Abstract

We propose an efficient scheme for the dynamic generation and manipulation of beating signals in a sample of cold atoms driven into the four-level quasi-Λ configuration. This scheme relies on a procedure of light storage and retrieval controlled by a classical coupling field with a microwave field introduced only in the retrieval stage. One quantum probe field, incident upon this atomic sample, is transformed into a collective excitation of atomic spin coherence and then into two optical components characterized by different time-dependent phases. Consequently the retrieved quantum probe field exhibits a series of maxima and minima (beating signals) in intensity due to the alternative constructive and destructive interference. This interesting phenomenon, in fact, involves the coherent conversion between single-mode and two-mode dark-state polaritons and could be explored to measure the microwave intensity with high-precision beating signals.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription