Abstract

A phase selector is designed by relatively sliding two coupled identical photonic crystal waveguides (PCWs) of a photonic directional coupler (DC). By solving the coupled equations analytically derived from the tight-binding theory, symmetry breaking in the crossing of dispersion curves can be observed as countersliding two degenerated waveguides along the propagation direction. There exists a different phase shift between two eigenmodes by varying the sliding distance and the operating frequency. Numerical simulations of DCs made of photonic crystal slabs were used to verify the correctness of our theoretical predictions and to discuss thoroughly the underlying physics of the symmetry-breaking system. The design concept is provided for a phase selector or a beam splitter whose output phase difference can be controlled by the sliding distance of two PCWs.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Liu, M. H. Pu, K. Yvind, and J. M. Hvam, “High-efficiency large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
    [CrossRef]
  2. B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, and E. S. Hossieni, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3, 031001 (2009).
    [CrossRef]
  3. S. W. Ha, A. A. Sukhorukov, K. B. Dossou, L. C. Botten, A. V. Lavrinenko, D. N. Chigrin, and Y. S. Kivshar, “Dispersionless tunneling of slow light in antisymmetric photonic crystal couplers,” Opt. Express 16, 1104–1114 (2008).
    [CrossRef]
  4. T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A 9, 37–42 (2007).
    [CrossRef]
  5. L. Petti, M. Rippa, J. Zhou, L. Manna, and P. Mormile, “A novel hybrid organic/inorganic photonic crystal slab showing a resonance action at the band edge,” Nanotechnology 22, 285307 (2011).
    [CrossRef]
  6. K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
    [CrossRef]
  7. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [CrossRef]
  8. G. Calo, A. D’Orazio, M. Grande, V. Marrocco, and V. Petruzzeli, “Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching,” IEEE J. Quantum Electron. 47, 172–181 (2011).
    [CrossRef]
  9. K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express 18, 26675–26685 (2010).
    [CrossRef]
  10. A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [CrossRef]
  11. A. Sharkawy, S. Y. Shi, D. W. Prather, and R. A. Soef, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048–1059 (2002).
    [CrossRef]
  12. D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, and B. Miao, “Photonic crystal structures and applications: perspective, overview, and development,” IEEE J. Sel. Top. Quantum Electron. 12, 1416–1437 (2006).
    [CrossRef]
  13. E. Bulgakov and A. Sadreev, “Switching through symmetry breaking for transmission in a T-shaped photonic waveguide coupled with two identical nonlinear micro-cavities,” J. Phys. Condens. Matter 23, 315303 (2011).
    [CrossRef]
  14. B. Maes, B. M. Soljacic, J. D. Joannopoulos, P. Bienstman, R. Baets, S. P. Gorza, and M. Haelterman, “Switching through symmetry breaking in coupled nonlinear micro-cavities,” Opt. Express 14, 10678–10683 (2006).
    [CrossRef]
  15. M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902 (2000).
    [CrossRef]
  16. I. Abdulhalim, “Reflective phase-only modulation using one-dimensional photonic crystals,” J. Opt. A 2, L9–L11 (2000).
    [CrossRef]
  17. C. H. Huang, W. F. Hsieh, and S. C. Cheng, “Tuning the decoupling point of a photonic-crystal directional coupler,” J. Opt. Soc. Am. B 26, 203–209 (2009).
    [CrossRef]
  18. F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007).
    [CrossRef]
  19. F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119–1125 (2004).
    [CrossRef]
  20. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef]
  21. D. N. Christodoulides and N. K. Efremidis, “Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals,” Opt. Lett. 27, 568–570 (2002).
    [CrossRef]
  22. C. H. Huang, J. N. Wu, P. Y. Lee, W. F. Hsieh, and S. C. Cheng, “The properties and design concepts of photonic directional couplers made of crystal slabs,” J. Phys. D 43, 465103 (2010).
    [CrossRef]
  23. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modeling the Flow of Light (Princeton University, 2008).
  24. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon. 1, 279–307 (2009).
    [CrossRef]
  25. Q. M. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
    [CrossRef]
  26. S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
    [CrossRef]
  27. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
    [CrossRef]

2011

L. Petti, M. Rippa, J. Zhou, L. Manna, and P. Mormile, “A novel hybrid organic/inorganic photonic crystal slab showing a resonance action at the band edge,” Nanotechnology 22, 285307 (2011).
[CrossRef]

