Abstract

We simulated self-organized parallel waveguides constructed from two parallel input waveguides with a core width of 600 nm in a photopolymer using the finite-difference time-domain method. When write beams of 400 nm in wavelength are introduced from the input waveguides 4 μm apart, straight parallel waveguides are constructed in the photopolymer. When decreasing the distance between the input waveguides, the parallel waveguides attract each other and finally merge. By putting 600 nm wide luminescent objects at the waveguide destinations, self-organized parallel waveguides targeting the objects are constructed to pull them back to the correct destinations. The self-aligned parallel coupling waveguides are constructed even when a misalignment of 900 nm exists between the input waveguides and the luminescent objects. For write beams of 650 nm, the allowed misalignment increases due to increased divergence angles.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “How large a system can we build without optics?,” Workshop Notes, 8th Annual Workshop on Interconnections Within High Speed Digital Systems, Santa Fe, New Mexico, 12May1997, Lecture 1.2.
  2. Y. S. Liu, “Lighting the way in computer design,” IEEE Circuits Devices Mag. 14(1), 23–31 (1998).
    [CrossRef]
  3. M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Top. Quantum Electron. 9, 548–556 (2003).
    [CrossRef]
  4. N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003).
    [CrossRef]
  5. T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003).
    [CrossRef]
  6. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” J. Lightwave Technol. 22, 2168–2176 (2004).
    [CrossRef]
  7. B. S. Rho, S. Kang, H. S. Cho, H.-H. Park, S.-W. Ha, and B.-H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” J. Lightwave Technol. 22, 2128–2134 (2004).
    [CrossRef]
  8. A. Glebov, M. G. Lee, D. Kudzuma, J. Roman, M. Peters, L. Huang, and S. Zhou, “Integrated waveguide microoptic elements for 3D routing in board-level optical interconnects,” Proc. SPIE 6126, 61260L (2006).
    [CrossRef]
  9. F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.
  10. T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W. V. Wang, and M. Inao, “Proposal of optoelectronic substrate with film/Z-connection based on OE-film,” in Proceedings of 3rd IEMT/IMC Symposium (IEEE-CPMT/IMAPS, 1999), pp. 140–145.
  11. T. Yoshimura, Y. Takahashi, M. Inao, M. Lee, W. Chou, S. Beilin, W. V. Wang, J. Roman, and T. Massingill, “Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making,” U.S. patent 6,343,171 (January29, 2002).
  12. E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
    [CrossRef]
  13. R. Nair, T. Gu, and M. W. Haney, “Hybrid chip-scale optical interconnects using multiple quantum well devices bonded to silicon,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 18–19.
  14. J. Missinne, B. V. Hoe, E. Bosman, S. Kalathimekkad, G. V. Steenberge, and P. V. Daele, “Compact coupling and packaging concepts for flexible and stretchable polymer optical interconnects,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 129–130.
  15. T. Yoshimura, Optical Electronics: Self-Organized Integration and Applications (Pan Stanford, 2012).
  16. X. Lin, A. Hosseini, X. Dou, H. Subbaraman, and R. T. Chen, “Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler,” Opt. Express 21, 60–69 (2013).
    [CrossRef]
  17. T. Yoshimura, M. Ojima, Y. Arai, and K. Asama, “Three-dimensional self-organized micro optoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003).
    [CrossRef]
  18. T. Yoshimura, T. Inoguchi, T. Yamamoto, S. Moriya, Y. Teramoto, Y. Arai, T. Namiki, and K. Asama, “Self-organized lightwave network based on waveguide films for three-dimensional optical wiring within boxes,” J. Lightwave Technol. 22, 2091–2100 (2004).
    [CrossRef]
  19. T. Yoshimura, M. Miyazaki, Y. Miyamoto, N. Shimoda, A. Hori, and K. Asama, “Three-dimensional optical circuits consisting of waveguide films and optical Z-connections,” J. Lightwave Technol. 24, 4345–4352 (2006).
    [CrossRef]
  20. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [CrossRef]
  21. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9898 (2010).
    [CrossRef]
  22. F. E. Doany, B. G. Lee, S.n Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol. 29, 475–482 (2011).
    [CrossRef]
  23. D. Taillaert, F. V. Laere, A. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
    [CrossRef]
  24. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
    [CrossRef]
  25. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18, 1035–1037 (1993).
    [CrossRef]
  26. T. M. Monro, C. M. de Sterke, and L. Poladian, “Selfwriting a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
    [CrossRef]
  27. T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
    [CrossRef]
  28. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996).
    [CrossRef]
  29. M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
    [CrossRef]
  30. K. Dorkenoo, O. Crégut, L. Mager, and F. Gillot, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002).
    [CrossRef]
  31. S. Shoji and S. Kawata, “Self-written waveguides in photopolymerizable resins,” Opt. Lett. 27, 185–187 (2002).
    [CrossRef]
  32. N. Hirose and O. Ibaragi, “Optical component coupling using self-written waveguides,” Proc. SPIE 5355, 206–214 (2004).
    [CrossRef]
  33. S. Jradi, O. Soppera, and D. J. Lougnot, “Fabrication of polymer waveguides between two optical fibers using spatially controlled light-induced polymerization,” Appl. Opt. 47, 3987–3993 (2008).
    [CrossRef]
  34. T. Yoshimura, J. Roman, Y. Takahashi, W. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Proceedings of 50th Electronic Components & Technology Conference (IEEE, 2000), pp. 962–969.
  35. T. Yoshimura, W. Sotoyama, K. Motoyoshi, T. Ishitsuka, K. Tsukamoto, S. Tatsuura, H. Soda, and T. Yamamoto, “Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board,” U.S. patent 6,081,632 (June27, 2000).
  36. T. Yoshimura, A. Hori, Y. Yoshida, Y. Arai, H. Kurokawa, T. Namiki, and K. Asama, “Coupling efficiencies in reflective self-organized lightwave network (R-SOLNET) simulated by the beam propagation method,” IEEE Photon. Technol. Lett. 17, 1653–1655 (2005).
    [CrossRef]
  37. T. Yoshimura and H. Kaburagi, “Self-organization of optical waveguides between misaligned devices induced by write-beam reflection,” Appl. Phys. Express 1, 062007 (2008).
    [CrossRef]
  38. T. Yoshimura, C. Yoshino, K. Sasaki, T. Sato, and M. Seki, “Cancer therapy utilizing molecular layer deposition (MLD) and self-organized lightwave network (SOLNET)—proposal and theoretical prediction,” IEEE J. Sel. Top. Quantum Electron. 18, 1192–1199 (2012).
    [CrossRef]
  39. M. Seki and T. Yoshimura, “Reflective self-organizing lightwave network (R-SOLNET) using a phosphor,” Opt. Eng. 51, 074601 (2012).
    [CrossRef]
  40. S. Ono, T. Yoshimura, T. Sato, and J. Oshima, “Fabrication and evaluation of nano-scale optical circuits using sol-gel materials with photo-induced refractive index variation characteristics,” J. Lightwave Technol. 27, 1229–1235 (2009).
    [CrossRef]
  41. S. Ono, T. Yoshimura, T. Sato, and J. Oshima, “Fabrication of self-organized optical waveguides in photo-induced refractive index variation sol-gel materials with large index contrast,” J. Lightwave Technol. 27, 5308–5313 (2009).
    [CrossRef]

