lu, Zh. Hao, X. Zhang, X. Liu, X. Wang, and J. Zhang, “Ca3Al2(SiO4)3−δCl4δ:Eu2+, Mn2+: a potential phosphor with energy transfer for near-UV pumped white-LEDs,” Opt. Mater. 33, 1262–1265 (2011).
[CrossRef]

Luo, L.

W. J. Yang, L. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17, 3883–3888 (2005).
[CrossRef]

Ma, Y. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng., R 71, 1–34 (2010).
[CrossRef]

Machida, K.

X. Q. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white lightemitting-diode illumination,” Appl. Phys. Lett. 88, 161908 (2006).
[CrossRef]

McCamy, C. S.

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17, 142–144 (1992).
[CrossRef]

Mohammadloo, H. E.

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, M. A. M. Farsi, H. E. Mohammadloo, M. S. Alvani, and M. Tahriri, “A nanostructure phosphor: effect of process parameters on the photoluminescence properties for near-UV WLED applications,” J. Inorg. Organomet. Polym. Mater. 22, 737–743 (2012).
[CrossRef]

Moon, H. K.

J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, and K. S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77, 2162–2164 (2000).
[CrossRef]

Moztarzadeh, F.

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, H. Eivaz Mohammadloo, F. Nargesian, and M. Tahriri, “Sol-gel synthesis, structural and optical characteristics of Sr1−xZn2Si2yO7+δEu2+ as a potential nanocrystalline phosphor for near-ultraviolet white light-emitting diodes,” J. Mater. Sci. 47, 2658–2664 (2012).
[CrossRef]

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, M. A. M. Farsi, H. E. Mohammadloo, M. S. Alvani, and M. Tahriri, “A nanostructure phosphor: effect of process parameters on the photoluminescence properties for near-UV WLED applications,” J. Inorg. Organomet. Polym. Mater. 22, 737–743 (2012).
[CrossRef]

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Sol-gel synthesis, characterization and luminescence properties of SrMgAl2SiO7:Eu2+ as a novel nanocrystalline phosphor,” Luminescence 26, 449–455 (2011).

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Evaluation of sol-gel derived Eu2+ activated SrMgAl2SiO7 as a novel nanostructure luminescent pigment,” Physica B 405, 4796–4800 (2010).

Muoz, A. F.

U. G. Caldino, A. F. Muoz, and J. O. Rubio, “Energy transfer in CaCl2:Eu:Mn crystals,” J. Phys. Condens. Matter 5, 2195–2202 (1993).
[CrossRef]

Naik, R.

M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, and P. P. Vaishnava, “Bandgap engineering by tuning particle size and crystallinity of SnO2-Fe2O3 nanocrystalline composite thin films,” Appl. Phys. Lett. 93, 231909 (2008).
[CrossRef]

Naik, V. M.

M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, and P. P. Vaishnava, “Bandgap engineering by tuning particle size and crystallinity of SnO2-Fe2O3 nanocrystalline composite thin films,” Appl. Phys. Lett. 93, 231909 (2008).
[CrossRef]

Nargesian, F.

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, H. Eivaz Mohammadloo, F. Nargesian, and M. Tahriri, “Sol-gel synthesis, structural and optical characteristics of Sr1−xZn2Si2yO7+δEu2+ as a potential nanocrystalline phosphor for near-ultraviolet white light-emitting diodes,” J. Mater. Sci. 47, 2658–2664 (2012).
[CrossRef]

Nishiura, M.

Y. Liu, M. Nishiura, Y. Wang, and Z. M. Hou, “Pi-conjugated aromatic enynes as a single-emitting component for white electroluminescence,” J. Am. Chem. Soc. 128, 5592–5593 (2006).
[CrossRef]

Ohishi, Y.

Pan, Y. X.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng., R 71, 1–34 (2010).
[CrossRef]

Pandey, A. C.

P. K. Sharma, M. Kumar, and A. C. Pandey, “Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs,” J. Nanopart. Res. 13, 1629–1637 (2011).
[CrossRef]

Pang, M.

M. Pang, X. Liu, and J. Lin, “Luminescence properties of R2MoO6:Eu3+ (R=Gd, Y, La) phosphors prepared by Pechini sol-gel process,” J. Mater. Res. 20, 2676–2681 (2005).
[CrossRef]

Pang, R.

R. Pang, C. Li, L. Shi, and Q. A. Su, “Novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70, 303–306 (2009).

Park, H. L.