G. Calo, A. D’Orazio, M. Grande, V. Marrocco, and V. Petruzzeli, “Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching,” IEEE J. Quantum Electron. 47, 172–181 (2011).
[CrossRef]

E. Bulgakov and A. Sadreev, “Switching through symmetry breaking for transmission in a T-shaped photonic waveguide coupled with two identical nonlinear micro-cavities,” J. Phys. Condens. Matter 23, 315303 (2011).
[CrossRef]

2010

K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express 18, 26675–26685 (2010).
[CrossRef]

L. Liu, M. H. Pu, K. Yvind, and J. M. Hvam, “High-efficiency large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

C. H. Huang, J. N. Wu, P. Y. Lee, W. F. Hsieh, and S. C. Cheng, “The properties and design concepts of photonic directional couplers made of crystal slabs,” J. Phys. D 43, 465103 (2010).
[CrossRef]

Q. M. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

2009

2008

2007

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A 9, 37–42 (2007).
[CrossRef]

F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007).
[CrossRef]

2006

B. Maes, B. M. Soljacic, J. D. Joannopoulos, P. Bienstman, R. Baets, S. P. Gorza, and M. Haelterman, “Switching through symmetry breaking in coupled nonlinear micro-cavities,” Opt. Express 14, 10678–10683 (2006).
[CrossRef]

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, and B. Miao, “Photonic crystal structures and applications: perspective, overview, and development,” IEEE J. Sel. Top. Quantum Electron. 12, 1416–1437 (2006).
[CrossRef]

2004

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119–1125 (2004).
[CrossRef]

2002

2001

2000

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902 (2000).
[CrossRef]

I. Abdulhalim, “Reflective phase-only modulation using one-dimensional photonic crystals,” J. Opt. A 2, L9–L11 (2000).
[CrossRef]

1999

1996

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, “Reflective phase-only modulation using one-dimensional photonic crystals,” J. Opt. A 2, L9–L11 (2000).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

Asakawa, K.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Awazu, K.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Baba, T.

Baets, R.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

B. Maes, B. M. Soljacic, J. D. Joannopoulos, P. Bienstman, R. Baets, S. P. Gorza, and M. Haelterman, “Switching through symmetry breaking in coupled nonlinear micro-cavities,” Opt. Express 14, 10678–10683 (2006).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

Bayindir, M.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902 (2000).
[CrossRef]

Bienstman, P.

Borel, P. I.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Botten, L. C.

Bulgakov, E.

E. Bulgakov and A. Sadreev, “Switching through symmetry breaking for transmission in a T-shaped photonic waveguide coupled with two identical nonlinear micro-cavities,” J. Phys. Condens. Matter 23, 315303 (2011).
[CrossRef]

Calo, G.

G. Calo, A. D’Orazio, M. Grande, V. Marrocco, and V. Petruzzeli, “Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching,” IEEE J. Quantum Electron. 47, 172–181 (2011).
[CrossRef]

Chen, C.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, and B. Miao, “Photonic crystal structures and applications: perspective, overview, and development,” IEEE J. Sel. Top. Quantum Electron. 12, 1416–1437 (2006).
[CrossRef]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Cheng, S. C.

C. H. Huang, J. N. Wu, P. Y. Lee, W. F. Hsieh, and S. C. Cheng, “The properties and design concepts of photonic directional couplers made of crystal slabs,” J. Phys. D 43, 465103 (2010).
[CrossRef]

C. H. Huang, W. F. Hsieh, and S. C. Cheng, “Tuning the decoupling point of a photonic-crystal directional coupler,” J. Opt. Soc. Am. B 26, 203–209 (2009).
[CrossRef]

F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007).
[CrossRef]

F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119–1125 (2004).
[CrossRef]

Chien, F. S. S.

F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007).
[CrossRef]

F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119–1125 (2004).
[CrossRef]

Chigrin, D. N.

Christodoulides, D. N.

D’Orazio, A.

G. Calo, A. D’Orazio, M. Grande, V. Marrocco, and V. Petruzzeli, “Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching,” IEEE J. Quantum Electron. 47, 172–181 (2011).
[CrossRef]

Deotare, P. B.

Q. M. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Dossou, K. B.

Efremidis, N. K.

