Abstract

Surface plasmon enhanced differential reflectance (DR) technique has been theoretically investigated in this paper. A plasmonic gold grating substrate is proposed to greatly enhance the sensitivity of the DR technique. The results show that the sensitivity of the technique can be enhanced by at least one order of magnitude compared to that with SiO2 substrate (dielectric substrate) and the enhancement effect is most significant for ultra-thin films with thickness of less than 1 nm. It is further demonstrated that the technique can be also used for detecting the refractive index change of thin films with a much enhanced sensitivity.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
    [CrossRef]
  2. X. F. Jin, M. Y. Mao, S. Ko, and Y. R. Shen, “Adsorption and desorption kinetics of CO on Cu(110) studied by optical differential reflectance,” Phys. Rev. B 54, 7701–7704 (1996).
    [CrossRef]
  3. A. Wong and X. D. Zhu, “An optical differential reflectance study of adsorption and desorption of xenon and deuterium on Ni(111),” Appl. Phys. A 63, 1–8 (1996).
    [CrossRef]
  4. D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Optical-reflectance and electron-diffraction studies of molecular-beam-epitaxy growth transients on GaAs (001),” Phys. Rev. Lett. 59, 1687–1690 (1987).
    [CrossRef]
  5. G. Z. Yang, Z. Y. Li, B. Y. Gu, and S. T. Lee, “Theoretical analysis of thin film epitaxial growth monitored by differential reflectance,” J. Appl. Phys. 87, 739–744 (2000).
    [CrossRef]
  6. X. D. Zhu, H. B. Lu, G. Z. Yang, Z. Y. Li, B. Y. Gu, and D. Z. Zhang, “Epitaxial growth of SrTiO3 on SrTiO3(001) using oblique-incidence reflectance-difference technique,” Phys. Rev. B 57, 2514–2519 (1998).
    [CrossRef]
  7. Z. Y. Li, “Nanophotonics in China: overviews and highlights,” Front. Phys. 7, 601–631 (2012).
    [CrossRef]
  8. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
    [CrossRef]
  9. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
    [CrossRef]
  10. H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
    [CrossRef]
  11. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
    [CrossRef]
  12. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [CrossRef]
  13. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
    [CrossRef]
  14. L. D. Wellems, D. Huang, T. A. Leskova, and A. A. Maradudin, “Optical spectrum and electromagnetic-field distribution at double-groove metallic surface gratings,” J. Appl. Phys. 106, 053705 (2009).
    [CrossRef]
  15. J. A. Sánchez-Gil, “Coupling, resonance transmission, and tunneling of surface-plasmon polaritons through metallic gratings of finite length,” Phys. Rev. B 53, 10317 (1996).
    [CrossRef]
  16. M. del Castillo-Mussot, R. G. Barrera, T. López-Ríos, and W. Luis Mochán, “Surface plasmon effects on the optical reflectivity of adsorbed molecular multilayers,” Solid State Commun. 71, 157–159 (1989).
    [CrossRef]
  17. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

2012 (2)

Z. Y. Li, “Nanophotonics in China: overviews and highlights,” Front. Phys. 7, 601–631 (2012).
[CrossRef]

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[CrossRef]

2011 (1)

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef]

2010 (3)

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef]

2009 (1)

L. D. Wellems, D. Huang, T. A. Leskova, and A. A. Maradudin, “Optical spectrum and electromagnetic-field distribution at double-groove metallic surface gratings,” J. Appl. Phys. 106, 053705 (2009).
[CrossRef]

2007 (1)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[CrossRef]

2000 (1)

G. Z. Yang, Z. Y. Li, B. Y. Gu, and S. T. Lee, “Theoretical analysis of thin film epitaxial growth monitored by differential reflectance,” J. Appl. Phys. 87, 739–744 (2000).
[CrossRef]

1998 (1)

X. D. Zhu, H. B. Lu, G. Z. Yang, Z. Y. Li, B. Y. Gu, and D. Z. Zhang, “Epitaxial growth of SrTiO3 on SrTiO3(001) using oblique-incidence reflectance-difference technique,” Phys. Rev. B 57, 2514–2519 (1998).
[CrossRef]

1996 (3)

X. F. Jin, M. Y. Mao, S. Ko, and Y. R. Shen, “Adsorption and desorption kinetics of CO on Cu(110) studied by optical differential reflectance,” Phys. Rev. B 54, 7701–7704 (1996).
[CrossRef]

A. Wong and X. D. Zhu, “An optical differential reflectance study of adsorption and desorption of xenon and deuterium on Ni(111),” Appl. Phys. A 63, 1–8 (1996).
[CrossRef]