2013

2012

T. Yoshimura, C. Yoshino, K. Sasaki, T. Sato, and M. Seki, “Cancer therapy utilizing molecular layer deposition (MLD) and self-organized lightwave network (SOLNET)—proposal and theoretical prediction,” IEEE J. Sel. Top. Quantum Electron. 18, 1192–1199 (2012).
[CrossRef]

M. Seki and T. Yoshimura, “Reflective self-organizing lightwave network (R-SOLNET) using a phosphor,” Opt. Eng. 51, 074601 (2012).
[CrossRef]

2011

E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
[CrossRef]

F. E. Doany, B. G. Lee, S.n Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol. 29, 475–482 (2011).
[CrossRef]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

2010

2009

2008

S. Jradi, O. Soppera, and D. J. Lougnot, “Fabrication of polymer waveguides between two optical fibers using spatially controlled light-induced polymerization,” Appl. Opt. 47, 3987–3993 (2008).
[CrossRef]

T. Yoshimura and H. Kaburagi, “Self-organization of optical waveguides between misaligned devices induced by write-beam reflection,” Appl. Phys. Express 1, 062007 (2008).
[CrossRef]

2006

D. Taillaert, F. V. Laere, A. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

T. Yoshimura, M. Miyazaki, Y. Miyamoto, N. Shimoda, A. Hori, and K. Asama, “Three-dimensional optical circuits consisting of waveguide films and optical Z-connections,” J. Lightwave Technol. 24, 4345–4352 (2006).
[CrossRef]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[CrossRef]

A. Glebov, M. G. Lee, D. Kudzuma, J. Roman, M. Peters, L. Huang, and S. Zhou, “Integrated waveguide microoptic elements for 3D routing in board-level optical interconnects,” Proc. SPIE 6126, 61260L (2006).
[CrossRef]

2005

T. Yoshimura, A. Hori, Y. Yoshida, Y. Arai, H. Kurokawa, T. Namiki, and K. Asama, “Coupling efficiencies in reflective self-organized lightwave network (R-SOLNET) simulated by the beam propagation method,” IEEE Photon. Technol. Lett. 17, 1653–1655 (2005).
[CrossRef]

2004

2003

M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Top. Quantum Electron. 9, 548–556 (2003).
[CrossRef]

N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003).
[CrossRef]

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003).
[CrossRef]

T. Yoshimura, M. Ojima, Y. Arai, and K. Asama, “Three-dimensional self-organized micro optoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003).
[CrossRef]

2002

2001

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

1998

Y. S. Liu, “Lighting the way in computer design,” IEEE Circuits Devices Mag. 14(1), 23–31 (1998).
[CrossRef]

1996

1995

T. M. Monro, C. M. de Sterke, and L. Poladian, “Selfwriting a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[CrossRef]

1993

Arai, Y.

T. Yoshimura, A. Hori, Y. Yoshida, Y. Arai, H. Kurokawa, T. Namiki, and K. Asama, “Coupling efficiencies in reflective self-organized lightwave network (R-SOLNET) simulated by the beam propagation method,” IEEE Photon. Technol. Lett. 17, 1653–1655 (2005).
[CrossRef]

T. Yoshimura, T. Inoguchi, T. Yamamoto, S. Moriya, Y. Teramoto, Y. Arai, T. Namiki, and K. Asama, “Self-organized lightwave network based on waveguide films for three-dimensional optical wiring within boxes,” J. Lightwave Technol. 22, 2091–2100 (2004).
[CrossRef]

T. Yoshimura, M. Ojima, Y. Arai, and K. Asama, “Three-dimensional self-organized micro optoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003).
[CrossRef]

Asama, K.