Eftekhar, A. A.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, and E. S. Hossieni, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3, 031001 (2009).
[CrossRef]

Fan, S. H.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Gorza, S. P.

Grande, M.

G. Calo, A. D’Orazio, M. Grande, V. Marrocco, and V. Petruzzeli, “Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching,” IEEE J. Quantum Electron. 47, 172–181 (2011).
[CrossRef]

Ha, S. W.

Haelterman, M.

Hossieni, E. S.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, and E. S. Hossieni, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3, 031001 (2009).
[CrossRef]

Hsieh, W. F.

C. H. Huang, J. N. Wu, P. Y. Lee, W. F. Hsieh, and S. C. Cheng, “The properties and design concepts of photonic directional couplers made of crystal slabs,” J. Phys. D 43, 465103 (2010).
[CrossRef]

C. H. Huang, W. F. Hsieh, and S. C. Cheng, “Tuning the decoupling point of a photonic-crystal directional coupler,” J. Opt. Soc. Am. B 26, 203–209 (2009).
[CrossRef]

F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007).
[CrossRef]

F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119–1125 (2004).
[CrossRef]

Hsu, Y. J.

Huang, C. H.

C. H. Huang, J. N. Wu, P. Y. Lee, W. F. Hsieh, and S. C. Cheng, “The properties and design concepts of photonic directional couplers made of crystal slabs,” J. Phys. D 43, 465103 (2010).
[CrossRef]

C. H. Huang, W. F. Hsieh, and S. C. Cheng, “Tuning the decoupling point of a photonic-crystal directional coupler,” J. Opt. Soc. Am. B 26, 203–209 (2009).
[CrossRef]

Hvam, J. M.

L. Liu, M. H. Pu, K. Yvind, and J. M. Hvam, “High-efficiency large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

Ikeda, N.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Inoue, K.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Ishikawa, H.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Jiang, X. Q.

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A 9, 37–42 (2007).
[CrossRef]

Joannopoulos, J. D.

B. Maes, B. M. Soljacic, J. D. Joannopoulos, P. Bienstman, R. Baets, S. P. Gorza, and M. Haelterman, “Switching through symmetry breaking in coupled nonlinear micro-cavities,” Opt. Express 14, 10678–10683 (2006).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modeling the Flow of Light (Princeton University, 2008).

Johnson, S. G.

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modeling the Flow of Light (Princeton University, 2008).

Kitagawa, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Kivshar, Y. S.

Kristensen, M.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Lavrinenko, A. V.

Lee, P. Y.

C. H. Huang, J. N. Wu, P. Y. Lee, W. F. Hsieh, and S. C. Cheng, “The properties and design concepts of photonic directional couplers made of crystal slabs,” J. Phys. D 43, 465103 (2010).
[CrossRef]

Lee, R. K.

Li, G.

Liao, Q. H.

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A 9, 37–42 (2007).
[CrossRef]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

Liu, L.

L. Liu, M. H. Pu, K. Yvind, and J. M. Hvam, “High-efficiency large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

Loncar, M.

Q. M. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Maes, B.

Manna, L.

L. Petti, M. Rippa, J. Zhou, L. Manna, and P. Mormile, “A novel hybrid organic/inorganic photonic crystal slab showing a resonance action at the band edge,” Nanotechnology 22, 285307 (2011).
[CrossRef]

Marrocco, V.

G. Calo, A. D’Orazio, M. Grande, V. Marrocco, and V. Petruzzeli, “Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching,” IEEE J. Quantum Electron. 47, 172–181 (2011).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modeling the Flow of Light (Princeton University, 2008).

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Miao, B.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, and B. Miao, “Photonic crystal structures and applications: perspective, overview, and development,” IEEE J. Sel. Top. Quantum Electron. 12, 1416–1437 (2006).
[CrossRef]

Mizutani, A.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Momeni, B.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, and E. S. Hossieni, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3, 031001 (2009).
[CrossRef]

Mookherjea, S.

S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
[CrossRef]

Mormile, P.

L. Petti, M. Rippa, J. Zhou, L. Manna, and P. Mormile, “A novel hybrid organic/inorganic photonic crystal slab showing a resonance action at the band edge,” Nanotechnology 22, 285307 (2011).
[CrossRef]

Murakowski, J.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, and B. Miao, “Photonic crystal structures and applications: perspective, overview, and development,” IEEE J. Sel. Top. Quantum Electron. 12, 1416–1437 (2006).
[CrossRef]

Nakamura, S.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Ohkouchi, S.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Ozaki, N.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Ozbay, E.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902 (2000).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

Petruzzeli, V.

