Abstract

We report on the experimental realization of slow self-collimated beams by using a 10-coupled zigzag-box resonator in a two-dimensional photonic crystal. The speeds of the beams are reduced to less than 0.023c at resonant frequencies where the transmission exhibit peak values. The dispersion relation and the group velocities of the beams in the coupled resonator are well described by the tight-binding model. Time-domain simulations of self-collimated pulses passing though the coupled resonator are also performed to demonstrate the slowing down the speed of the pulses. Our result could be useful in implementing devices to control self-collimated beams in time domain.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Krauss, “Why do we need slow light?,” Nat. Photonics 2, 448–450 (2008).
    [CrossRef]
  2. R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007).
    [CrossRef]
  3. Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E 68, 066616 (2003).
    [CrossRef]
  4. M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005).
    [CrossRef]
  5. S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
    [CrossRef]
  6. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [CrossRef]
  7. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
    [CrossRef]
  8. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
    [CrossRef]
  9. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
    [CrossRef]
  10. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
    [CrossRef]
  11. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačiv´, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
    [CrossRef]
  12. Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
    [CrossRef]
  13. S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011).
    [CrossRef]
  14. Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
    [CrossRef]
  15. X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
    [CrossRef]
  16. S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
    [CrossRef]
  17. T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Asymmetric Mach–Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18, 5384–5389 (2010).
    [CrossRef]
  18. T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Ring-type Fabry–Perot filter based on the self-collimation effect in a 2D photonic crystal,” Opt. Express 18, 17106–17113 (2010).
    [CrossRef]
  19. S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal,” Opt. Express 20, 8309–8316 (2012).
    [CrossRef]
  20. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  21. S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
    [CrossRef]
  22. T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009).
    [CrossRef]
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  24. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
    [CrossRef]
  25. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
    [CrossRef]
  26. P. Sanchis, J. García, A. Martinez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97, 013101 (2005).
    [CrossRef]
  27. S.-G. Lee, E. S. Lee, T.-I. Jeon, and C.-S. Kee, “Slowing down the speed of terahertz guiding modes of a metal air-gap waveguide by using a coupled plasmonic cavity,” J. Appl. Phys. 112, 113114 (2012).
    [CrossRef]
  28. M. Sumetsky and B. J. Eggleton, “Modeling and optimization of complex photonic resonant cavity circuits,” Opt. Express 11, 381–391 (2003).
    [CrossRef]
  29. P. Chak and J. E. Sipe, “Minimizing finite-size effects in artificial resonance tunneling structures,” Opt. Lett. 31, 2568–2570 (2006).
    [CrossRef]

2012 (2)

S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal,” Opt. Express 20, 8309–8316 (2012).
[CrossRef]

S.-G. Lee, E. S. Lee, T.-I. Jeon, and C.-S. Kee, “Slowing down the speed of terahertz guiding modes of a metal air-gap waveguide by using a coupled plasmonic cavity,” J. Appl. Phys. 112, 113114 (2012).
[CrossRef]

2011 (1)

S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011).
[CrossRef]

2010 (3)

2009 (1)

T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009).
[CrossRef]

2008 (4)

S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?,” Nat. Photonics 2, 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[CrossRef]

2007 (1)

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007).
[CrossRef]

2006 (3)

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačiv´, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[CrossRef]

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[CrossRef]

P. Chak and J. E. Sipe, “Minimizing finite-size effects in artificial resonance tunneling structures,” Opt. Lett. 31, 2568–2570 (2006).
[CrossRef]

2005 (3)

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
[CrossRef]

P. Sanchis, J. García, A. Martinez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97, 013101 (2005).
[CrossRef]

M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005).
[CrossRef]

2004 (1)

Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
[CrossRef]

2003 (3)

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[CrossRef]

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E 68, 066616 (2003).
[CrossRef]

M. Sumetsky and B. J. Eggleton, “Modeling and optimization of complex photonic resonant cavity circuits,” Opt. Express 11, 381–391 (2003).
[CrossRef]

2002 (2)

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
[CrossRef]

2000 (1)

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[CrossRef]

1999 (2)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
[CrossRef]

1994 (1)

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[CrossRef]

Abeyta, A.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[CrossRef]

Ali-Khan, I.

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007).
[CrossRef]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

Bayindir, M.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Biswas, R.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[CrossRef]

Broadbent, C. J.

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007).
[CrossRef]

Brown, D. H.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Camacho, R. M.

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007).
[CrossRef]

Chak, P.

Chan, C. T.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[CrossRef]

Chen, H.

Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
[CrossRef]

Choi, J.-S.

Dahlem, M. S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačiv´, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[CrossRef]

Eggleton, B. J.

Fan, S.

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E 68, 066616 (2003).
[CrossRef]

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[CrossRef]

Feng, S.

Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
[CrossRef]

García, J.

P. Sanchis, J. García, A. Martinez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97, 013101 (2005).
[CrossRef]

Ho, K. M.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[CrossRef]

Howell, J. C.

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačiv´, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[CrossRef]

Ippen, E. P.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačiv´, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[CrossRef]

Jeon, T.-I.

S.-G. Lee, E. S. Lee, T.-I. Jeon, and C.-S. Kee, “Slowing down the speed of terahertz guiding modes of a metal air-gap waveguide by using a coupled plasmonic cavity,” J. Appl. Phys. 112, 113114 (2012).
[CrossRef]

Joannopoulos, J.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačiv´, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[CrossRef]

Johnson, S.

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Karle, T. J.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Kee, C.-S.

S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal,” Opt. Express 20, 8309–8316 (2012).
[CrossRef]

S.-G. Lee, E. S. Lee, T.-I. Jeon, and C.-S. Kee, “Slowing down the speed of terahertz guiding modes of a metal air-gap waveguide by using a coupled plasmonic cavity,” J. Appl. Phys. 112, 113114 (2012).
[CrossRef]

S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011).
[CrossRef]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Asymmetric Mach–Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18, 5384–5389 (2010).
[CrossRef]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Ring-type Fabry–Perot filter based on the self-collimation effect in a 2D photonic crystal,” Opt. Express 18, 17106–17113 (2010).
[CrossRef]

S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
[CrossRef]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
[CrossRef]

Kim, J.-E.

S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal,” Opt. Express 20, 8309–8316 (2012).
[CrossRef]

S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011).
[CrossRef]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Asymmetric Mach–Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18, 5384–5389 (2010).
[CrossRef]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Ring-type Fabry–Perot filter based on the self-collimation effect in a 2D photonic crystal,” Opt. Express 18, 17106–17113 (2010).
[CrossRef]

T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009).
[CrossRef]

S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
[CrossRef]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
[CrossRef]

Kim, M.-W.

T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009).
[CrossRef]

Kim, S.-H.

Kim, T.-T.

Kolodziejski, L. A.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačiv´, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Krauss, T. F.

T. F. Krauss, “Why do we need slow light?,” Nat. Photonics 2, 448–450 (2008).
[CrossRef]

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Kuramochi, E.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[CrossRef]

Lee, E. S.

S.-G. Lee, E. S. Lee, T.-I. Jeon, and C.-S. Kee, “Slowing down the speed of terahertz guiding modes of a metal air-gap waveguide by using a coupled plasmonic cavity,” J. Appl. Phys. 112, 113114 (2012).
[CrossRef]

Lee, R. K.

Lee, S.-G.

S.-G. Lee, E. S. Lee, T.-I. Jeon, and C.-S. Kee, “Slowing down the speed of terahertz guiding modes of a metal air-gap waveguide by using a coupled plasmonic cavity,” J. Appl. Phys. 112, 113114 (2012).
[CrossRef]

S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal,” Opt. Express 20, 8309–8316 (2012).
[CrossRef]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Asymmetric Mach–Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18, 5384–5389 (2010).
[CrossRef]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Ring-type Fabry–Perot filter based on the self-collimation effect in a 2D photonic crystal,” Opt. Express 18, 17106–17113 (2010).
[CrossRef]

T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009).
[CrossRef]

S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
[CrossRef]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
[CrossRef]

Li, Z.

Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
[CrossRef]

Lu, Z.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[CrossRef]

Martí, J.

P. Sanchis, J. García, A. Martinez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97, 013101 (2005).
[CrossRef]

Martinez, A.