T. Yoshimura, M. Miyazaki, Y. Miyamoto, N. Shimoda, A. Hori, and K. Asama, “Three-dimensional optical circuits consisting of waveguide films and optical Z-connections,” J. Lightwave Technol. 24, 4345–4352 (2006).
[CrossRef]

T. Yoshimura, A. Hori, Y. Yoshida, Y. Arai, H. Kurokawa, T. Namiki, and K. Asama, “Coupling efficiencies in reflective self-organized lightwave network (R-SOLNET) simulated by the beam propagation method,” IEEE Photon. Technol. Lett. 17, 1653–1655 (2005).
[CrossRef]

T. Yoshimura, T. Inoguchi, T. Yamamoto, S. Moriya, Y. Teramoto, Y. Arai, T. Namiki, and K. Asama, “Self-organized lightwave network based on waveguide films for three-dimensional optical wiring within boxes,” J. Lightwave Technol. 22, 2091–2100 (2004).
[CrossRef]

T. Yoshimura, M. Ojima, Y. Arai, and K. Asama, “Three-dimensional self-organized micro optoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003).
[CrossRef]

Asghari, M.

Assefa, S.n

Ayre, A.

D. Taillaert, F. V. Laere, A. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Baets, R.

D. Taillaert, F. V. Laere, A. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Bajkowski, D.

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

Baks, C.

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

Beilin, S.

T. Yoshimura, Y. Takahashi, M. Inao, M. Lee, W. Chou, S. Beilin, W. V. Wang, J. Roman, and T. Massingill, “Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making,” U.S. patent 6,343,171 (January29, 2002).

Beilin, S. I.

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W. V. Wang, and M. Inao, “Proposal of optoelectronic substrate with film/Z-connection based on OE-film,” in Proceedings of 3rd IEMT/IMC Symposium (IEEE-CPMT/IMAPS, 1999), pp. 140–145.

Berry, J.

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

Bienstman, P.

D. Taillaert, F. V. Laere, A. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Bogaerts, W.

D. Taillaert, F. V. Laere, A. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Bonkohara, M.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003).
[CrossRef]

Bosman, E.

E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
[CrossRef]

J. Missinne, B. V. Hoe, E. Bosman, S. Kalathimekkad, G. V. Steenberge, and P. V. Daele, “Compact coupling and packaging concepts for flexible and stretchable polymer optical interconnects,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 129–130.

Brooke, M. A.

N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003).
[CrossRef]

Brown, A.

N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003).
[CrossRef]

Budd, R.

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

Carver, C.

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

Chan, B.

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

Chen, R. T.

Cho, H. S.

Cho, S.

N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003).
[CrossRef]

Choi, C.

Choi, J.

Chou, B.

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W. V. Wang, and M. Inao, “Proposal of optoelectronic substrate with film/Z-connection based on OE-film,” in Proceedings of 3rd IEMT/IMC Symposium (IEEE-CPMT/IMAPS, 1999), pp. 140–145.

Chou, W.

T. Yoshimura, Y. Takahashi, M. Inao, M. Lee, W. Chou, S. Beilin, W. V. Wang, J. Roman, and T. Massingill, “Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making,” U.S. patent 6,343,171 (January29, 2002).

Christensen, M. P.

M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Top. Quantum Electron. 9, 548–556 (2003).
[CrossRef]

Crégut, O.

Daele, P. V.

E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
[CrossRef]

J. Missinne, B. V. Hoe, E. Bosman, S. Kalathimekkad, G. V. Steenberge, and P. V. Daele, “Compact coupling and packaging concepts for flexible and stretchable polymer optical interconnects,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 129–130.

Dangel, R.

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

de Sterke, C. M.

T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
[CrossRef]

T. M. Monro, C. M. de Sterke, and L. Poladian, “Selfwriting a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[CrossRef]

Doany, F. E.

F. E. Doany, B. G. Lee, S.n Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol. 29, 475–482 (2011).
[CrossRef]

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

Dobbelaere, P. D.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

Dong, P.

Dorkenoo, K.

Dou, X.

Dubruel, P.

E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
[CrossRef]

Erps, J. V.

E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
[CrossRef]

Feng, D.

Feng, N.

Fike, S.

N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003).
[CrossRef]

Frisken, S. J.

Furuyama, H.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003).
[CrossRef]

Gijseghem, T. V.

E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
[CrossRef]

Gillot, F.

Glebov, A.

A. Glebov, M. G. Lee, D. Kudzuma, J. Roman, M. Peters, L. Huang, and S. Zhou, “Integrated waveguide microoptic elements for 3D routing in board-level optical interconnects,” Proc. SPIE 6126, 61260L (2006).
[CrossRef]

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

Green, W. M. J.

Gu, T.

R. Nair, T. Gu, and M. W. Haney, “Hybrid chip-scale optical interconnects using multiple quantum well devices bonded to silicon,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 18–19.

Ha, S.-W.

Haas, D.

Haney, M. W.

M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Top. Quantum Electron. 9, 548–556 (2003).
[CrossRef]

R. Nair, T. Gu, and M. W. Haney, “Hybrid chip-scale optical interconnects using multiple quantum well devices bonded to silicon,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 18–19.

Hiramatsu, S.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003).
[CrossRef]

Hirose, N.

N. Hirose and O. Ibaragi, “Optical component coupling using self-written waveguides,” Proc. SPIE 5355, 206–214 (2004).
[CrossRef]

Hiruma, K.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003).
[CrossRef]

Hoe, B. V.