J. S. Kim, A. K. Kown, Y. H. Park, J. C. Choi, H. L. Park, and G. C. Kim, “Luminescent and thermal properties of full-color emitting X3MgSi2O8:Eu, Mn (X=Ba, Sr, Ca) phosphors for white LED,” J. Lumin. 122–123, 583–586 (2007).
[CrossRef]

J. S. Kim, K. T. Lim, Y. S. Jeong, P. E. Jeon, J. C. Choi, and H. L. Park, “Full color Ba3MgSi2O8:Eu2+, Mn2+ phosphor for white light emitting diodes,” Solid State Commun. 135, 21–24 (2005).
[CrossRef]

J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Park, G. C. Kim, and T. W. Kim, “White-light generation through ultraviolet-emitting diode and white emitting phosphor,” Appl. Phys. Lett. 85, 3696–3698 (2004).
[CrossRef]

Park, J. C.

J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, and K. S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77, 2162–2164 (2000).
[CrossRef]

Park, S. B.

K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park, and Y. S. Yang, “Luminescent properties of (Ba,Sr)MgAl10O17:Mn, Eu green phosphor prepared by spray pyrolysis under VUV excitation,” Chem. Mater. 17, 2729–2734 (2005).
[CrossRef]

Park, Y. H.

J. S. Kim, A. K. Kown, Y. H. Park, J. C. Choi, H. L. Park, and G. C. Kim, “Luminescent and thermal properties of full-color emitting X3MgSi2O8:Eu, Mn (X=Ba, Sr, Ca) phosphors for white LED,” J. Lumin. 122–123, 583–586 (2007).
[CrossRef]

J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Park, G. C. Kim, and T. W. Kim, “White-light generation through ultraviolet-emitting diode and white emitting phosphor,” Appl. Phys. Lett. 85, 3696–3698 (2004).
[CrossRef]

Paulose, P. I.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids Suppl. 64, 841–846 (2003).

Piao, X. Q.

X. Q. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white lightemitting-diode illumination,” Appl. Phys. Lett. 88, 161908 (2006).
[CrossRef]

Qiao, H.

N. Guo, Y. Zheng, Y. Jia, H. Qiao, and H. You, “Warm-white emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116, 1329–1334 (2012).
[CrossRef]

Quanlan, X.

Y. Chuangtao, X. Lijuan, X. Quanlan, L. Guanxi, P. Wenfang, and M. Jianxin, “Ba1xSrxMgSiO4:Eu2+, Mn2+: a novel tunable single-matrix tricolor phosphor for w-LED,” J. Rare Earths 30, 110–113 (2012).
[CrossRef]

Raju, R.

G. Seeta, R. Raju, and S. Buddhudu, “Emission analysis of Tb3+:MgLaLiSi2O7 powder phosphor,” Mater. Lett. 62, 1259–1262 (2008).
[CrossRef]

Rao, R. P.

R. P. Rao, “Preparation and characterization of fine‐grain yttrium‐based phosphors by sol-gel process,” J. Electrochem. Soc. 143, 189–197 (1996).
[CrossRef]

Reisfeld, R.

R. Reisfeld, E. Greenberg, R. Velapoldi, and B. Barnett, “Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them,” J. Chem. Phys. 56, 1698–1715 (1972).
[CrossRef]

Rong, J.

J. Kuang, Y. Liu, J. Zhang, L. Huang, J. Rong, and D. Yuan, “Blue-emitting long-lasting phosphor, Sr3Al10SiO20:Eu2+, Ho3+,” Solid State Commun. 136, 6–10 (2005).
[CrossRef]

Rubio, J. O.

U. G. Caldino, A. F. Muoz, and J. O. Rubio, “Energy transfer in CaCl2:Eu:Mn crystals,” J. Phys. Condens. Matter 5, 2195–2202 (1993).
[CrossRef]

Sahana, M. B.

M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, and P. P. Vaishnava, “Bandgap engineering by tuning particle size and crystallinity of SnO2-Fe2O3 nanocrystalline composite thin films,” Appl. Phys. Lett. 93, 231909 (2008).
[CrossRef]

Salimi, R.

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, H. Eivaz Mohammadloo, F. Nargesian, and M. Tahriri, “Sol-gel synthesis, structural and optical characteristics of Sr1−xZn2Si2yO7+δEu2+ as a potential nanocrystalline phosphor for near-ultraviolet white light-emitting diodes,” J. Mater. Sci. 47, 2658–2664 (2012).
[CrossRef]

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, M. A. M. Farsi, H. E. Mohammadloo, M. S. Alvani, and M. Tahriri, “A nanostructure phosphor: effect of process parameters on the photoluminescence properties for near-UV WLED applications,” J. Inorg. Organomet. Polym. Mater. 22, 737–743 (2012).
[CrossRef]

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Sol-gel synthesis, characterization and luminescence properties of SrMgAl2SiO7:Eu2+ as a novel nanocrystalline phosphor,” Luminescence 26, 449–455 (2011).