J. A. Sánchez-Gil, “Coupling, resonance transmission, and tunneling of surface-plasmon polaritons through metallic gratings of finite length,” Phys. Rev. B 53, 10317 (1996).
[CrossRef]

1989 (1)

M. del Castillo-Mussot, R. G. Barrera, T. López-Ríos, and W. Luis Mochán, “Surface plasmon effects on the optical reflectivity of adsorbed molecular multilayers,” Solid State Commun. 71, 157–159 (1989).
[CrossRef]

1987 (1)

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Optical-reflectance and electron-diffraction studies of molecular-beam-epitaxy growth transients on GaAs (001),” Phys. Rev. Lett. 59, 1687–1690 (1987).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1969 (1)

S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
[CrossRef]

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Optical-reflectance and electron-diffraction studies of molecular-beam-epitaxy growth transients on GaAs (001),” Phys. Rev. Lett. 59, 1687–1690 (1987).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Barrera, R. G.

M. del Castillo-Mussot, R. G. Barrera, T. López-Ríos, and W. Luis Mochán, “Surface plasmon effects on the optical reflectivity of adsorbed molecular multilayers,” Solid State Commun. 71, 157–159 (1989).
[CrossRef]

Bartal, G.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Bosman, M.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Choi, H.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

del Castillo-Mussot, M.

M. del Castillo-Mussot, R. G. Barrera, T. López-Ríos, and W. Luis Mochán, “Surface plasmon effects on the optical reflectivity of adsorbed molecular multilayers,” Solid State Commun. 71, 157–159 (1989).
[CrossRef]

Duan, H.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[CrossRef]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[CrossRef]

Fernández-Domínguez, A. I.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[CrossRef]

Florez, L. T.

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Optical-reflectance and electron-diffraction studies of molecular-beam-epitaxy growth transients on GaAs (001),” Phys. Rev. Lett. 59, 1687–1690 (1987).
[CrossRef]

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef]

Gu, B. Y.

G. Z. Yang, Z. Y. Li, B. Y. Gu, and S. T. Lee, “Theoretical analysis of thin film epitaxial growth monitored by differential reflectance,” J. Appl. Phys. 87, 739–744 (2000).
[CrossRef]

X. D. Zhu, H. B. Lu, G. Z. Yang, Z. Y. Li, B. Y. Gu, and D. Z. Zhang, “Epitaxial growth of SrTiO3 on SrTiO3(001) using oblique-incidence reflectance-difference technique,” Phys. Rev. B 57, 2514–2519 (1998).
[CrossRef]

Harbison, J. P.

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Optical-reflectance and electron-diffraction studies of molecular-beam-epitaxy growth transients on GaAs (001),” Phys. Rev. Lett. 59, 1687–1690 (1987).
[CrossRef]

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef]

Huang, D.

L. D. Wellems, D. Huang, T. A. Leskova, and A. A. Maradudin, “Optical spectrum and electromagnetic-field distribution at double-groove metallic surface gratings,” J. Appl. Phys. 106, 053705 (2009).
[CrossRef]

Jasperson, S. N.

S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
[CrossRef]

Jin, X. F.

X. F. Jin, M. Y. Mao, S. Ko, and Y. R. Shen, “Adsorption and desorption kinetics of CO on Cu(110) studied by optical differential reflectance,” Phys. Rev. B 54, 7701–7704 (1996).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Ko, S.

X. F. Jin, M. Y. Mao, S. Ko, and Y. R. Shen, “Adsorption and desorption kinetics of CO on Cu(110) studied by optical differential reflectance,” Phys. Rev. B 54, 7701–7704 (1996).
[CrossRef]

Lee, S. T.

G. Z. Yang, Z. Y. Li, B. Y. Gu, and S. T. Lee, “Theoretical analysis of thin film epitaxial growth monitored by differential reflectance,” J. Appl. Phys. 87, 739–744 (2000).
[CrossRef]

Leskova, T. A.

L. D. Wellems, D. Huang, T. A. Leskova, and A. A. Maradudin, “Optical spectrum and electromagnetic-field distribution at double-groove metallic surface gratings,” J. Appl. Phys. 106, 053705 (2009).
[CrossRef]

Lesuffleur, A.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef]

Li, Z. Y.

Z. Y. Li, “Nanophotonics in China: overviews and highlights,” Front. Phys. 7, 601–631 (2012).
[CrossRef]

G. Z. Yang, Z. Y. Li, B. Y. Gu, and S. T. Lee, “Theoretical analysis of thin film epitaxial growth monitored by differential reflectance,” J. Appl. Phys. 87, 739–744 (2000).
[CrossRef]

X. D. Zhu, H. B. Lu, G. Z. Yang, Z. Y. Li, B. Y. Gu, and D. Z. Zhang, “Epitaxial growth of SrTiO3 on SrTiO3(001) using oblique-incidence reflectance-difference technique,” Phys. Rev. B 57, 2514–2519 (1998).
[CrossRef]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef]

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef]

Liu, Z.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

López-Ríos, T.

