Abstract

High-power whispering-gallery modes (WGMs) emitted from microcavity lasers have attracted attention for many applications, such as optical signal processing, spectroscopy, optical sensors, and large-bandwidth optical communications. In this paper, we present a simple approach for controlling the output WGMs of erbium-doped silica microsphere lasers. With the presented scheme, accurate adjustment of the coupling gap between the collection fiber taper and the spherical surface allows us to select different single modes of the microsphere laser or different multimode configurations (also functions of the waist diameter of taper and the Er-doped concentration). The nonlinear frequency shift of the microsphere cavity as a function of intracavity power has also been studied. The high intensity and high side mode suppression ratio of the obtained single WGM are suitable for spectroscopy, optical sensors, and communications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [CrossRef]
  2. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
    [CrossRef]
  3. A. Kovsh, “Quantum-dot comb laser with low relative-intensity noise for each mode,” SPIE Newsroom, DOI: 10.1117/2.1200806.1143 (2008).
    [CrossRef]
  4. J. D. Jost, J. L. Hall, and J. Ye, “Continuously tunable, precise, single frequency optical signal generator,” Opt. Express 10, 515–520 (2002).
    [CrossRef]
  5. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [CrossRef]
  6. A. A. Savchenkov, A. B. Matsco, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
    [CrossRef]
  7. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
    [CrossRef]
  8. N. C. Le, T. T. H. Chu, T. T. Nguyen, T. N. Pham, V. H. Pham, and V. T. Bui, “High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses,” Mat. Sci. Eng. B 131, 27–31 (2006).
    [CrossRef]
  9. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef]
  10. X. Peng, F. Song, S. Jiang, M. Gonokami, and N. Peyghambarian, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Proc. SPIE 4990, 22–29 (2003).
    [CrossRef]
  11. A. Watkins, J. Ward, and S. Nic Chormaic, “Thermo-optical tuning of whispering gallery modes in Er:Yb doped glass microspheres to arbitrary probe wavelengths,” Jpn. J. Appl. Phys. 51, 052501 (2012).
  12. B. Sprenger, H. G. L. Schwefel, and L. J. Wang, “Whispering gallery mode resonator stabilized narrow linewidth fiber loop laser,” Opt. Lett. 34, 3370–3372 (2009).
    [CrossRef]
  13. F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, “Erbium-doped microspherical lasers at 1.56 pm,” Electron. Lett. 36, 1382–1384 (2000).
    [CrossRef]
  14. G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).
    [CrossRef]
  15. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
    [CrossRef]
  16. V. H. Pham, T. T. H. Chu, and Q. H. Hoang, “Long-band emission of microsphere laser based on erbium-doped sol-gel silica-alumina glasses,” Appl. Phys. Lett. 87, 161110 (2005).
    [CrossRef]
  17. F. Treussart, J. Hare, L. Collot, V. Lefevre, D. S. Weiss, V. Sandoghdar, J. M. Raimond, and S. Haroche, “Quantized atom-field force at the surface of a microsphere,” Opt. Lett. 19, 1651–1653 (1994).
    [CrossRef]
  18. R. Ma, A. Schliesser, P. Del’ Haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32, 2200–2202 (2007).
    [CrossRef]
  19. E. Desurvire and I. R. Simpson, “Evaluation of I15/24 and I13/24 Stark-level energies in erbium-doped aluminosilicate glass fibers,” Opt. Lett. 15, 547–549 (1990).
    [CrossRef]

2012

A. Watkins, J. Ward, and S. Nic Chormaic, “Thermo-optical tuning of whispering gallery modes in Er:Yb doped glass microspheres to arbitrary probe wavelengths,” Jpn. J. Appl. Phys. 51, 052501 (2012).

2011

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).
[CrossRef]

2009

B. Sprenger, H. G. L. Schwefel, and L. J. Wang, “Whispering gallery mode resonator stabilized narrow linewidth fiber loop laser,” Opt. Lett. 34, 3370–3372 (2009).
[CrossRef]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

2008

A. A. Savchenkov, A. B. Matsco, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[CrossRef]

2007

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef]

R. Ma, A. Schliesser, P. Del’ Haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32, 2200–2202 (2007).
[CrossRef]

2006

N. C. Le, T. T. H. Chu, T. T. Nguyen, T. N. Pham, V. H. Pham, and V. T. Bui, “High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses,” Mat. Sci. Eng. B 131, 27–31 (2006).
[CrossRef]

2005

A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
[CrossRef]

V. H. Pham, T. T. H. Chu, and Q. H. Hoang, “Long-band emission of microsphere laser based on erbium-doped sol-gel silica-alumina glasses,” Appl. Phys. Lett. 87, 161110 (2005).
[CrossRef]

2003

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

X. Peng, F. Song, S. Jiang, M. Gonokami, and N. Peyghambarian, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Proc. SPIE 4990, 22–29 (2003).
[CrossRef]

2002

2000

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, “Erbium-doped microspherical lasers at 1.56 pm,” Electron. Lett. 36, 1382–1384 (2000).
[CrossRef]

1999

1994

1990

Anetsberger, G.

