Abstract

We reported the broadband highly transparent sapphires with biomimetic antireflective compound submicrometer structures (c-SMSs) made of disordered nanocone arrays on closely packed ordered hemispherical submicrometer gratings (o-SMGs). The o-SMGs and nanocones were fabricated using the spin-coated silica spheres and thermally dewetted gold (Au) nanoparticles, respectively, as the etch masks by a dry etching. The silica spheres with an average diameter of 700±10nm were synthesized. The dot-like Au nanoparticles were formed from the Au thin films with different thicknesses by a proper heat treatment. The total and diffuse transmission characteristics of the fabricated c-SMSs on sapphires were investigated at wavelengths of 350–1100 nm, together with theoretical predictions using a rigorous coupled wave analysis simulation. For the c-SMSs with taller and larger nanocone arrays at 7 nm of Au film, an average total transmittance (Tavg) of 90.7% was obtained, exhibiting haze ratios (H) of 33.3 and 26% at λ=525 and 635 nm, respectively. These values were much higher than those of bare sapphire (i.e., Tavg85.4%, H5.4 and 3.7% at λ=525 and 635 nm, respectively). The surface of fabricated c-SMSs also exhibited a strong hydrophilic property with a low water contact angle of 10°.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–303 (2009).
    [CrossRef]
  2. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
    [CrossRef]
  3. H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4, 1059–1062 (2004).
    [CrossRef]
  4. P. Cheng, H. Zhao, J. Bao, L. Wu, D. Li, and D. Yang, “Light absorption enhancement of amorphous silicon film coupled with metal nanoshells,” J. Opt. Soc. Am. B 30, 405–409 (2013).
    [CrossRef]
  5. C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B 93, 60–63 (2002).
    [CrossRef]
  6. B. S. Patel and Z. H. Zaidi, “The suitability of sapphire for laser windows,” Meas. Sci. Technol. 10, 146–151 (1999).
    [CrossRef]
  7. Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, “Wafer-level fabrication and optical characterization of nanoscale patterned sapphire substrates,” Appl. Surf. Sci. 258, 2–6 (2011).
    [CrossRef]
  8. I. M. Thomas, “Porous fluoride antireflective coatings,” Appl. Opt. 27, 3356–3358 (1988).
    [CrossRef]
  9. N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97, 191912 (2010).
    [CrossRef]
  10. S. M. Yang, Y. C. Hsieh, and C. A. Jeng, “Optimal design of antireflection coating and experimental verification by plasma enhanced chemical vapor deposition in small displays,” J. Vac. Sci. Technol. A 27, 336–341 (2009).
    [CrossRef]
  11. P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE 2776, 300–309 (1996).
    [CrossRef]
  12. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
    [CrossRef]
  13. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
    [CrossRef]
  14. Y. M. Song, G. C. Park, S. J. Jang, J. H. Ha, J. S. Yu, and Y. T. Lee, “Multifunctional light escaping architecture inspired by compound eye surface structures: from understanding to experimental demonstration,” Opt. Express 19(S2), A157–A165 (2011).
    [CrossRef]
  15. Y. H. Ko and J. S. Yu, “Highly transparent sapphire micro-grating structures with large diffuse light scattering,” Opt. Express 19, 15574–15583 (2011).
    [CrossRef]
  16. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006).
    [CrossRef]
  17. Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron. 41, 771–777 (2009).
    [CrossRef]
  18. J. W. Leem, Y. P. Kim, and J. S. Yu, “Tunable behavior of reflectance minima in periodic Ge submicron grating structures,” J. Opt. Soc. Am. B 29, 357–362 (2012).
    [CrossRef]
  19. Z. Z. Gu, A. Fujishima, and O. Sato, “Biomimetic titanium dioxide film with structural color and extremely stable hydrophilicity,” Appl. Phys. Lett. 85, 5067–5069 (2004).
    [CrossRef]
  20. J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun. 29, 455–466 (2008).
    [CrossRef]
  21. R. N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem. 28, 988–994 (1936).
    [CrossRef]
  22. C. E. Lee, Y. J. Lee, H. C. Kuo, M. R. Tsai, B. S. Cheng, T. C. Lu, S. C. Wang, and C. T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrays,” IEEE Photon. Technol. Lett. 19, 1200–1202 (2007).
    [CrossRef]
  23. J. W. Leem and J. S. Yu, “Wafer-scale highly-transparent and superhydrophilic sapphires for high performance optics,” Opt. Express 20, 26160–26166 (2012).
    [CrossRef]
  24. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature 244, 281–282 (1973).
    [CrossRef]
  25. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  26. SOPRA. http://www.sopra-sa.com and http://refractiveindex.info , Accessed 1Jan. (2013).
  27. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19, 297–305 (2011).
    [CrossRef]
  28. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002), Chap. 10.
  29. J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
    [CrossRef]
  30. P. L. Redmond, A. J. Hallock, and L. E. Brus, “Electrochemical Ostwald ripening of colloidal Ag particles on conductive substrates,” Nano Lett. 5, 131–135 (2005).
    [CrossRef]
  31. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surface,” Appl. Phys. Lett. 93, 133108 (2008).
    [CrossRef]