M. del Castillo-Mussot, R. G. Barrera, T. López-Ríos, and W. Luis Mochán, “Surface plasmon effects on the optical reflectivity of adsorbed molecular multilayers,” Solid State Commun. 71, 157–159 (1989).
[CrossRef]

Lu, H. B.

X. D. Zhu, H. B. Lu, G. Z. Yang, Z. Y. Li, B. Y. Gu, and D. Z. Zhang, “Epitaxial growth of SrTiO3 on SrTiO3(001) using oblique-incidence reflectance-difference technique,” Phys. Rev. B 57, 2514–2519 (1998).
[CrossRef]

Luis Mochán, W.

M. del Castillo-Mussot, R. G. Barrera, T. López-Ríos, and W. Luis Mochán, “Surface plasmon effects on the optical reflectivity of adsorbed molecular multilayers,” Solid State Commun. 71, 157–159 (1989).
[CrossRef]

Maier, S. A.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[CrossRef]

Mao, M. Y.

X. F. Jin, M. Y. Mao, S. Ko, and Y. R. Shen, “Adsorption and desorption kinetics of CO on Cu(110) studied by optical differential reflectance,” Phys. Rev. B 54, 7701–7704 (1996).
[CrossRef]

Maradudin, A. A.

L. D. Wellems, D. Huang, T. A. Leskova, and A. A. Maradudin, “Optical spectrum and electromagnetic-field distribution at double-groove metallic surface gratings,” J. Appl. Phys. 106, 053705 (2009).
[CrossRef]

Nagpal, P.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef]

Norris, D. J.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef]

Oh, S.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef]

Rho, J.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

Sánchez-Gil, J. A.

J. A. Sánchez-Gil, “Coupling, resonance transmission, and tunneling of surface-plasmon polaritons through metallic gratings of finite length,” Phys. Rev. B 53, 10317 (1996).
[CrossRef]

Schnatterly, S. E.

S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Shen, Y. R.

X. F. Jin, M. Y. Mao, S. Ko, and Y. R. Shen, “Adsorption and desorption kinetics of CO on Cu(110) studied by optical differential reflectance,” Phys. Rev. B 54, 7701–7704 (1996).
[CrossRef]

Studna, A. A.

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Optical-reflectance and electron-diffraction studies of molecular-beam-epitaxy growth transients on GaAs (001),” Phys. Rev. Lett. 59, 1687–1690 (1987).
[CrossRef]

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef]

Wellems, L. D.

L. D. Wellems, D. Huang, T. A. Leskova, and A. A. Maradudin, “Optical spectrum and electromagnetic-field distribution at double-groove metallic surface gratings,” J. Appl. Phys. 106, 053705 (2009).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Wong, A.

A. Wong and X. D. Zhu, “An optical differential reflectance study of adsorption and desorption of xenon and deuterium on Ni(111),” Appl. Phys. A 63, 1–8 (1996).
[CrossRef]

Xiong, Y.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

Yang, G. Z.

G. Z. Yang, Z. Y. Li, B. Y. Gu, and S. T. Lee, “Theoretical analysis of thin film epitaxial growth monitored by differential reflectance,” J. Appl. Phys. 87, 739–744 (2000).
[CrossRef]

X. D. Zhu, H. B. Lu, G. Z. Yang, Z. Y. Li, B. Y. Gu, and D. Z. Zhang, “Epitaxial growth of SrTiO3 on SrTiO3(001) using oblique-incidence reflectance-difference technique,” Phys. Rev. B 57, 2514–2519 (1998).
[CrossRef]

Yang, J. K. W.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[CrossRef]

Ye, Z.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

Yin, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

Zhang, D. Z.

X. D. Zhu, H. B. Lu, G. Z. Yang, Z. Y. Li, B. Y. Gu, and D. Z. Zhang, “Epitaxial growth of SrTiO3 on SrTiO3(001) using oblique-incidence reflectance-difference technique,” Phys. Rev. B 57, 2514–2519 (1998).
[CrossRef]

Zhang, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

Zhu, X. D.