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Evaluation of sol-gel derived Eu2+ activated SrMgAl2SiO7 as a novel nanostructure luminescent pigment,” Physica B 405, 4796–4800 (2010).

Salley, G. M.

G. M. Salley, O. S. Wenger, K. W. Kramer, and H. U. Gudel, “Inorganic solid state optical materials: major recent advances,” Curr. Opin. Solid State Mater. Sci. 6, 487–493 (2002).
[CrossRef]

Sameie, H.

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, H. Eivaz Mohammadloo, F. Nargesian, and M. Tahriri, “Sol-gel synthesis, structural and optical characteristics of Sr1−xZn2Si2yO7+δEu2+ as a potential nanocrystalline phosphor for near-ultraviolet white light-emitting diodes,” J. Mater. Sci. 47, 2658–2664 (2012).
[CrossRef]

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, M. A. M. Farsi, H. E. Mohammadloo, M. S. Alvani, and M. Tahriri, “A nanostructure phosphor: effect of process parameters on the photoluminescence properties for near-UV WLED applications,” J. Inorg. Organomet. Polym. Mater. 22, 737–743 (2012).
[CrossRef]

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Sol-gel synthesis, characterization and luminescence properties of SrMgAl2SiO7:Eu2+ as a novel nanocrystalline phosphor,” Luminescence 26, 449–455 (2011).

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Evaluation of sol-gel derived Eu2+ activated SrMgAl2SiO7 as a novel nanostructure luminescent pigment,” Physica B 405, 4796–4800 (2010).

Sarabi, A. A.

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, H. Eivaz Mohammadloo, F. Nargesian, and M. Tahriri, “Sol-gel synthesis, structural and optical characteristics of Sr1−xZn2Si2yO7+δEu2+ as a potential nanocrystalline phosphor for near-ultraviolet white light-emitting diodes,” J. Mater. Sci. 47, 2658–2664 (2012).
[CrossRef]

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, M. A. M. Farsi, H. E. Mohammadloo, M. S. Alvani, and M. Tahriri, “A nanostructure phosphor: effect of process parameters on the photoluminescence properties for near-UV WLED applications,” J. Inorg. Organomet. Polym. Mater. 22, 737–743 (2012).
[CrossRef]

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Sol-gel synthesis, characterization and luminescence properties of SrMgAl2SiO7:Eu2+ as a novel nanocrystalline phosphor,” Luminescence 26, 449–455 (2011).

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Evaluation of sol-gel derived Eu2+ activated SrMgAl2SiO7 as a novel nanostructure luminescent pigment,” Physica B 405, 4796–4800 (2010).

Scardi, P.

P. Scardi, R. E. Dinnebier, and S. J. L. Billinge, Powder Diffraction: Theory and Practice (RSC, 2008).

Seeta, G.

G. Seeta, R. Raju, and S. Buddhudu, “Emission analysis of Tb3+:MgLaLiSi2O7 powder phosphor,” Mater. Lett. 62, 1259–1262 (2008).
[CrossRef]

Setzler, G.

M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, and P. P. Vaishnava, “Bandgap engineering by tuning particle size and crystallinity of SnO2-Fe2O3 nanocrystalline composite thin films,” Appl. Phys. Lett. 93, 231909 (2008).
[CrossRef]

Sharma, P. K.

P. K. Sharma, M. Kumar, and A. C. Pandey, “Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs,” J. Nanopart. Res. 13, 1629–1637 (2011).
[CrossRef]

Shi, L.

R. Pang, C. Li, L. Shi, and Q. A. Su, “Novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70, 303–306 (2009).

Su, M. Z.

G. Q. Yao, J. H. Lin, L. Zhang, G. X. Lu, M. L. Gong, and M. Z. Su, “Luminescent properties of BaMg2Si3O7:Eu2+, Mn2+,” J. Mater. Chem. 8, 585–588 (1998).
[CrossRef]

Su, Q. A.

R. Pang, C. Li, L. Shi, and Q. A. Su, “Novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70, 303–306 (2009).

Sudakar, C.

M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, and P. P. Vaishnava, “Bandgap engineering by tuning particle size and crystallinity of SnO2-Fe2O3 nanocrystalline composite thin films,” Appl. Phys. Lett. 93, 231909 (2008).
[CrossRef]

Suh, K. S.

J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, and K. S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77, 2162–2164 (2000).
[CrossRef]

Sun, L.

B. Wang, L. Sun, H. Ju, S. Zhao, D. Deng, H. Wang, and Sh. Xu, “Sol-gel synthesis of single-phase Ca5MgSi3O12:Eu2+, Mn2+ phosphors for white-light emitting diodes,” Mater. Lett. 63, 1329–1331 (2009).
[CrossRef]

Tahriri, M.