2013 (1)

2012 (2)

2011 (4)

2010 (1)

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97, 191912 (2010).
[CrossRef]

2009 (3)

S. M. Yang, Y. C. Hsieh, and C. A. Jeng, “Optimal design of antireflection coating and experimental verification by plasma enhanced chemical vapor deposition in small displays,” J. Vac. Sci. Technol. A 27, 336–341 (2009).
[CrossRef]

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–303 (2009).
[CrossRef]

Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron. 41, 771–777 (2009).
[CrossRef]

2008 (2)

J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun. 29, 455–466 (2008).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surface,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

2007 (2)

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

C. E. Lee, Y. J. Lee, H. C. Kuo, M. R. Tsai, B. S. Cheng, T. C. Lu, S. C. Wang, and C. T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrays,” IEEE Photon. Technol. Lett. 19, 1200–1202 (2007).
[CrossRef]

2006 (2)

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006).
[CrossRef]

2005 (1)

P. L. Redmond, A. J. Hallock, and L. E. Brus, “Electrochemical Ostwald ripening of colloidal Ag particles on conductive substrates,” Nano Lett. 5, 131–135 (2005).
[CrossRef]

2004 (2)

H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4, 1059–1062 (2004).
[CrossRef]

Z. Z. Gu, A. Fujishima, and O. Sato, “Biomimetic titanium dioxide film with structural color and extremely stable hydrophilicity,” Appl. Phys. Lett. 85, 5067–5069 (2004).
[CrossRef]

2003 (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef]

2002 (2)

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
[CrossRef]

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B 93, 60–63 (2002).
[CrossRef]

1999 (1)

B. S. Patel and Z. H. Zaidi, “The suitability of sapphire for laser windows,” Meas. Sci. Technol. 10, 146–151 (1999).
[CrossRef]

1996 (1)

P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE 2776, 300–309 (1996).
[CrossRef]

1988 (1)

1981 (1)

1973 (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature 244, 281–282 (1973).
[CrossRef]

1936 (1)

R. N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem. 28, 988–994 (1936).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006).
[CrossRef]

Bae, J. W.

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B 93, 60–63 (2002).
[CrossRef]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surface,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

Bakhru, H.

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97, 191912 (2010).
[CrossRef]

Bao, J.

Beaupré, S.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–303 (2009).
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surface,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

Brus, L. E.

P. L. Redmond, A. J. Hallock, and L. E. Brus, “Electrochemical Ostwald ripening of colloidal Ag particles on conductive substrates,” Nano Lett. 5, 131–135 (2005).
[CrossRef]

Campi, J.

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
[CrossRef]

Cheng, B. S.

C. E. Lee, Y. J. Lee, H. C. Kuo, M. R. Tsai, B. S. Cheng, T. C. Lu, S. C. Wang, and C. T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrays,” IEEE Photon. Technol. Lett. 19, 1200–1202 (2007).
[CrossRef]

Cheng, P.

Cho, S.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–303 (2009).
[CrossRef]

Cho, Y. H.

H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4, 1059–1062 (2004).
[CrossRef]

Chung, K. S.

H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4, 1059–1062 (2004).
[CrossRef]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature 244, 281–282 (1973).
[CrossRef]

Coates, N.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–303 (2009).
[CrossRef]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006).
[CrossRef]

Francl, J.

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
[CrossRef]

Fujishima, A.

Z. Z. Gu, A. Fujishima, and O. Sato, “Biomimetic titanium dioxide film with structural color and extremely stable hydrophilicity,” Appl. Phys. Lett. 85, 5067–5069 (2004).
[CrossRef]

Gaylord, T. K.