Arcizet, O.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef]

Brehm, M.

Bui, V. T.

N. C. Le, T. T. H. Chu, T. T. Nguyen, T. N. Pham, V. H. Pham, and V. T. Bui, “High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses,” Mat. Sci. Eng. B 131, 27–31 (2006).
[CrossRef]

Chu, T. T. H.

N. C. Le, T. T. H. Chu, T. T. Nguyen, T. N. Pham, V. H. Pham, and V. T. Bui, “High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses,” Mat. Sci. Eng. B 131, 27–31 (2006).
[CrossRef]

V. H. Pham, T. T. H. Chu, and Q. H. Hoang, “Long-band emission of microsphere laser based on erbium-doped sol-gel silica-alumina glasses,” Appl. Phys. Lett. 87, 161110 (2005).
[CrossRef]

Collot, L.

Dabirian, A.

Del’ Haye, P.

Del’Haye, P.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef]

Desurvire, E.

Dubreuil, N.

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, “Erbium-doped microspherical lasers at 1.56 pm,” Electron. Lett. 36, 1382–1384 (2000).
[CrossRef]

Dumeige, Y.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).
[CrossRef]

Dupriez, P.

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, “Erbium-doped microspherical lasers at 1.56 pm,” Electron. Lett. 36, 1382–1384 (2000).
[CrossRef]

Feron, P.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).
[CrossRef]

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, “Erbium-doped microspherical lasers at 1.56 pm,” Electron. Lett. 36, 1382–1384 (2000).
[CrossRef]

Ferrari, M.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).
[CrossRef]

Gonokami, M.

X. Peng, F. Song, S. Jiang, M. Gonokami, and N. Peyghambarian, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Proc. SPIE 4990, 22–29 (2003).
[CrossRef]

Gorodetsky, M. L.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
[CrossRef]

Hall, J. L.

Hansch, T. W.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef]

Hare, J.

Haroche, S.

Hoang, Q. H.

V. H. Pham, T. T. H. Chu, and Q. H. Hoang, “Long-band emission of microsphere laser based on erbium-doped sol-gel silica-alumina glasses,” Appl. Phys. Lett. 87, 161110 (2005).
[CrossRef]

Holzwarth, R.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef]

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef]

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsco, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[CrossRef]

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
[CrossRef]

Jiang, S.

X. Peng, F. Song, S. Jiang, M. Gonokami, and N. Peyghambarian, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Proc. SPIE 4990, 22–29 (2003).
[CrossRef]

Jost, J. D.

Keilmann, F.

Kippenberg, T. J.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef]

R. Ma, A. Schliesser, P. Del’ Haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32, 2200–2202 (2007).
[CrossRef]

Kovsh, A.

A. Kovsh, “Quantum-dot comb laser with low relative-intensity noise for each mode,” SPIE Newsroom, DOI: 10.1117/2.1200806.1143 (2008).
[CrossRef]

Le, N. C.

N. C. Le, T. T. H. Chu, T. T. Nguyen, T. N. Pham, V. H. Pham, and V. T. Bui, “High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses,” Mat. Sci. Eng. B 131, 27–31 (2006).
[CrossRef]

Lefevre, V.

Lissillour, F.

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, “Erbium-doped microspherical lasers at 1.56 pm,” Electron. Lett. 36, 1382–1384 (2000).
[CrossRef]

Ma, R.

Maleki, L.

A. A. Savchenkov, A. B. Matsco, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[CrossRef]

Matsco, A. B.

A. A. Savchenkov, A. B. Matsco, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[CrossRef]

Nguyen, T. T.

N. C. Le, T. T. H. Chu, T. T. Nguyen, T. N. Pham, V. H. Pham, and V. T. Bui, “High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses,” Mat. Sci. Eng. B 131, 27–31 (2006).
[CrossRef]

Nic Chormaic, S.

A. Watkins, J. Ward, and S. Nic Chormaic, “Thermo-optical tuning of whispering gallery modes in Er:Yb doped glass microspheres to arbitrary probe wavelengths,” Jpn. J. Appl. Phys. 51, 052501 (2012).

Nunzi Conti, G.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).
[CrossRef]

Peng, X.

X. Peng, F. Song, S. Jiang, M. Gonokami, and N. Peyghambarian, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Proc. SPIE 4990, 22–29 (2003).
[CrossRef]

Peyghambarian, N.

X. Peng, F. Song, S. Jiang, M. Gonokami, and N. Peyghambarian, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Proc. SPIE 4990, 22–29 (2003).
[CrossRef]

Pham, T. N.

N. C. Le, T. T. H. Chu, T. T. Nguyen, T. N. Pham, V. H. Pham, and V. T. Bui, “High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses,” Mat. Sci. Eng. B 131, 27–31 (2006).
[CrossRef]

Pham, V. H.