E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
[CrossRef]

J. Missinne, B. V. Hoe, E. Bosman, S. Kalathimekkad, G. V. Steenberge, and P. V. Daele, “Compact coupling and packaging concepts for flexible and stretchable polymer optical interconnects,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 129–130.

Hori, A.

T. Yoshimura, M. Miyazaki, Y. Miyamoto, N. Shimoda, A. Hori, and K. Asama, “Three-dimensional optical circuits consisting of waveguide films and optical Z-connections,” J. Lightwave Technol. 24, 4345–4352 (2006).
[CrossRef]

T. Yoshimura, A. Hori, Y. Yoshida, Y. Arai, H. Kurokawa, T. Namiki, and K. Asama, “Coupling efficiencies in reflective self-organized lightwave network (R-SOLNET) simulated by the beam propagation method,” IEEE Photon. Technol. Lett. 17, 1653–1655 (2005).
[CrossRef]

Hosseini, A.

Huang, J.

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

Huang, L.

A. Glebov, M. G. Lee, D. Kudzuma, J. Roman, M. Peters, L. Huang, and S. Zhou, “Integrated waveguide microoptic elements for 3D routing in board-level optical interconnects,” Proc. SPIE 6126, 61260L (2006).
[CrossRef]

Ibaragi, O.

N. Hirose and O. Ibaragi, “Optical component coupling using self-written waveguides,” Proc. SPIE 5355, 206–214 (2004).
[CrossRef]

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003).
[CrossRef]

ilkinson, S.

N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003).
[CrossRef]

Inao, M.

T. Yoshimura, Y. Takahashi, M. Inao, M. Lee, W. Chou, S. Beilin, W. V. Wang, J. Roman, and T. Massingill, “Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making,” U.S. patent 6,343,171 (January29, 2002).

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W. V. Wang, and M. Inao, “Proposal of optoelectronic substrate with film/Z-connection based on OE-film,” in Proceedings of 3rd IEMT/IMC Symposium (IEEE-CPMT/IMAPS, 1999), pp. 140–145.

T. Yoshimura, J. Roman, Y. Takahashi, W. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Proceedings of 50th Electronic Components & Technology Conference (IEEE, 2000), pp. 962–969.

Inoguchi, T.

Ishitsuka, T.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003).
[CrossRef]

T. Yoshimura, J. Roman, Y. Takahashi, W. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Proceedings of 50th Electronic Components & Technology Conference (IEEE, 2000), pp. 962–969.

T. Yoshimura, W. Sotoyama, K. Motoyoshi, T. Ishitsuka, K. Tsukamoto, S. Tatsuura, H. Soda, and T. Yamamoto, “Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board,” U.S. patent 6,081,632 (June27, 2000).

Ito, H.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

Jahnes, C. V.

John, R.

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

Jokerst, N. M.

N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003).
[CrossRef]

Joo, Y. J.

N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003).
[CrossRef]

Jradi, S.

Kaburagi, H.

T. Yoshimura and H. Kaburagi, “Self-organization of optical waveguides between misaligned devices induced by write-beam reflection,” Appl. Phys. Express 1, 062007 (2008).
[CrossRef]

Kagami, M.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

Kalathimekkad, S.

E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
[CrossRef]

J. Missinne, B. V. Hoe, E. Bosman, S. Kalathimekkad, G. V. Steenberge, and P. V. Daele, “Compact coupling and packaging concepts for flexible and stretchable polymer optical interconnects,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 129–130.

Kang, S.

Kash, J. A.

F. E. Doany, B. G. Lee, S.n Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol. 29, 475–482 (2011).
[CrossRef]

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

Kawata, S.

Kewitsch, A. S.

Kinoshita, M.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003).
[CrossRef]

Kopp, V. I.

Krishnamoorthy, A. V.

Kudzuma, D.

A. Glebov, M. G. Lee, D. Kudzuma, J. Roman, M. Peters, L. Huang, and S. Zhou, “Integrated waveguide microoptic elements for 3D routing in board-level optical interconnects,” Proc. SPIE 6126, 61260L (2006).
[CrossRef]

Kumai, K.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003).
[CrossRef]

Kurokawa, H.

T. Yoshimura, A. Hori, Y. Yoshida, Y. Arai, H. Kurokawa, T. Namiki, and K. Asama, “Coupling efficiencies in reflective self-organized lightwave network (R-SOLNET) simulated by the beam propagation method,” IEEE Photon. Technol. Lett. 17, 1653–1655 (2005).
[CrossRef]

Laere, F. V.

D. Taillaert, F. V. Laere, A. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Lee, B. G.

F. E. Doany, B. G. Lee, S.n Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol. 29, 475–482 (2011).
[CrossRef]

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

Lee, M.

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W. V. Wang, and M. Inao, “Proposal of optoelectronic substrate with film/Z-connection based on OE-film,” in Proceedings of 3rd IEMT/IMC Symposium (IEEE-CPMT/IMAPS, 1999), pp. 140–145.

T. Yoshimura, Y. Takahashi, M. Inao, M. Lee, W. Chou, S. Beilin, W. V. Wang, J. Roman, and T. Massingill, “Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making,” U.S. patent 6,343,171 (January29, 2002).

Lee, M. G.

A. Glebov, M. G. Lee, D. Kudzuma, J. Roman, M. Peters, L. Huang, and S. Zhou, “Integrated waveguide microoptic elements for 3D routing in board-level optical interconnects,” Proc. SPIE 6126, 61260L (2006).
[CrossRef]

Liang, H.

Libsch, F.

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

Lin, H.

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

Lin, L.

Lin, X.

Liu, Y.