G. Calo, A. D’Orazio, M. Grande, V. Marrocco, and V. Petruzzeli, “Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching,” IEEE J. Quantum Electron. 47, 172–181 (2011).
[CrossRef]

Petti, L.

L. Petti, M. Rippa, J. Zhou, L. Manna, and P. Mormile, “A novel hybrid organic/inorganic photonic crystal slab showing a resonance action at the band edge,” Nanotechnology 22, 285307 (2011).
[CrossRef]

Prather, D. W.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, and B. Miao, “Photonic crystal structures and applications: perspective, overview, and development,” IEEE J. Sel. Top. Quantum Electron. 12, 1416–1437 (2006).
[CrossRef]

A. Sharkawy, S. Y. Shi, D. W. Prather, and R. A. Soef, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048–1059 (2002).
[CrossRef]

Pu, M. H.

L. Liu, M. H. Pu, K. Yvind, and J. M. Hvam, “High-efficiency large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

Quan, Q. M.

Q. M. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Rippa, M.

L. Petti, M. Rippa, J. Zhou, L. Manna, and P. Mormile, “A novel hybrid organic/inorganic photonic crystal slab showing a resonance action at the band edge,” Nanotechnology 22, 285307 (2011).
[CrossRef]

Sadreev, A.

E. Bulgakov and A. Sadreev, “Switching through symmetry breaking for transmission in a T-shaped photonic waveguide coupled with two identical nonlinear micro-cavities,” J. Phys. Condens. Matter 23, 315303 (2011).
[CrossRef]

Scherer, A.

Schneider, G. J.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, and B. Miao, “Photonic crystal structures and applications: perspective, overview, and development,” IEEE J. Sel. Top. Quantum Electron. 12, 1416–1437 (2006).
[CrossRef]

Sharkawy, A.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, and B. Miao, “Photonic crystal structures and applications: perspective, overview, and development,” IEEE J. Sel. Top. Quantum Electron. 12, 1416–1437 (2006).
[CrossRef]

A. Sharkawy, S. Y. Shi, D. W. Prather, and R. A. Soef, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048–1059 (2002).
[CrossRef]

Shi, S.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, and B. Miao, “Photonic crystal structures and applications: perspective, overview, and development,” IEEE J. Sel. Top. Quantum Electron. 12, 1416–1437 (2006).
[CrossRef]

Shi, S. Y.

Sigmund, O.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Soef, R. A.

Soljacic, B. M.

Soltani, M.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, and E. S. Hossieni, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3, 031001 (2009).
[CrossRef]

Sugimoto, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Sukhorukov, A. A.

Suzuki, K.

Takata, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Temelkuran, B.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902 (2000).
[CrossRef]

Tu, J. B.

F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007).
[CrossRef]

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Wang, M. H.

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A 9, 37–42 (2007).
[CrossRef]

Wang, X.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Watanabe, A.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Watanabe, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modeling the Flow of Light (Princeton University, 2008).

Wu, J. N.

C. H. Huang, J. N. Wu, P. Y. Lee, W. F. Hsieh, and S. C. Cheng, “The properties and design concepts of photonic directional couplers made of crystal slabs,” J. Phys. D 43, 465103 (2010).
[CrossRef]

Xu, Y.

Yang, J. Y.

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A 9, 37–42 (2007).
[CrossRef]

Yariv, A.

S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
[CrossRef]

Yegnanarayanan, S.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, and E. S. Hossieni, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3, 031001 (2009).
[CrossRef]

Yu, T. B.

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A 9, 37–42 (2007).
[CrossRef]

Yvind, K.

L. Liu, M. H. Pu, K. Yvind, and J. M. Hvam, “High-efficiency large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

Zhou, J.

L. Petti, M. Rippa, J. Zhou, L. Manna, and P. Mormile, “A novel hybrid organic/inorganic photonic crystal slab showing a resonance action at the band edge,” Nanotechnology 22, 285307 (2011).
[CrossRef]

Adv. Opt. Photon.

Appl. Phys. Lett.

Q. M. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

L. Liu, M. H. Pu, K. Yvind, and J. M. Hvam, “High-efficiency large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902 (2000).
[CrossRef]

IEEE J. Quantum Electron.