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, H. Eivaz Mohammadloo, F. Nargesian, and M. Tahriri, “Sol-gel synthesis, structural and optical characteristics of Sr1−xZn2Si2yO7+δEu2+ as a potential nanocrystalline phosphor for near-ultraviolet white light-emitting diodes,” J. Mater. Sci. 47, 2658–2664 (2012).
[CrossRef]

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, M. A. M. Farsi, H. E. Mohammadloo, M. S. Alvani, and M. Tahriri, “A nanostructure phosphor: effect of process parameters on the photoluminescence properties for near-UV WLED applications,” J. Inorg. Organomet. Polym. Mater. 22, 737–743 (2012).
[CrossRef]

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Sol-gel synthesis, characterization and luminescence properties of SrMgAl2SiO7:Eu2+ as a novel nanocrystalline phosphor,” Luminescence 26, 449–455 (2011).

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Evaluation of sol-gel derived Eu2+ activated SrMgAl2SiO7 as a novel nanostructure luminescent pigment,” Physica B 405, 4796–4800 (2010).

Thakur, J. S.

M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, and P. P. Vaishnava, “Bandgap engineering by tuning particle size and crystallinity of SnO2-Fe2O3 nanocrystalline composite thin films,” Appl. Phys. Lett. 93, 231909 (2008).
[CrossRef]

Thomas, V.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids Suppl. 64, 841–846 (2003).

Unnikrishnan, N. V.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids Suppl. 64, 841–846 (2003).

Uthirakumar, P.

P. Uthirakumar, H. G. Kim, and C. H. Hong, “Zinc oxide nanostructures derived from a simple solution method for solar cells and LEDs,” Chem. Eng. J. 155, 910–915 (2009).
[CrossRef]

Vaishnava, P. P.

M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, and P. P. Vaishnava, “Bandgap engineering by tuning particle size and crystallinity of SnO2-Fe2O3 nanocrystalline composite thin films,” Appl. Phys. Lett. 93, 231909 (2008).
[CrossRef]

Valeur, B.

B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley VCH, 2001), pp. 155–172.

Velapoldi, R.

R. Reisfeld, E. Greenberg, R. Velapoldi, and B. Barnett, “Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them,” J. Chem. Phys. 56, 1698–1715 (1972).
[CrossRef]

Wang, B.

B. Wang, L. Sun, H. Ju, S. Zhao, D. Deng, H. Wang, and Sh. Xu, “Sol-gel synthesis of single-phase Ca5MgSi3O12:Eu2+, Mn2+ phosphors for white-light emitting diodes,” Mater. Lett. 63, 1329–1331 (2009).
[CrossRef]

Wang, H.

B. Wang, L. Sun, H. Ju, S. Zhao, D. Deng, H. Wang, and Sh. Xu, “Sol-gel synthesis of single-phase Ca5MgSi3O12:Eu2+, Mn2+ phosphors for white-light emitting diodes,” Mater. Lett. 63, 1329–1331 (2009).
[CrossRef]

Wang, J. G.

S. Ye, Z. S. Liu, X. T. Wang, J. G. Wang, L. X. Wang, and X. P. Jing, “Emission properties of Eu2+, Mn2+ in MAl2Si2O8 (M=Sr, Ba),” J. Lumin. 129, 50–54 (2009).
[CrossRef]

Wang, L. X.

S. Ye, Z. S. Liu, X. T. Wang, J. G. Wang, L. X. Wang, and X. P. Jing, “Emission properties of Eu2+, Mn2+ in MAl2Si2O8 (M=Sr, Ba),” J. Lumin. 129, 50–54 (2009).
[CrossRef]

Wang, N. S.

W. J. Yang, L. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17, 3883–3888 (2005).
[CrossRef]

Wang, S.

P. Huang, C. Cui, and S. Wang, “Influence of calcination temperature on luminescent properties of Sr3Al2O6:Eu2+, Dy3+ phosphors prepared by sol-gel-combustion processing,” Opt. Mater. 32, 184–189 (2009).
[CrossRef]

Wang, X.

W. Lu, Zh. Hao, X. Zhang, X. Liu, X. Wang, and J. Zhang, “Ca3Al2(SiO4)3−δCl4δ:Eu2+, Mn2+: a potential phosphor with energy transfer for near-UV pumped white-LEDs,” Opt. Mater. 33, 1262–1265 (2011).
[CrossRef]

Wang, X. T.

S. Ye, Z. S. Liu, X. T. Wang, J. G. Wang, L. X. Wang, and X. P. Jing, “Emission properties of Eu2+, Mn2+ in MAl2Si2O8 (M=Sr, Ba),” J. Lumin. 129, 50–54 (2009).
[CrossRef]

Wang, Y.