X. D. Zhu, H. B. Lu, G. Z. Yang, Z. Y. Li, B. Y. Gu, and D. Z. Zhang, “Epitaxial growth of SrTiO3 on SrTiO3(001) using oblique-incidence reflectance-difference technique,” Phys. Rev. B 57, 2514–2519 (1998).
[CrossRef]

A. Wong and X. D. Zhu, “An optical differential reflectance study of adsorption and desorption of xenon and deuterium on Ni(111),” Appl. Phys. A 63, 1–8 (1996).
[CrossRef]

Appl. Phys. A (1)

A. Wong and X. D. Zhu, “An optical differential reflectance study of adsorption and desorption of xenon and deuterium on Ni(111),” Appl. Phys. A 63, 1–8 (1996).
[CrossRef]

Front. Phys. (1)

Z. Y. Li, “Nanophotonics in China: overviews and highlights,” Front. Phys. 7, 601–631 (2012).
[CrossRef]

J. Appl. Phys. (2)

G. Z. Yang, Z. Y. Li, B. Y. Gu, and S. T. Lee, “Theoretical analysis of thin film epitaxial growth monitored by differential reflectance,” J. Appl. Phys. 87, 739–744 (2000).
[CrossRef]

L. D. Wellems, D. Huang, T. A. Leskova, and A. A. Maradudin, “Optical spectrum and electromagnetic-field distribution at double-groove metallic surface gratings,” J. Appl. Phys. 106, 053705 (2009).
[CrossRef]

Nano Lett. (2)

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef]

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12, 1683–1689 (2012).
[CrossRef]

Nat. Commun. (1)

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Phys. Rev. B (4)

J. A. Sánchez-Gil, “Coupling, resonance transmission, and tunneling of surface-plasmon polaritons through metallic gratings of finite length,” Phys. Rev. B 53, 10317 (1996).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

X. D. Zhu, H. B. Lu, G. Z. Yang, Z. Y. Li, B. Y. Gu, and D. Z. Zhang, “Epitaxial growth of SrTiO3 on SrTiO3(001) using oblique-incidence reflectance-difference technique,” Phys. Rev. B 57, 2514–2519 (1998).
[CrossRef]

X. F. Jin, M. Y. Mao, S. Ko, and Y. R. Shen, “Adsorption and desorption kinetics of CO on Cu(110) studied by optical differential reflectance,” Phys. Rev. B 54, 7701–7704 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Optical-reflectance and electron-diffraction studies of molecular-beam-epitaxy growth transients on GaAs (001),” Phys. Rev. Lett. 59, 1687–1690 (1987).
[CrossRef]

Rev. Sci. Instrum. (1)

S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
[CrossRef]

Science (2)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[CrossRef]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef]

Solid State Commun. (1)

M. del Castillo-Mussot, R. G. Barrera, T. López-Ríos, and W. Luis Mochán, “Surface plasmon effects on the optical reflectivity of adsorbed molecular multilayers,” Solid State Commun. 71, 157–159 (1989).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic configuration of a plasmonic GGS made from gold and silica materials. (b) The optical setup of DR technique. The coordinate system is shown in the setup, where the interface of the depositing film and GGS is located at the position of x=100nm. PEM, photoelastic modulator; PD, biased silicon photodiode. The PEM modulates the polarization of incident beam at high frequency (50 kHz). The PD detector records the DR signal as Eq. (1) shows.

Fig. 2.
Fig. 2.

Reflectance of GGS as a function of incident angle and wavelength. (a) The incident light is p-polarized. The dotted lines refer to two plasmonic resonance positions. (b) The incident light is s-polarized. The dotted line denotes the existence of intense variation.

Fig. 3.
Fig. 3.

Reflectance as a function of the thickness of the deposited film on (a) GGS and (b) SiO2 substrate for p-polarized and s-polarized incident light, and the electric field intensity distributions for different situations of film thickness and incident light polarization as explicitly denoted at panels (c)–(f).

Fig. 4.
Fig. 4.

ΔR versus the thickness of the deposited film for GGS and SiO2 substrate.

Fig. 5.
Fig. 5.

Reflectance as a function of the refractive index of the thin film for (a) the GGS and (b) the SiO2 substrate.

Fig. 6.
Fig. 6.

ΔR versus the refractive index of thin film for the GGS and SiO2 substrate.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Iout(2Ω)=12J2(Φ)Iinc[ΔRp(θinc)ΔRs(θinc)],
Iout(2Ω)=12J2(Φ)Rp0(θinc)Iinc[ΔRp(θinc)Rp0(θinc)ΔRs(θinc)Rs0(θinc)],
Iout(2Ω)=IR×ΔR,whereIR=12J2(Φ)Rp0(θinc)Iinc,andΔR=[ΔRp(θinc)Rp0(θinc)ΔRs(θinc)Rs0(θinc)].
Fd=01ΔRds/l,
Fn=n1n2ΔRdn/(n2n1),

Metrics