Liu, Y. S.

Y. S. Liu, “Lighting the way in computer design,” IEEE Circuits Devices Mag. 14(1), 23–31 (1998).
[CrossRef]

Lougnot, D. J.

Mager, L.

Magera, J.

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

Massingill, T.

T. Yoshimura, Y. Takahashi, M. Inao, M. Lee, W. Chou, S. Beilin, W. V. Wang, J. Roman, and T. Massingill, “Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making,” U.S. patent 6,343,171 (January29, 2002).

Matsui, T.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003).
[CrossRef]

McFadden, M. J.

M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Top. Quantum Electron. 9, 548–556 (2003).
[CrossRef]

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

Mikawa, T.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003).
[CrossRef]

Milenkov, I.

E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “How large a system can we build without optics?,” Workshop Notes, 8th Annual Workshop on Interconnections Within High Speed Digital Systems, Santa Fe, New Mexico, 12May1997, Lecture 1.2.

Milojkovic, P.

M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Top. Quantum Electron. 9, 548–556 (2003).
[CrossRef]

Missinne, J.

E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
[CrossRef]

J. Missinne, B. V. Hoe, E. Bosman, S. Kalathimekkad, G. V. Steenberge, and P. V. Daele, “Compact coupling and packaging concepts for flexible and stretchable polymer optical interconnects,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 129–130.

Miyamoto, Y.

Miyazaki, M.

Monro, T. M.

T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
[CrossRef]

T. M. Monro, C. M. de Sterke, and L. Poladian, “Selfwriting a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[CrossRef]

Moriya, S.

Motoyoshi, K.

T. Yoshimura, W. Sotoyama, K. Motoyoshi, T. Ishitsuka, K. Tsukamoto, S. Tatsuura, H. Soda, and T. Yamamoto, “Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board,” U.S. patent 6,081,632 (June27, 2000).

T. Yoshimura, J. Roman, Y. Takahashi, W. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Proceedings of 50th Electronic Components & Technology Conference (IEEE, 2000), pp. 962–969.

Nair, R.

R. Nair, T. Gu, and M. W. Haney, “Hybrid chip-scale optical interconnects using multiple quantum well devices bonded to silicon,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 18–19.

Namiki, T.

T. Yoshimura, A. Hori, Y. Yoshida, Y. Arai, H. Kurokawa, T. Namiki, and K. Asama, “Coupling efficiencies in reflective self-organized lightwave network (R-SOLNET) simulated by the beam propagation method,” IEEE Photon. Technol. Lett. 17, 1653–1655 (2005).
[CrossRef]

T. Yoshimura, T. Inoguchi, T. Yamamoto, S. Moriya, Y. Teramoto, Y. Arai, T. Namiki, and K. Asama, “Self-organized lightwave network based on waveguide films for three-dimensional optical wiring within boxes,” J. Lightwave Technol. 22, 2091–2100 (2004).
[CrossRef]

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

Ojima, M.

T. Yoshimura, M. Ojima, Y. Arai, and K. Asama, “Three-dimensional self-organized micro optoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003).
[CrossRef]

Okabe, M.

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003).
[CrossRef]

Ono, S.

Oshima, J.

Panajotov, K.

E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
[CrossRef]

Park, H.-H.

Peters, M.

A. Glebov, M. G. Lee, D. Kudzuma, J. Roman, M. Peters, L. Huang, and S. Zhou, “Integrated waveguide microoptic elements for 3D routing in board-level optical interconnects,” Proc. SPIE 6126, 61260L (2006).
[CrossRef]

Pinguet, T.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

Poladian, L.

T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
[CrossRef]

T. M. Monro, C. M. de Sterke, and L. Poladian, “Selfwriting a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[CrossRef]

Qian, W.

Rhee, B.-H.

Rho, B. S.

Roman, J.

A. Glebov, M. G. Lee, D. Kudzuma, J. Roman, M. Peters, L. Huang, and S. Zhou, “Integrated waveguide microoptic elements for 3D routing in board-level optical interconnects,” Proc. SPIE 6126, 61260L (2006).
[CrossRef]

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W. V. Wang, and M. Inao, “Proposal of optoelectronic substrate with film/Z-connection based on OE-film,” in Proceedings of 3rd IEMT/IMC Symposium (IEEE-CPMT/IMAPS, 1999), pp. 140–145.

T. Yoshimura, Y. Takahashi, M. Inao, M. Lee, W. Chou, S. Beilin, W. V. Wang, J. Roman, and T. Massingill, “Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making,” U.S. patent 6,343,171 (January29, 2002).

T. Yoshimura, J. Roman, Y. Takahashi, W. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Proceedings of 50th Electronic Components & Technology Conference (IEEE, 2000), pp. 962–969.

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

Sasaki, K.

T. Yoshimura, C. Yoshino, K. Sasaki, T. Sato, and M. Seki, “Cancer therapy utilizing molecular layer deposition (MLD) and self-organized lightwave network (SOLNET)—proposal and theoretical prediction,” IEEE J. Sel. Top. Quantum Electron. 18, 1192–1199 (2012).
[CrossRef]

Sato, T.

Schow, C. L.

F. E. Doany, B. G. Lee, S.n Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol. 29, 475–482 (2011).
[CrossRef]

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

Seki, M.

T. Yoshimura, C. Yoshino, K. Sasaki, T. Sato, and M. Seki, “Cancer therapy utilizing molecular layer deposition (MLD) and self-organized lightwave network (SOLNET)—proposal and theoretical prediction,” IEEE J. Sel. Top. Quantum Electron. 18, 1192–1199 (2012).
[CrossRef]

M. Seki and T. Yoshimura, “Reflective self-organizing lightwave network (R-SOLNET) using a phosphor,” Opt. Eng. 51, 074601 (2012).
[CrossRef]

Seo, S.

