Abstract

Weak probe-pulse propagation is studied in a three-level atomic system irradiated by a strong control laser field and a strong microwave field in the closed-loop triangular (Δ) configuration. In addition to the direct absorption channel, a second channel is activated in which a probe photon’s absorption is replaced by its emission accompanied by an absorption of two control and two microwave photons. The pulse can be considered a superposition of two components, each of which experiences a separated effective susceptibility, exhibiting its absorption/gain windows. The evolution of the pulse spectrum in space and the pulse evolution in space–time are discussed. In particular it is shown that the number and positions of the spectrum peaks change and the pulse exhibits beats. In addition to the propagating field, a stationary light generated by the sample is also discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer, A. Imamog˜lu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  2. B. Shore, Manipulating Quantum Structures Using Laser Pulses (Cambridge University, 2011).
  3. B. Shore, “Coherent manipulations of atoms using laser light,” Acta Phys. Slovaca 58, 243–486 (2008).
    [CrossRef]
  4. E. Cerboneschi and E. Arimondo, “Transparency and dressing for optical pulse pairs through a double-Λ absorbing medium,” Phys. Rev. A 52, R1823–R1826 (1995).
    [CrossRef]
  5. E. Cerboneschi and E. Arimondo, “Propagation and amplitude correlation of pairs of intense pulses interacting with a double-Λ system,” Phys. Rev. A 54, 5400–5409 (1996).
    [CrossRef]
  6. A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Electromagnetically induced transparency and storing of a pair of pulses of light,” Phys. Rev. A 69, 043801 (2004).
    [CrossRef]
  7. I. E. Mazets, “Adiabatic pulse propagation in coherent atomic media with the tripod level configuration,” Phys. Rev. A 71, 023806 (2005).
    [CrossRef]
  8. A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Polariton picture of light propagation and storing in a tripod system,” Opt. Commun. 260, 73–80 (2006).
    [CrossRef]
  9. A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007).
    [CrossRef]
  10. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
    [CrossRef]
  11. A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored and frozen light,” Adv. Atom. Mol. Phys. 46, 191–242 (2000).
    [CrossRef]
  12. A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
    [CrossRef]
  13. A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
    [CrossRef]
  14. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009).
    [CrossRef]
  15. D. V. Kosachiov, G. G. Matisov, and Y. U. Rozhdestvensky, “Coherent phenomena in multilevel systems with closed interaction contour,” J. Phys. B 25, 2473–2488 (1992).
    [CrossRef]
  16. M. S. Shahriar and P. M. Hemmer, “Direct excitation of microwave-spin dressed states using a laser-excited resonance Raman interaction,” Phys. Rev. Lett. 65, 1865–1868 (1990).
    [CrossRef]
  17. B. Luo, H. Tang, and H. Guo, “Dark states in electromagnetically induced transparency controlled by a microwave field,” J. Phys. B 42, 235505 (2009).
    [CrossRef]
  18. H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
    [CrossRef]
  19. G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
    [CrossRef]
  20. E. A. Wilson, N. B. Manson, C. Wei, and Yang Li-Juan, “Perturbing an electromagnetically induced transparency in a Λ system using a low-frequency driving field. I. three-level system,” Phys. Rev. A 72, 063813 (2005).
    [CrossRef]
  21. A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Efficient light storage in a Λ system due to coupling between lower levels,” Opt. Lett. 34, 1834–1836 (2009).
    [CrossRef]
  22. E. A. Korsunsky and D. V. Kosachiov, “Generation of continuous-wave terahertz radiation by use of quantum interference,” J. Opt. Soc. Am. B 17, 1405–1411 (2000).
    [CrossRef]
  23. D. V. Kosachiov and E. A. Korsunsky, “Efficient microwave-induced optical frequency conversion,” Eur. Phys. J. D 11, 457–463 (2000).
    [CrossRef]
  24. R. Fleischhaker and J. Evers, “Nonlinear effects in pulse propagation through Doppler-broadened closed-loop atomic media,” Phys. Rev. A 77, 043805 (2008).
    [CrossRef]

2011

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

2009

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009).
[CrossRef]

B. Luo, H. Tang, and H. Guo, “Dark states in electromagnetically induced transparency controlled by a microwave field,” J. Phys. B 42, 235505 (2009).
[CrossRef]

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Efficient light storage in a Λ system due to coupling between lower levels,” Opt. Lett. 34, 1834–1836 (2009).
[CrossRef]

2008

R. Fleischhaker and J. Evers, “Nonlinear effects in pulse propagation through Doppler-broadened closed-loop atomic media,” Phys. Rev. A 77, 043805 (2008).
[CrossRef]

B. Shore, “Coherent manipulations of atoms using laser light,” Acta Phys. Slovaca 58, 243–486 (2008).
[CrossRef]

2007

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007).
[CrossRef]