Greening, B. K.

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
[CrossRef]

Gu, Z. Z.

Z. Z. Gu, A. Fujishima, and O. Sato, “Biomimetic titanium dioxide film with structural color and extremely stable hydrophilicity,” Appl. Phys. Lett. 85, 5067–5069 (2004).
[CrossRef]

Gundlach, D. J.

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
[CrossRef]

Ha, J. H.

Hallock, A. J.

P. L. Redmond, A. J. Hallock, and L. E. Brus, “Electrochemical Ostwald ripening of colloidal Ag particles on conductive substrates,” Nano Lett. 5, 131–135 (2005).
[CrossRef]

Hammond, M. S.

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002), Chap. 10.

Heeger, A. J.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–303 (2009).
[CrossRef]

Hill, I. G.

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
[CrossRef]

Howarter, J. A.

J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun. 29, 455–466 (2008).
[CrossRef]

Hsieh, Y. C.

S. M. Yang, Y. C. Hsieh, and C. A. Jeng, “Optimal design of antireflection coating and experimental verification by plasma enhanced chemical vapor deposition in small displays,” J. Vac. Sci. Technol. A 27, 336–341 (2009).
[CrossRef]

Hsu, W. C.

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, “Wafer-level fabrication and optical characterization of nanoscale patterned sapphire substrates,” Appl. Surf. Sci. 258, 2–6 (2011).
[CrossRef]

Huang, J. R.

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
[CrossRef]

Huang, K. C.

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, “Wafer-level fabrication and optical characterization of nanoscale patterned sapphire substrates,” Appl. Surf. Sci. 258, 2–6 (2011).
[CrossRef]

Huang, M.

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97, 191912 (2010).
[CrossRef]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature 244, 281–282 (1973).
[CrossRef]

Jackson, T. N.

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
[CrossRef]

Jang, S. J.

Jeng, C. A.

S. M. Yang, Y. C. Hsieh, and C. A. Jeng, “Optimal design of antireflection coating and experimental verification by plasma enhanced chemical vapor deposition in small displays,” J. Vac. Sci. Technol. A 27, 336–341 (2009).
[CrossRef]

Jeong, C. H.

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B 93, 60–63 (2002).
[CrossRef]

Jeong, K. H.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

Kadakia, N.

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97, 191912 (2010).
[CrossRef]

Kane, M. G.

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
[CrossRef]

Kang, T. W.

H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4, 1059–1062 (2004).
[CrossRef]

Kim, B. I.

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

Kim, D. W.

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B 93, 60–63 (2002).
[CrossRef]

Kim, D. Y.

H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4, 1059–1062 (2004).
[CrossRef]

Kim, H. M.

H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4, 1059–1062 (2004).
[CrossRef]

Kim, J.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

Kim, S. I.

H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4, 1059–1062 (2004).
[CrossRef]

Kim, Y. P.

Ko, Y. H.

Kuo, C. T.

C. E. Lee, Y. J. Lee, H. C. Kuo, M. R. Tsai, B. S. Cheng, T. C. Lu, S. C. Wang, and C. T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrays,” IEEE Photon. Technol. Lett. 19, 1200–1202 (2007).
[CrossRef]

Kuo, H. C.

C. E. Lee, Y. J. Lee, H. C. Kuo, M. R. Tsai, B. S. Cheng, T. C. Lu, S. C. Wang, and C. T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrays,” IEEE Photon. Technol. Lett. 19, 1200–1202 (2007).
[CrossRef]

Kwak, J. S.

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B 93, 60–63 (2002).
[CrossRef]

Lalanne, P.

P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE 2776, 300–309 (1996).
[CrossRef]

Leclerc, M.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–303 (2009).
[CrossRef]

Lee, C. E.

C. E. Lee, Y. J. Lee, H. C. Kuo, M. R. Tsai, B. S. Cheng, T. C. Lu, S. C. Wang, and C. T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrays,” IEEE Photon. Technol. Lett. 19, 1200–1202 (2007).
[CrossRef]

Lee, H.

H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4, 1059–1062 (2004).
[CrossRef]

Lee, J. M.

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

Lee, K.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–303 (2009).
[CrossRef]

Lee, L. P.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

Lee, Y. J.