Y. Liu, M. Nishiura, Y. Wang, and Z. M. Hou, “Pi-conjugated aromatic enynes as a single-emitting component for white electroluminescence,” J. Am. Chem. Soc. 128, 5592–5593 (2006).
[CrossRef]

Warrier, M. K. R.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids Suppl. 64, 841–846 (2003).

Wenfang, P.

Y. Chuangtao, X. Lijuan, X. Quanlan, L. Guanxi, P. Wenfang, and M. Jianxin, “Ba1xSrxMgSiO4:Eu2+, Mn2+: a novel tunable single-matrix tricolor phosphor for w-LED,” J. Rare Earths 30, 110–113 (2012).
[CrossRef]

Wenger, O. S.

G. M. Salley, O. S. Wenger, K. W. Kramer, and H. U. Gudel, “Inorganic solid state optical materials: major recent advances,” Curr. Opin. Solid State Mater. Sci. 6, 487–493 (2002).
[CrossRef]

Xiao, F.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng., R 71, 1–34 (2010).
[CrossRef]

Xu, Sh.

B. Wang, L. Sun, H. Ju, S. Zhao, D. Deng, H. Wang, and Sh. Xu, “Sol-gel synthesis of single-phase Ca5MgSi3O12:Eu2+, Mn2+ phosphors for white-light emitting diodes,” Mater. Lett. 63, 1329–1331 (2009).
[CrossRef]

Yamashita, T.

Yang, W. J.

W. J. Yang and T. M. Chen, “White-light generation and energy transfer in SrZn2(PO4)2:Eu, Mn phosphor for ultraviolet light-emitting diodes,” Appl. Phys. Lett. 88, 101903 (2006).
[CrossRef]

W. J. Yang, L. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17, 3883–3888 (2005).
[CrossRef]

Yang, Y. S.

K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park, and Y. S. Yang, “Luminescent properties of (Ba,Sr)MgAl10O17:Mn, Eu green phosphor prepared by spray pyrolysis under VUV excitation,” Chem. Mater. 17, 2729–2734 (2005).
[CrossRef]

Yao, G. Q.

G. Q. Yao, J. H. Lin, L. Zhang, G. X. Lu, M. L. Gong, and M. Z. Su, “Luminescent properties of BaMg2Si3O7:Eu2+, Mn2+,” J. Mater. Chem. 8, 585–588 (1998).
[CrossRef]

Ye, S.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng., R 71, 1–34 (2010).
[CrossRef]

S. Ye, Z. S. Liu, X. T. Wang, J. G. Wang, L. X. Wang, and X. P. Jing, “Emission properties of Eu2+, Mn2+ in MAl2Si2O8 (M=Sr, Ba),” J. Lumin. 129, 50–54 (2009).
[CrossRef]

Yeh, Y. T.

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single phase emission-tunable phosphor Ca9Y(PO4)7:Eu2+, Mn2+ with efficient energy transfer for white light emitting diodes,” ACS Appl. Mater. Int. 2, 259–264 (2010).

Yoo, H. S.

K. H. Kwon, W. B. Im, H. S. Jang, H. S. Yoo, and D. Y. Jeon, “Luminescence properties and energy transfer of site-sensitive Ca6−x–yMgx–z(PO4)4:Euy2+, Mnz2+ phosphors and their application to near-UV LED-based white LEDs,” Inorg. Chem. 48, 11525–11532 (2009).
[CrossRef]

You, H.

N. Guo, Y. Zheng, Y. Jia, H. Qiao, and H. You, “Warm-white emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116, 1329–1334 (2012).
[CrossRef]

You, H. P.

H. P. You, J. L. Zhang, G. Y. Hong, and H. J. Zhang, “Luminescent properties of Mn2+ in hexagonal aluminates under ultraviolet and vacuum ultraviolet excitation,” J. Phys. Chem. C 111, 10657–10661 (2007).
[CrossRef]

Yuan, D.

J. Kuang, Y. Liu, J. Zhang, L. Huang, J. Rong, and D. Yuan, “Blue-emitting long-lasting phosphor, Sr3Al10SiO20:Eu2+, Ho3+,” Solid State Commun. 136, 6–10 (2005).
[CrossRef]

Zhang, H. J.

H. P. You, J. L. Zhang, G. Y. Hong, and H. J. Zhang, “Luminescent properties of Mn2+ in hexagonal aluminates under ultraviolet and vacuum ultraviolet excitation,” J. Phys. Chem. C 111, 10657–10661 (2007).
[CrossRef]

Zhang, J.