N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003).
[CrossRef]

Shafiiha, R.

Shimoda, N.

Shoji, S.

Singer, J.

Soda, H.

T. Yoshimura, W. Sotoyama, K. Motoyoshi, T. Ishitsuka, K. Tsukamoto, S. Tatsuura, H. Soda, and T. Yamamoto, “Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board,” U.S. patent 6,081,632 (June27, 2000).

Soppera, O.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[CrossRef]

Sotoyama, W.

T. Yoshimura, J. Roman, Y. Takahashi, W. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Proceedings of 50th Electronic Components & Technology Conference (IEEE, 2000), pp. 962–969.

T. Yoshimura, W. Sotoyama, K. Motoyoshi, T. Ishitsuka, K. Tsukamoto, S. Tatsuura, H. Soda, and T. Yamamoto, “Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board,” U.S. patent 6,081,632 (June27, 2000).

Steenberge, G. V.

E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
[CrossRef]

J. Missinne, B. V. Hoe, E. Bosman, S. Kalathimekkad, G. V. Steenberge, and P. V. Daele, “Compact coupling and packaging concepts for flexible and stretchable polymer optical interconnects,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 129–130.

Subbaraman, H.

Tabler, J.

N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003).
[CrossRef]

Taillaert, D.

D. Taillaert, F. V. Laere, A. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Takahashi, Y.

T. Yoshimura, J. Roman, Y. Takahashi, W. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Proceedings of 50th Electronic Components & Technology Conference (IEEE, 2000), pp. 962–969.

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W. V. Wang, and M. Inao, “Proposal of optoelectronic substrate with film/Z-connection based on OE-film,” in Proceedings of 3rd IEMT/IMC Symposium (IEEE-CPMT/IMAPS, 1999), pp. 140–145.

T. Yoshimura, Y. Takahashi, M. Inao, M. Lee, W. Chou, S. Beilin, W. V. Wang, J. Roman, and T. Massingill, “Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making,” U.S. patent 6,343,171 (January29, 2002).

Tatsuura, S.

T. Yoshimura, W. Sotoyama, K. Motoyoshi, T. Ishitsuka, K. Tsukamoto, S. Tatsuura, H. Soda, and T. Yamamoto, “Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board,” U.S. patent 6,081,632 (June27, 2000).

Teramoto, Y.

Thienpont, H.

E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
[CrossRef]

Thourhout, D. V.

D. Taillaert, F. V. Laere, A. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Tsukamoto, K.

T. Yoshimura, W. Sotoyama, K. Motoyoshi, T. Ishitsuka, K. Tsukamoto, S. Tatsuura, H. Soda, and T. Yamamoto, “Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board,” U.S. patent 6,081,632 (June27, 2000).

T. Yoshimura, J. Roman, Y. Takahashi, W. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Proceedings of 50th Electronic Components & Technology Conference (IEEE, 2000), pp. 962–969.

Vlasov, Y. A.

Vrazel, M.

N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003).
[CrossRef]

Wang, L.

Wang, W. V.

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W. V. Wang, and M. Inao, “Proposal of optoelectronic substrate with film/Z-connection based on OE-film,” in Proceedings of 3rd IEMT/IMC Symposium (IEEE-CPMT/IMAPS, 1999), pp. 140–145.

T. Yoshimura, Y. Takahashi, M. Inao, M. Lee, W. Chou, S. Beilin, W. V. Wang, J. Roman, and T. Massingill, “Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making,” U.S. patent 6,343,171 (January29, 2002).

T. Yoshimura, J. Roman, Y. Takahashi, W. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Proceedings of 50th Electronic Components & Technology Conference (IEEE, 2000), pp. 962–969.

Wils, D. S.

N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003).
[CrossRef]

Yamamoto, T.

T. Yoshimura, T. Inoguchi, T. Yamamoto, S. Moriya, Y. Teramoto, Y. Arai, T. Namiki, and K. Asama, “Self-organized lightwave network based on waveguide films for three-dimensional optical wiring within boxes,” J. Lightwave Technol. 22, 2091–2100 (2004).
[CrossRef]

T. Yoshimura, W. Sotoyama, K. Motoyoshi, T. Ishitsuka, K. Tsukamoto, S. Tatsuura, H. Soda, and T. Yamamoto, “Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board,” U.S. patent 6,081,632 (June27, 2000).

Yamashita, T.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

Yang, M.

Yariv, A.

Yoshida, Y.

T. Yoshimura, A. Hori, Y. Yoshida, Y. Arai, H. Kurokawa, T. Namiki, and K. Asama, “Coupling efficiencies in reflective self-organized lightwave network (R-SOLNET) simulated by the beam propagation method,” IEEE Photon. Technol. Lett. 17, 1653–1655 (2005).
[CrossRef]

Yoshimura, T.