C. E. Lee, Y. J. Lee, H. C. Kuo, M. R. Tsai, B. S. Cheng, T. C. Lu, S. C. Wang, and C. T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrays,” IEEE Photon. Technol. Lett. 19, 1200–1202 (2007).
[CrossRef]

Lee, Y. T.

Y. M. Song, G. C. Park, S. J. Jang, J. H. Ha, J. S. Yu, and Y. T. Lee, “Multifunctional light escaping architecture inspired by compound eye surface structures: from understanding to experimental demonstration,” Opt. Express 19(S2), A157–A165 (2011).
[CrossRef]

Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron. 41, 771–777 (2009).
[CrossRef]

Leem, J. W.

Li, D.

Lin, Y. S.

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, “Wafer-level fabrication and optical characterization of nanoscale patterned sapphire substrates,” Appl. Surf. Sci. 258, 2–6 (2011).
[CrossRef]

Lu, T. C.

C. E. Lee, Y. J. Lee, H. C. Kuo, M. R. Tsai, B. S. Cheng, T. C. Lu, S. C. Wang, and C. T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrays,” IEEE Photon. Technol. Lett. 19, 1200–1202 (2007).
[CrossRef]

Moharam, M. G.

Moon, J. S.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–303 (2009).
[CrossRef]

Morris, G. M.

P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE 2776, 300–309 (1996).
[CrossRef]

Moses, D.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–303 (2009).
[CrossRef]

Naczas, S.

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97, 191912 (2010).
[CrossRef]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006).
[CrossRef]

Park, G. C.

Park, S. H.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–303 (2009).
[CrossRef]

Park, Y. J.

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B 93, 60–63 (2002).
[CrossRef]

Patel, B. S.

B. S. Patel and Z. H. Zaidi, “The suitability of sapphire for laser windows,” Meas. Sci. Technol. 10, 146–151 (1999).
[CrossRef]

Redmond, P. L.

P. L. Redmond, A. J. Hallock, and L. E. Brus, “Electrochemical Ostwald ripening of colloidal Ag particles on conductive substrates,” Nano Lett. 5, 131–135 (2005).
[CrossRef]

Roy, A.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–303 (2009).
[CrossRef]

Ryu, S. R.

H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4, 1059–1062 (2004).
[CrossRef]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef]

Sato, O.

Z. Z. Gu, A. Fujishima, and O. Sato, “Biomimetic titanium dioxide film with structural color and extremely stable hydrophilicity,” Appl. Phys. Lett. 85, 5067–5069 (2004).
[CrossRef]

Sheraw, C. D.

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
[CrossRef]

Song, Y. M.

Y. M. Song, G. C. Park, S. J. Jang, J. H. Ha, J. S. Yu, and Y. T. Lee, “Multifunctional light escaping architecture inspired by compound eye surface structures: from understanding to experimental demonstration,” Opt. Express 19(S2), A157–A165 (2011).
[CrossRef]

Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron. 41, 771–777 (2009).
[CrossRef]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006).
[CrossRef]

Sung, Y. J.

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B 93, 60–63 (2002).
[CrossRef]

Thomas, I. M.

Tsai, M. R.

C. E. Lee, Y. J. Lee, H. C. Kuo, M. R. Tsai, B. S. Cheng, T. C. Lu, S. C. Wang, and C. T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrays,” IEEE Photon. Technol. Lett. 19, 1200–1202 (2007).
[CrossRef]

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef]

Wang, S. C.

C. E. Lee, Y. J. Lee, H. C. Kuo, M. R. Tsai, B. S. Cheng, T. C. Lu, S. C. Wang, and C. T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrays,” IEEE Photon. Technol. Lett. 19, 1200–1202 (2007).
[CrossRef]

Wenzel, R. N.

R. N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem. 28, 988–994 (1936).
[CrossRef]

West, J.

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
[CrossRef]

Wu, L.

Yang, D.

Yang, S. M.

S. M. Yang, Y. C. Hsieh, and C. A. Jeng, “Optimal design of antireflection coating and experimental verification by plasma enhanced chemical vapor deposition in small displays,” J. Vac. Sci. Technol. A 27, 336–341 (2009).
[CrossRef]

Yeh, J. A.

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, “Wafer-level fabrication and optical characterization of nanoscale patterned sapphire substrates,” Appl. Surf. Sci. 258, 2–6 (2011).
[CrossRef]

Yeom, G. Y.

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B 93, 60–63 (2002).
[CrossRef]

Youngblood, J. P.