W. Lu, Zh. Hao, X. Zhang, X. Liu, X. Wang, and J. Zhang, “Ca3Al2(SiO4)3−δCl4δ:Eu2+, Mn2+: a potential phosphor with energy transfer for near-UV pumped white-LEDs,” Opt. Mater. 33, 1262–1265 (2011).
[CrossRef]

J. Kuang, Y. Liu, J. Zhang, L. Huang, J. Rong, and D. Yuan, “Blue-emitting long-lasting phosphor, Sr3Al10SiO20:Eu2+, Ho3+,” Solid State Commun. 136, 6–10 (2005).
[CrossRef]

Zhang, J. L.

H. P. You, J. L. Zhang, G. Y. Hong, and H. J. Zhang, “Luminescent properties of Mn2+ in hexagonal aluminates under ultraviolet and vacuum ultraviolet excitation,” J. Phys. Chem. C 111, 10657–10661 (2007).
[CrossRef]

Zhang, L.

G. Q. Yao, J. H. Lin, L. Zhang, G. X. Lu, M. L. Gong, and M. Z. Su, “Luminescent properties of BaMg2Si3O7:Eu2+, Mn2+,” J. Mater. Chem. 8, 585–588 (1998).
[CrossRef]

Zhang, Q. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng., R 71, 1–34 (2010).
[CrossRef]

Zhang, X.

W. Lu, Zh. Hao, X. Zhang, X. Liu, X. Wang, and J. Zhang, “Ca3Al2(SiO4)3−δCl4δ:Eu2+, Mn2+: a potential phosphor with energy transfer for near-UV pumped white-LEDs,” Opt. Mater. 33, 1262–1265 (2011).
[CrossRef]

Zhao, S.

B. Wang, L. Sun, H. Ju, S. Zhao, D. Deng, H. Wang, and Sh. Xu, “Sol-gel synthesis of single-phase Ca5MgSi3O12:Eu2+, Mn2+ phosphors for white-light emitting diodes,” Mater. Lett. 63, 1329–1331 (2009).
[CrossRef]

Zheng, Y.

N. Guo, Y. Zheng, Y. Jia, H. Qiao, and H. You, “Warm-white emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116, 1329–1334 (2012).
[CrossRef]

ACS Appl. Mater. Int. (1)

C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single phase emission-tunable phosphor Ca9Y(PO4)7:Eu2+, Mn2+ with efficient energy transfer for white light emitting diodes,” ACS Appl. Mater. Int. 2, 259–264 (2010).

Appl. Phys. Lett. (5)

W. J. Yang and T. M. Chen, “White-light generation and energy transfer in SrZn2(PO4)2:Eu, Mn phosphor for ultraviolet light-emitting diodes,” Appl. Phys. Lett. 88, 101903 (2006).
[CrossRef]

X. Q. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white lightemitting-diode illumination,” Appl. Phys. Lett. 88, 161908 (2006).
[CrossRef]

J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, and K. S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77, 2162–2164 (2000).
[CrossRef]

M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, and P. P. Vaishnava, “Bandgap engineering by tuning particle size and crystallinity of SnO2-Fe2O3 nanocrystalline composite thin films,” Appl. Phys. Lett. 93, 231909 (2008).
[CrossRef]

J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Park, G. C. Kim, and T. W. Kim, “White-light generation through ultraviolet-emitting diode and white emitting phosphor,” Appl. Phys. Lett. 85, 3696–3698 (2004).
[CrossRef]

Chem. Eng. J. (1)

P. Uthirakumar, H. G. Kim, and C. H. Hong, “Zinc oxide nanostructures derived from a simple solution method for solar cells and LEDs,” Chem. Eng. J. 155, 910–915 (2009).
[CrossRef]

Chem. Mater. (2)

K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park, and Y. S. Yang, “Luminescent properties of (Ba,Sr)MgAl10O17:Mn, Eu green phosphor prepared by spray pyrolysis under VUV excitation,” Chem. Mater. 17, 2729–2734 (2005).
[CrossRef]

W. J. Yang, L. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17, 3883–3888 (2005).
[CrossRef]

Color Res. Appl. (1)

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17, 142–144 (1992).
[CrossRef]

Curr. Opin. Solid State Mater. Sci. (1)

G. M. Salley, O. S. Wenger, K. W. Kramer, and H. U. Gudel, “Inorganic solid state optical materials: major recent advances,” Curr. Opin. Solid State Mater. Sci. 6, 487–493 (2002).
[CrossRef]

Inorg. Chem. (1)

K. H. Kwon, W. B. Im, H. S. Jang, H. S. Yoo, and D. Y. Jeon, “Luminescence properties and energy transfer of site-sensitive Ca6−x–yMgx–z(PO4)4:Euy2+, Mnz2+ phosphors and their application to near-UV LED-based white LEDs,” Inorg. Chem. 48, 11525–11532 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