G. Calo, A. D’Orazio, M. Grande, V. Marrocco, and V. Petruzzeli, “Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching,” IEEE J. Quantum Electron. 47, 172–181 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, and B. Miao, “Photonic crystal structures and applications: perspective, overview, and development,” IEEE J. Sel. Top. Quantum Electron. 12, 1416–1437 (2006).
[CrossRef]

S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
[CrossRef]

J. Nanophoton.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, and E. S. Hossieni, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3, 031001 (2009).
[CrossRef]

J. Opt. A

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A 9, 37–42 (2007).
[CrossRef]

I. Abdulhalim, “Reflective phase-only modulation using one-dimensional photonic crystals,” J. Opt. A 2, L9–L11 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

E. Bulgakov and A. Sadreev, “Switching through symmetry breaking for transmission in a T-shaped photonic waveguide coupled with two identical nonlinear micro-cavities,” J. Phys. Condens. Matter 23, 315303 (2011).
[CrossRef]

J. Phys. D

C. H. Huang, J. N. Wu, P. Y. Lee, W. F. Hsieh, and S. C. Cheng, “The properties and design concepts of photonic directional couplers made of crystal slabs,” J. Phys. D 43, 465103 (2010).
[CrossRef]

Nanotechnology

L. Petti, M. Rippa, J. Zhou, L. Manna, and P. Mormile, “A novel hybrid organic/inorganic photonic crystal slab showing a resonance action at the band edge,” Nanotechnology 22, 285307 (2011).
[CrossRef]

Nature

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

New J. Phys.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007).
[CrossRef]

Phys. Rev. Lett.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Other

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modeling the Flow of Light (Princeton University, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Geometric structures of (a) single and (b) double PCWs with the lattice constant a. Pm’s are the coupling coefficients between defects within a single waveguide. α, β1, and β2 are the coupling coefficients between two PCWs.

Fig. 2.
Fig. 2.

Types of sliding coupled waveguides: (a) mutual-sliding along x axis, (b) mutual-sliding along y axis, (c) countersliding along x axis, and (d) countersliding along y axis.

Fig. 3.
Fig. 3.

Dispersion curves of the DCs when (a) mutually sliding and (b) countersliding two waveguides along the y direction. The insets show the cross sections of the simulation structures at z=0.

Fig. 4.
Fig. 4.

Dispersion curves of the DCs when (a) mutually sliding and (b) countersliding two waveguides along the x direction. The inset in (a) shows the cross sections of the simulation structures at z=0. The insets in (b) show the eigenmode patterns Hz of the DC with shifting distance 0.1a at k=0.3 and 0.5 (2π/a) and the simulation structure at the cross section of z=0.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ituni=(ω0C0ii)unij=12m=13Cmij(un+mj+unmj).
Cmij=ωidνΔε(r)Ei,n*·Ej,n+mdν[μ0|Hi,n|2+ε|Ei,n|2].
ω1(k)=ω0P0m=132Pmcos(mka),
itun1=(ω0C011)un1m=13Cm1j(un+mj+unmj)αun2β1un12β2un+12,
itun2=(ω0C022)un2m=13Cm2j(un+mj+unmj)αun1β1un+11β2un11.
(ωω1)U0+(α+2β1cos(ka)+(β2β1)exp(ika))V0=0;
(ωω1)V0+(α+2β1cos(ka)+(β2β1)exp(ika))U0=0.
ω(k)±=ω1(k)+Δω1(k)±{g(k)2+[Δβsin(ka)]2}1/2
(V0U0)±=g(k)+iΔβsin(ka)[g(k)]2+Δβ2sin2(ka)=eiϕ,g(k)>0±eiϕg(k)<0
ϕ=tan1[Δβsin(ka)/g(k)].
ω(k)=ω1(k)+Δω1(k)±(α+2βcos(ka)),
U(x)=Aeik1x+Beik2x;
V(x)=Aeik1x+iϕ1Beik2x+iϕ2,
U(x)=Aeik1x+Aeik2x+i(ϕ1ϕ2);
V(x)=Aeik1x+iϕ1Aeik2x+iϕ1.
ψ=iln{1+Exp[i(π/2+ϕ1ϕ2)]eiϕ1(1+eiπ/2)}.

Metrics