J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun. 29, 455–466 (2008).
[CrossRef]

Yu, J. S.

Zaidi, Z. H.

B. S. Patel and Z. H. Zaidi, “The suitability of sapphire for laser windows,” Meas. Sci. Technol. 10, 146–151 (1999).
[CrossRef]

Zhao, H.

Zhou, L.

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97, 191912 (2010).
[CrossRef]

C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002).
[CrossRef]

Z. Z. Gu, A. Fujishima, and O. Sato, “Biomimetic titanium dioxide film with structural color and extremely stable hydrophilicity,” Appl. Phys. Lett. 85, 5067–5069 (2004).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surface,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, “Wafer-level fabrication and optical characterization of nanoscale patterned sapphire substrates,” Appl. Surf. Sci. 258, 2–6 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. E. Lee, Y. J. Lee, H. C. Kuo, M. R. Tsai, B. S. Cheng, T. C. Lu, S. C. Wang, and C. T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrays,” IEEE Photon. Technol. Lett. 19, 1200–1202 (2007).
[CrossRef]

Ind. Eng. Chem. (1)

R. N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem. 28, 988–994 (1936).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. A (1)

S. M. Yang, Y. C. Hsieh, and C. A. Jeng, “Optimal design of antireflection coating and experimental verification by plasma enhanced chemical vapor deposition in small displays,” J. Vac. Sci. Technol. A 27, 336–341 (2009).
[CrossRef]

Macromol. Rapid Commun. (1)

J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun. 29, 455–466 (2008).
[CrossRef]

Mater. Sci. Eng. A (1)

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

Mater. Sci. Eng. B (1)

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B 93, 60–63 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

B. S. Patel and Z. H. Zaidi, “The suitability of sapphire for laser windows,” Meas. Sci. Technol. 10, 146–151 (1999).
[CrossRef]

Nano Lett. (2)

H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4, 1059–1062 (2004).
[CrossRef]

P. L. Redmond, A. J. Hallock, and L. E. Brus, “Electrochemical Ostwald ripening of colloidal Ag particles on conductive substrates,” Nano Lett. 5, 131–135 (2005).
[CrossRef]

Nat. Photonics (1)

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–303 (2009).
[CrossRef]

Nature (2)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef]

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature 244, 281–282 (1973).
[CrossRef]

Opt. Express (4)

Opt. Quantum Electron. (1)

Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron. 41, 771–777 (2009).
[CrossRef]

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006).
[CrossRef]

Proc. SPIE (1)

P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE 2776, 300–309 (1996).
[CrossRef]

Science (1)

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

Other (2)

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002), Chap. 10.

SOPRA. http://www.sopra-sa.com and http://refractiveindex.info , Accessed 1Jan. (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the fabrication steps of the c-SMSs consisting of disordered nanocone arrays on hemispherical o-SMGs/sapphire.

Fig. 2.
Fig. 2.

(a) Measured total transmittance spectra of bare sapphire and o-SMGs/sapphire and (b) contour plots of variations of calculated (i) total and (ii) diffuse transmittance spectra as functions of wavelength and period of o-SMGs on sapphire substrate. The 30°-tilted oblique- and side-view SEM images of ordered silica spheres (left) and o-SMGs (right) on sapphire substrates are shown in the inset of (a). The 3D model of the o-SMGs on sapphire substrate used in this calculation is shown in the inset of (ii) of (b).

Fig. 3.
Fig. 3.

(a) 30°-tilted oblique- and top-view SEM images and (b) estimated average diameter, period, and density of the thermally dewetted Au nanoparticles after RTA of 600°C for Au thin film thicknesses of 3, 5, and 7 nm on o-SMGs/sapphires.

Fig. 4.
Fig. 4.

(a) 30°-tilted oblique- and side-view SEM images and (b) measured total transmittance spectra of c-SMSs on sapphire substrates for Au thin film thicknesses of 3, 5, and 7 nm. (c) Photographs of water droplets on the sample surfaces of the bare sapphire, o-SMGs/sapphire, and c-SMSs/sapphire at 7 nm of Au thin film. The measured diffuse transmittance spectra and haze ratio values at λ=525 and 635 nm of the corresponding samples are shown in the inset of (b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r=Ro-SMG+(Ho-SMGz)1/OTandx2+y2=r2(0zHo-SMG),
sinθt,m=mλΛn,

Metrics