Y. Liu, M. Nishiura, Y. Wang, and Z. M. Hou, “Pi-conjugated aromatic enynes as a single-emitting component for white electroluminescence,” J. Am. Chem. Soc. 128, 5592–5593 (2006).
[CrossRef]

J. Chem. Phys. (2)

R. Reisfeld, E. Greenberg, R. Velapoldi, and B. Barnett, “Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them,” J. Chem. Phys. 56, 1698–1715 (1972).
[CrossRef]

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

J. Electrochem. Soc. (1)

R. P. Rao, “Preparation and characterization of fine‐grain yttrium‐based phosphors by sol-gel process,” J. Electrochem. Soc. 143, 189–197 (1996).
[CrossRef]

J. Inorg. Organomet. Polym. Mater. (1)

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, M. A. M. Farsi, H. E. Mohammadloo, M. S. Alvani, and M. Tahriri, “A nanostructure phosphor: effect of process parameters on the photoluminescence properties for near-UV WLED applications,” J. Inorg. Organomet. Polym. Mater. 22, 737–743 (2012).
[CrossRef]

J. Lumin. (3)

S. Ye, Z. S. Liu, X. T. Wang, J. G. Wang, L. X. Wang, and X. P. Jing, “Emission properties of Eu2+, Mn2+ in MAl2Si2O8 (M=Sr, Ba),” J. Lumin. 129, 50–54 (2009).
[CrossRef]

C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Photoluminescence of Eu2+ in SrGa2S4”, J. Lumin. 111, 147–158 (2005).
[CrossRef]

J. S. Kim, A. K. Kown, Y. H. Park, J. C. Choi, H. L. Park, and G. C. Kim, “Luminescent and thermal properties of full-color emitting X3MgSi2O8:Eu, Mn (X=Ba, Sr, Ca) phosphors for white LED,” J. Lumin. 122–123, 583–586 (2007).
[CrossRef]

J. Mater. Chem. (1)

G. Q. Yao, J. H. Lin, L. Zhang, G. X. Lu, M. L. Gong, and M. Z. Su, “Luminescent properties of BaMg2Si3O7:Eu2+, Mn2+,” J. Mater. Chem. 8, 585–588 (1998).
[CrossRef]

J. Mater. Res. (1)

M. Pang, X. Liu, and J. Lin, “Luminescence properties of R2MoO6:Eu3+ (R=Gd, Y, La) phosphors prepared by Pechini sol-gel process,” J. Mater. Res. 20, 2676–2681 (2005).
[CrossRef]

J. Mater. Sci. (1)

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, H. Eivaz Mohammadloo, F. Nargesian, and M. Tahriri, “Sol-gel synthesis, structural and optical characteristics of Sr1−xZn2Si2yO7+δEu2+ as a potential nanocrystalline phosphor for near-ultraviolet white light-emitting diodes,” J. Mater. Sci. 47, 2658–2664 (2012).
[CrossRef]

J. Nanopart. Res. (1)

P. K. Sharma, M. Kumar, and A. C. Pandey, “Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs,” J. Nanopart. Res. 13, 1629–1637 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

N. Guo, Y. Zheng, Y. Jia, H. Qiao, and H. You, “Warm-white emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116, 1329–1334 (2012).
[CrossRef]

H. P. You, J. L. Zhang, G. Y. Hong, and H. J. Zhang, “Luminescent properties of Mn2+ in hexagonal aluminates under ultraviolet and vacuum ultraviolet excitation,” J. Phys. Chem. C 111, 10657–10661 (2007).
[CrossRef]

J. Phys. Chem. Solids (1)

R. Pang, C. Li, L. Shi, and Q. A. Su, “Novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70, 303–306 (2009).

J. Phys. Chem. Solids Suppl. (1)

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids Suppl. 64, 841–846 (2003).

J. Phys. Condens. Matter (1)

U. G. Caldino, A. F. Muoz, and J. O. Rubio, “Energy transfer in CaCl2:Eu:Mn crystals,” J. Phys. Condens. Matter 5, 2195–2202 (1993).
[CrossRef]

J. Rare Earths (1)

Y. Chuangtao, X. Lijuan, X. Quanlan, L. Guanxi, P. Wenfang, and M. Jianxin, “Ba1xSrxMgSiO4:Eu2+, Mn2+: a novel tunable single-matrix tricolor phosphor for w-LED,” J. Rare Earths 30, 110–113 (2012).
[CrossRef]

Luminescence (1)

R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Sol-gel synthesis, characterization and luminescence properties of SrMgAl2SiO7:Eu2+ as a novel nanocrystalline phosphor,” Luminescence 26, 449–455 (2011).