P. Sanchis, J. García, A. Martinez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97, 013101 (2005).
[CrossRef]

Mookherjea, S.

S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
[CrossRef]

Murakowski, J. A.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[CrossRef]

Notomi, M.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Oh, S. S.

S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011).
[CrossRef]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ozbay, E.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[CrossRef]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[CrossRef]

Park, H. Y.

S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal,” Opt. Express 20, 8309–8316 (2012).
[CrossRef]

S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011).
[CrossRef]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Asymmetric Mach–Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18, 5384–5389 (2010).
[CrossRef]

T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Ring-type Fabry–Perot filter based on the self-collimation effect in a 2D photonic crystal,” Opt. Express 18, 17106–17113 (2010).
[CrossRef]

T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009).
[CrossRef]

S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
[CrossRef]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
[CrossRef]

Petrich, G. S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačiv´, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[CrossRef]

Povinelli, M.

Prather, D. W.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[CrossRef]

Rakich, P. T.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačiv´, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Sanchis, P.

P. Sanchis, J. García, A. Martinez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97, 013101 (2005).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Scherer, A.

Schneider, G. J.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[CrossRef]

Schuetz, C. A.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[CrossRef]

Shi, S.

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[CrossRef]

Sipe, J. E.

Soljaciv´, M.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačiv´, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[CrossRef]

Song, Z.

Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
[CrossRef]

Soukoulis, C. M.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[CrossRef]

Steer, M.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Sumetsky, M.

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Tanabe, T.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[CrossRef]

Tandon, S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačiv´, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[CrossRef]

Temelkuran, B.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

Tringides, M.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[CrossRef]

Tuttle, G.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[CrossRef]

Wang, Z.

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E 68, 066616 (2003).
[CrossRef]

Wilson, R.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Xu, Y.

Yang, F.

Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
[CrossRef]

Yariv, A.

S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
[CrossRef]

Yu, X.

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[CrossRef]

Appl. Phys. Lett. (5)

Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004).
[CrossRef]

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[CrossRef]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
[CrossRef]

J. Appl. Phys. (2)

P. Sanchis, J. García, A. Martinez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97, 013101 (2005).
[CrossRef]

S.-G. Lee, E. S. Lee, T.-I. Jeon, and C.-S. Kee, “Slowing down the speed of terahertz guiding modes of a metal air-gap waveguide by using a coupled plasmonic cavity,” J. Appl. Phys. 112, 113114 (2012).
[CrossRef]

Nat. Mater. (1)

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačiv´, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006).
[CrossRef]

Nat. Photonics (3)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?,” Nat. Photonics 2, 448–450 (2008).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. B (2)

S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011).
[CrossRef]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
[CrossRef]

Phys. Rev. E (1)

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E 68, 066616 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[CrossRef]

Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006).
[CrossRef]

Other (1)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematics of (a) a 2D PC microwave experiment setup and (b) a 10-coupled zigzag-box resonator in a 2D PC of cylindrical alumina rods.

Fig. 2.
Fig. 2.

(a) Measured (black-thick line) and simulated (red-thin line) transmission spectra of self-collimated beams through a 10-coupled zigzag-box resonator. (b) Simulated spatial distribution of the electric field of a self-collimated beam at f=12.543GHz. Arrows denote a propagation direction of the beam.

Fig. 3.
Fig. 3.

(a) Dispersion relations of the transmission band obtained from the phase measurements (black-thick line) and a TB model (red-thin line). (b) Group velocities obtained from the experiments (black-solid rectangle) and a TB model (red-thin line). Dashed vertical lines represent the measured resonant frequencies of a 10-coupled zigzag-box cavity where the transmission spectrum exhibits peak values.

Fig. 4.
Fig. 4.

Simulated intensity as a function of time at the output PC interface with (red line) and without (gray line) the 30-coupled zigzag-box resonator.

Tables (1)

Tables Icon

Table 1. Measured Group Velocities, vg, and Group Indices, ng, of Self-Collimated Beams at Resonant Frequencies, fres. of a 10-Coupled Cavitya

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k(f)=ϕres(f)ϕpc(f)Lres+ϕpc(f)ϕair(f)Lpc+2πfc,

Metrics