N. C. Le, T. T. H. Chu, T. T. Nguyen, T. N. Pham, V. H. Pham, and V. T. Bui, “High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses,” Mat. Sci. Eng. B 131, 27–31 (2006).
[CrossRef]

V. H. Pham, T. T. H. Chu, and Q. H. Hoang, “Long-band emission of microsphere laser based on erbium-doped sol-gel silica-alumina glasses,” Appl. Phys. Lett. 87, 161110 (2005).
[CrossRef]

Poulain, M.

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, “Erbium-doped microspherical lasers at 1.56 pm,” Electron. Lett. 36, 1382–1384 (2000).
[CrossRef]

Raimond, J. M.

Righini, G. C.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).
[CrossRef]

Ristic, D.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).
[CrossRef]

Sandoghdar, V.

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsco, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[CrossRef]

Schliesser, A.

Schwefel, H. G. L.

Seidel, D.

A. A. Savchenkov, A. B. Matsco, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[CrossRef]

Simpson, I. R.

Solomatine, I.

A. A. Savchenkov, A. B. Matsco, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[CrossRef]

Song, F.

X. Peng, F. Song, S. Jiang, M. Gonokami, and N. Peyghambarian, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Proc. SPIE 4990, 22–29 (2003).
[CrossRef]

Soria, S.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).
[CrossRef]

Sprenger, B.

Stephan, G. M.

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, “Erbium-doped microspherical lasers at 1.56 pm,” Electron. Lett. 36, 1382–1384 (2000).
[CrossRef]

Treussart, F.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

van der Weide, D. W.

Wang, L. J.

Ward, J.

A. Watkins, J. Ward, and S. Nic Chormaic, “Thermo-optical tuning of whispering gallery modes in Er:Yb doped glass microspheres to arbitrary probe wavelengths,” Jpn. J. Appl. Phys. 51, 052501 (2012).

Watkins, A.

A. Watkins, J. Ward, and S. Nic Chormaic, “Thermo-optical tuning of whispering gallery modes in Er:Yb doped glass microspheres to arbitrary probe wavelengths,” Jpn. J. Appl. Phys. 51, 052501 (2012).

Weiss, D. S.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef]

Ye, J.

Appl. Phys. Lett.

V. H. Pham, T. T. H. Chu, and Q. H. Hoang, “Long-band emission of microsphere laser based on erbium-doped sol-gel silica-alumina glasses,” Appl. Phys. Lett. 87, 161110 (2005).
[CrossRef]

Electron. Lett.

F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, “Erbium-doped microspherical lasers at 1.56 pm,” Electron. Lett. 36, 1382–1384 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

A. Watkins, J. Ward, and S. Nic Chormaic, “Thermo-optical tuning of whispering gallery modes in Er:Yb doped glass microspheres to arbitrary probe wavelengths,” Jpn. J. Appl. Phys. 51, 052501 (2012).

Mat. Sci. Eng. B

N. C. Le, T. T. H. Chu, T. T. Nguyen, T. N. Pham, V. H. Pham, and V. T. Bui, “High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses,” Mat. Sci. Eng. B 131, 27–31 (2006).
[CrossRef]

Nat. Photonics

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3, 529–533 (2009).
[CrossRef]

Nature

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. A. Savchenkov, A. B. Matsco, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[CrossRef]

Proc. SPIE

X. Peng, F. Song, S. Jiang, M. Gonokami, and N. Peyghambarian, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Proc. SPIE 4990, 22–29 (2003).
[CrossRef]

Riv. Nuovo Cimento

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).
[CrossRef]

Other

A. Kovsh, “Quantum-dot comb laser with low relative-intensity noise for each mode,” SPIE Newsroom, DOI: 10.1117/2.1200806.1143 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for pumping and collecting WGMs from the microsphere laser.

Fig. 2.
Fig. 2.

Spectra and quantity of optical WGM lines extracted from Er-doped silica microcavity laser when the coupling gap between the taper fiber and the sphere surface changed from (a) 2±0.05μm to (b) 0.3±0.05μm.

Fig. 3.
Fig. 3.

Spectra of single lasing mode extracted from Er-doped silica microcavity laser when the coupling gap between the taper fiber and the sphere surface was (a) 0.18 μm, (b) 0.2 μm, (c) 0.3 μm, (d) 0.4 μm, (e) 0.5 μm, (f) 0.55 μm, and (g) 0.6 μm, respectively.

Fig. 4.
Fig. 4.

(a) Intensity of stable single optical line of 19.4dBm detected from microcavity laser and (b) its amplified intensity of +17.2dBm via EDFA.

Tables (1)

Tables Icon

Table 1. Laser Intensity at Threshold from 90 μm Diameter Microsphere Lasers with Different Er Concentrations

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δν=(Δnn0)ν0,
Δn=n2n0c4π2RAeffNkPin,

Metrics