Mater. Lett. (2)

B. Wang, L. Sun, H. Ju, S. Zhao, D. Deng, H. Wang, and Sh. Xu, “Sol-gel synthesis of single-phase Ca5MgSi3O12:Eu2+, Mn2+ phosphors for white-light emitting diodes,” Mater. Lett. 63, 1329–1331 (2009).
[CrossRef]

G. Seeta, R. Raju, and S. Buddhudu, “Emission analysis of Tb3+:MgLaLiSi2O7 powder phosphor,” Mater. Lett. 62, 1259–1262 (2008).
[CrossRef]

Mater. Sci. Eng., R (1)

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng., R 71, 1–34 (2010).
[CrossRef]

Opt. Mater. (2)

P. Huang, C. Cui, and S. Wang, “Influence of calcination temperature on luminescent properties of Sr3Al2O6:Eu2+, Dy3+ phosphors prepared by sol-gel-combustion processing,” Opt. Mater. 32, 184–189 (2009).
[CrossRef]

W. Lu, Zh. Hao, X. Zhang, X. Liu, X. Wang, and J. Zhang, “Ca3Al2(SiO4)3−δCl4δ:Eu2+, Mn2+: a potential phosphor with energy transfer for near-UV pumped white-LEDs,” Opt. Mater. 33, 1262–1265 (2011).
[CrossRef]

Philips Res. Rep. (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

Philos. Mag. A (1)

C. E. Kril and R. Birringer, “Estimating grain-size distributions in nanocrystalline materials from x-ray diffraction profile analysis,” Philos. Mag. A 77(3), 621–640 (1998).
[CrossRef]

Physica B (1)

H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Evaluation of sol-gel derived Eu2+ activated SrMgAl2SiO7 as a novel nanostructure luminescent pigment,” Physica B 405, 4796–4800 (2010).

Solid State Commun. (2)

J. Kuang, Y. Liu, J. Zhang, L. Huang, J. Rong, and D. Yuan, “Blue-emitting long-lasting phosphor, Sr3Al10SiO20:Eu2+, Ho3+,” Solid State Commun. 136, 6–10 (2005).
[CrossRef]

J. S. Kim, K. T. Lim, Y. S. Jeong, P. E. Jeon, J. C. Choi, and H. L. Park, “Full color Ba3MgSi2O8:Eu2+, Mn2+ phosphor for white light emitting diodes,” Solid State Commun. 135, 21–24 (2005).
[CrossRef]

Other (2)

P. Scardi, R. E. Dinnebier, and S. J. L. Billinge, Powder Diffraction: Theory and Practice (RSC, 2008).

B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley VCH, 2001), pp. 155–172.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

XRD patterns and SEM images (inset) of SrZn2Si2O7 calcined at different temperatures.

Fig. 2.
Fig. 2.

Williamson–Hal plot for the pronounced diffraction lines at various calcination temperatures.

Fig. 3.
Fig. 3.

TEM micrographs of SrZn2Si2O7 nanocystallines obtained at different temperatures.

Fig. 4.
Fig. 4.

(a) PL spectra of Sr0.96Zn2xSi2O7:0.04Eu, xMn phosphors and (inset) dependence of the relative emission intensity of Eu2+ and Mn2+ on activator content and (b) spectral overlap between the PL spectrum of Sr0.96Zn2Si2O7:0.04Eu2+ and PLE spectrum of SrZn1.91Si2O7:0.09Mn2+.

Fig. 5.
Fig. 5.

PL decay curve of Eu2+ in Sr0.96Zn2xSi2O7:0.04Eu, xMn (excited at 355 nm, monitored at 481 nm).

Fig. 6.
Fig. 6.

(a) Linear relation between the lg(I/C) and lg(C) (I and C are the emission intensity and total dopants concentration) and (b) schematic energy level diagrams of Eu2+ and Mn2+ in SrZn2Si2O7, showing the ET mechanism under excitation at 355 nm.

Fig. 7.
Fig. 7.

CIE chromaticity diagram for Sr0.96Zn2xSi2O7:0.04Eu2+, xMn2+ phosphors (point a to f).

Tables (3)

Tables Icon

Table 1. Summary of Calculated Data from XRD for Nanocrystalline SrZn2Si2O7 Calcined Between 900°C and 1200°C

Tables Icon

Table 2. Quantitative Analysis Results of EDX of the Grain Surface of Sr0.96Zn2Si2O7:0.04Eu Phosphor Obtained at Different Calcination Temperatures

Tables Icon

Table 3. Dependence of Decay Lifetime and ET on the Mn2+ Content (x)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

β(s)1Lvol+2e·dhlk*,
Lvol=34Dvol.
I=A1exp(tτ),
ηT=1τSτSo,
log(I/C)=A(n/3)log(C),
RC8=0.63×1028λS2QAfqES4fdFS(E)FA(E)dE,
T=437n3+3601n26861n+5514.31,
n=(x0.332)/(y0.186).

Metrics