M. Seki and T. Yoshimura, “Reflective self-organizing lightwave network (R-SOLNET) using a phosphor,” Opt. Eng. 51, 074601 (2012).
[CrossRef]

T. Yoshimura, C. Yoshino, K. Sasaki, T. Sato, and M. Seki, “Cancer therapy utilizing molecular layer deposition (MLD) and self-organized lightwave network (SOLNET)—proposal and theoretical prediction,” IEEE J. Sel. Top. Quantum Electron. 18, 1192–1199 (2012).
[CrossRef]

S. Ono, T. Yoshimura, T. Sato, and J. Oshima, “Fabrication of self-organized optical waveguides in photo-induced refractive index variation sol-gel materials with large index contrast,” J. Lightwave Technol. 27, 5308–5313 (2009).
[CrossRef]

S. Ono, T. Yoshimura, T. Sato, and J. Oshima, “Fabrication and evaluation of nano-scale optical circuits using sol-gel materials with photo-induced refractive index variation characteristics,” J. Lightwave Technol. 27, 1229–1235 (2009).
[CrossRef]

T. Yoshimura and H. Kaburagi, “Self-organization of optical waveguides between misaligned devices induced by write-beam reflection,” Appl. Phys. Express 1, 062007 (2008).
[CrossRef]

T. Yoshimura, M. Miyazaki, Y. Miyamoto, N. Shimoda, A. Hori, and K. Asama, “Three-dimensional optical circuits consisting of waveguide films and optical Z-connections,” J. Lightwave Technol. 24, 4345–4352 (2006).
[CrossRef]

T. Yoshimura, A. Hori, Y. Yoshida, Y. Arai, H. Kurokawa, T. Namiki, and K. Asama, “Coupling efficiencies in reflective self-organized lightwave network (R-SOLNET) simulated by the beam propagation method,” IEEE Photon. Technol. Lett. 17, 1653–1655 (2005).
[CrossRef]

T. Yoshimura, T. Inoguchi, T. Yamamoto, S. Moriya, Y. Teramoto, Y. Arai, T. Namiki, and K. Asama, “Self-organized lightwave network based on waveguide films for three-dimensional optical wiring within boxes,” J. Lightwave Technol. 22, 2091–2100 (2004).
[CrossRef]

T. Yoshimura, M. Ojima, Y. Arai, and K. Asama, “Three-dimensional self-organized micro optoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003).
[CrossRef]

T. Yoshimura, Optical Electronics: Self-Organized Integration and Applications (Pan Stanford, 2012).

T. Yoshimura, Y. Takahashi, M. Inao, M. Lee, W. Chou, S. Beilin, W. V. Wang, J. Roman, and T. Massingill, “Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making,” U.S. patent 6,343,171 (January29, 2002).

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W. V. Wang, and M. Inao, “Proposal of optoelectronic substrate with film/Z-connection based on OE-film,” in Proceedings of 3rd IEMT/IMC Symposium (IEEE-CPMT/IMAPS, 1999), pp. 140–145.

T. Yoshimura, W. Sotoyama, K. Motoyoshi, T. Ishitsuka, K. Tsukamoto, S. Tatsuura, H. Soda, and T. Yamamoto, “Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board,” U.S. patent 6,081,632 (June27, 2000).

T. Yoshimura, J. Roman, Y. Takahashi, W. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Proceedings of 50th Electronic Components & Technology Conference (IEEE, 2000), pp. 962–969.

Yoshino, C.

T. Yoshimura, C. Yoshino, K. Sasaki, T. Sato, and M. Seki, “Cancer therapy utilizing molecular layer deposition (MLD) and self-organized lightwave network (SOLNET)—proposal and theoretical prediction,” IEEE J. Sel. Top. Quantum Electron. 18, 1192–1199 (2012).
[CrossRef]

Zhang, S.

Zheng, X.

Zhou, S.

A. Glebov, M. G. Lee, D. Kudzuma, J. Roman, M. Peters, L. Huang, and S. Zhou, “Integrated waveguide microoptic elements for 3D routing in board-level optical interconnects,” Proc. SPIE 6126, 61260L (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Express

T. Yoshimura and H. Kaburagi, “Self-organization of optical waveguides between misaligned devices induced by write-beam reflection,” Appl. Phys. Express 1, 062007 (2008).
[CrossRef]

Appl. Phys. Lett.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

IEEE Circuits Devices Mag.

Y. S. Liu, “Lighting the way in computer design,” IEEE Circuits Devices Mag. 14(1), 23–31 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Top. Quantum Electron. 9, 548–556 (2003).
[CrossRef]

N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003).
[CrossRef]

T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003).
[CrossRef]

E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011).
[CrossRef]

T. Yoshimura, M. Ojima, Y. Arai, and K. Asama, “Three-dimensional self-organized micro optoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003).
[CrossRef]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[CrossRef]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

T. Yoshimura, C. Yoshino, K. Sasaki, T. Sato, and M. Seki, “Cancer therapy utilizing molecular layer deposition (MLD) and self-organized lightwave network (SOLNET)—proposal and theoretical prediction,” IEEE J. Sel. Top. Quantum Electron. 18, 1192–1199 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Yoshimura, A. Hori, Y. Yoshida, Y. Arai, H. Kurokawa, T. Namiki, and K. Asama, “Coupling efficiencies in reflective self-organized lightwave network (R-SOLNET) simulated by the beam propagation method,” IEEE Photon. Technol. Lett. 17, 1653–1655 (2005).
[CrossRef]

J. Lightwave Technol.

F. E. Doany, B. G. Lee, S.n Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol. 29, 475–482 (2011).
[CrossRef]

T. Yoshimura, T. Inoguchi, T. Yamamoto, S. Moriya, Y. Teramoto, Y. Arai, T. Namiki, and K. Asama, “Self-organized lightwave network based on waveguide films for three-dimensional optical wiring within boxes,” J. Lightwave Technol. 22, 2091–2100 (2004).
[CrossRef]

T. Yoshimura, M. Miyazaki, Y. Miyamoto, N. Shimoda, A. Hori, and K. Asama, “Three-dimensional optical circuits consisting of waveguide films and optical Z-connections,” J. Lightwave Technol. 24, 4345–4352 (2006).
[CrossRef]

C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” J. Lightwave Technol. 22, 2168–2176 (2004).
[CrossRef]

B. S. Rho, S. Kang, H. S. Cho, H.-H. Park, S.-W. Ha, and B.-H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” J. Lightwave Technol. 22, 2128–2134 (2004).
[CrossRef]

S. Ono, T. Yoshimura, T. Sato, and J. Oshima, “Fabrication and evaluation of nano-scale optical circuits using sol-gel materials with photo-induced refractive index variation characteristics,” J. Lightwave Technol. 27, 1229–1235 (2009).
[CrossRef]

S. Ono, T. Yoshimura, T. Sato, and J. Oshima, “Fabrication of self-organized optical waveguides in photo-induced refractive index variation sol-gel materials with large index contrast,” J. Lightwave Technol. 27, 5308–5313 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

D. Taillaert, F. V. Laere, A. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[CrossRef]

Opt. Commun.

T. M. Monro, C. M. de Sterke, and L. Poladian, “Selfwriting a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[CrossRef]

Opt. Eng.

M. Seki and T. Yoshimura, “Reflective self-organizing lightwave network (R-SOLNET) using a phosphor,” Opt. Eng. 51, 074601 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

N. Hirose and O. Ibaragi, “Optical component coupling using self-written waveguides,” Proc. SPIE 5355, 206–214 (2004).
[CrossRef]

A. Glebov, M. G. Lee, D. Kudzuma, J. Roman, M. Peters, L. Huang, and S. Zhou, “Integrated waveguide microoptic elements for 3D routing in board-level optical interconnects,” Proc. SPIE 6126, 61260L (2006).
[CrossRef]

Other

F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W. V. Wang, and M. Inao, “Proposal of optoelectronic substrate with film/Z-connection based on OE-film,” in Proceedings of 3rd IEMT/IMC Symposium (IEEE-CPMT/IMAPS, 1999), pp. 140–145.

T. Yoshimura, Y. Takahashi, M. Inao, M. Lee, W. Chou, S. Beilin, W. V. Wang, J. Roman, and T. Massingill, “Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making,” U.S. patent 6,343,171 (January29, 2002).

D. A. B. Miller, “How large a system can we build without optics?,” Workshop Notes, 8th Annual Workshop on Interconnections Within High Speed Digital Systems, Santa Fe, New Mexico, 12May1997, Lecture 1.2.

R. Nair, T. Gu, and M. W. Haney, “Hybrid chip-scale optical interconnects using multiple quantum well devices bonded to silicon,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 18–19.

J. Missinne, B. V. Hoe, E. Bosman, S. Kalathimekkad, G. V. Steenberge, and P. V. Daele, “Compact coupling and packaging concepts for flexible and stretchable polymer optical interconnects,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 129–130.

T. Yoshimura, Optical Electronics: Self-Organized Integration and Applications (Pan Stanford, 2012).

T. Yoshimura, J. Roman, Y. Takahashi, W. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Proceedings of 50th Electronic Components & Technology Conference (IEEE, 2000), pp. 962–969.

T. Yoshimura, W. Sotoyama, K. Motoyoshi, T. Ishitsuka, K. Tsukamoto, S. Tatsuura, H. Soda, and T. Yamamoto, “Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board,” U.S. patent 6,081,632 (June27, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Concept of R-SOLNET with luminescent targets.

Fig. 2.
Fig. 2.

Model for simulations of SOLNET based on the FDTD method.

Fig. 3.
Fig. 3.

Parallel waveguides of SOLNET without luminescent targets constructed by write beams of 400 nm in wavelength (probe-beam wavelength: 650 nm).

Fig. 4.
Fig. 4.

Coupling efficiency of probe beams to the correct destinations in SOLNET without luminescent targets for various waveguide distances. The solid line, the broken line, and the dotted line, respectively, represent P=4, 2, and 1 μm.

Fig. 5.
Fig. 5.

Parallel waveguides of R-SOLNET with luminescent targets constructed by write beams of 400 nm in wavelength for P=2μm (probe-beam wavelength: 650 nm).

Fig. 6.
Fig. 6.

Coupling efficiency of probe beams to the correct destinations in R-SOLNET with luminescent targets and SOLNET without luminescent targets.

Fig. 7.
Fig. 7.

Parallel waveguides of R-SOLNET with luminescent targets constructed by write beams of 400 nm in wavelength for various lateral misalignments (probe-beam wavelength: 650 nm).

Fig. 8.
Fig. 8.

Parallel waveguides of R-SOLNET with luminescent targets constructed by write beams of 650 nm in wavelength for various lateral misalignments (probe-beam wavelength: 800 nm).

Fig. 9.
Fig. 9.

Coupling efficiency of probe beams to the luminescent targets in R-SOLNET with luminescent targets for various lateral misalignments. The write-beam wavelength is (a) 400 nm and (b) 650 nm.

Fig. 10.
Fig. 10.

R-SOLNET with luminescent targets using an Alq3 thin film deposited on an edge of an optical fiber. A self-aligned optical waveguide of R-SOLNET is constructed in a photopolymer from a multimode optical fiber to a target of Alq3 thin film.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δn=γ(1/2)εE2vΔt,
Δn=γ(1/2)εE2vΔt,
EEmit0=2ηEmitEWrite¯.
θ=λ2πnw.

Metrics