2006

A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Polariton picture of light propagation and storing in a tripod system,” Opt. Commun. 260, 73–80 (2006).
[CrossRef]

2005

A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
[CrossRef]

I. E. Mazets, “Adiabatic pulse propagation in coherent atomic media with the tripod level configuration,” Phys. Rev. A 71, 023806 (2005).
[CrossRef]

M. Fleischhauer, A. Imamog˜lu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

E. A. Wilson, N. B. Manson, C. Wei, and Yang Li-Juan, “Perturbing an electromagnetically induced transparency in a Λ system using a low-frequency driving field. I. three-level system,” Phys. Rev. A 72, 063813 (2005).
[CrossRef]

2004

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Electromagnetically induced transparency and storing of a pair of pulses of light,” Phys. Rev. A 69, 043801 (2004).
[CrossRef]

2001

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

2000

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored and frozen light,” Adv. Atom. Mol. Phys. 46, 191–242 (2000).
[CrossRef]

E. A. Korsunsky and D. V. Kosachiov, “Generation of continuous-wave terahertz radiation by use of quantum interference,” J. Opt. Soc. Am. B 17, 1405–1411 (2000).
[CrossRef]

D. V. Kosachiov and E. A. Korsunsky, “Efficient microwave-induced optical frequency conversion,” Eur. Phys. J. D 11, 457–463 (2000).
[CrossRef]

1999

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

1996

E. Cerboneschi and E. Arimondo, “Propagation and amplitude correlation of pairs of intense pulses interacting with a double-Λ system,” Phys. Rev. A 54, 5400–5409 (1996).
[CrossRef]

1995

E. Cerboneschi and E. Arimondo, “Transparency and dressing for optical pulse pairs through a double-Λ absorbing medium,” Phys. Rev. A 52, R1823–R1826 (1995).
[CrossRef]

1992

D. V. Kosachiov, G. G. Matisov, and Y. U. Rozhdestvensky, “Coherent phenomena in multilevel systems with closed interaction contour,” J. Phys. B 25, 2473–2488 (1992).
[CrossRef]

1990

M. S. Shahriar and P. M. Hemmer, “Direct excitation of microwave-spin dressed states using a laser-excited resonance Raman interaction,” Phys. Rev. Lett. 65, 1865–1868 (1990).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

Ahmed, E. H.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

Arimondo, E.

E. Cerboneschi and E. Arimondo, “Propagation and amplitude correlation of pairs of intense pulses interacting with a double-Λ system,” Phys. Rev. A 54, 5400–5409 (1996).
[CrossRef]

E. Cerboneschi and E. Arimondo, “Transparency and dressing for optical pulse pairs through a double-Λ absorbing medium,” Phys. Rev. A 52, R1823–R1826 (1995).
[CrossRef]

Becerra, F. E.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009).
[CrossRef]

Cerboneschi, E.

E. Cerboneschi and E. Arimondo, “Propagation and amplitude correlation of pairs of intense pulses interacting with a double-Λ system,” Phys. Rev. A 54, 5400–5409 (1996).
[CrossRef]

E. Cerboneschi and E. Arimondo, “Transparency and dressing for optical pulse pairs through a double-Λ absorbing medium,” Phys. Rev. A 52, R1823–R1826 (1995).
[CrossRef]

Dey, T. N.

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

Eilam, A.

Evers, J.

R. Fleischhaker and J. Evers, “Nonlinear effects in pulse propagation through Doppler-broadened closed-loop atomic media,” Phys. Rev. A 77, 043805 (2008).
[CrossRef]

Fleischhaker, R.

R. Fleischhaker and J. Evers, “Nonlinear effects in pulse propagation through Doppler-broadened closed-loop atomic media,” Phys. Rev. A 77, 043805 (2008).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamog˜lu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Friedmann, H.

Guo, H.

B. Luo, H. Tang, and H. Guo, “Dark states in electromagnetically induced transparency controlled by a microwave field,” J. Phys. B 42, 235505 (2009).
[CrossRef]

Harris, S. E.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

Hau, L. V.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

Hemmer, P. M.

M. S. Shahriar and P. M. Hemmer, “Direct excitation of microwave-spin dressed states using a laser-excited resonance Raman interaction,” Phys. Rev. Lett. 65, 1865–1868 (1990).
[CrossRef]

Hemmer, P. R.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

Huennekens, J.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

Imamog˜lu, A.

M. Fleischhauer, A. Imamog˜lu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Joshi, A.

A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
[CrossRef]

Kirova, T.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

Kocharovskaya, O.

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored and frozen light,” Adv. Atom. Mol. Phys. 46, 191–242 (2000).
[CrossRef]

Korsunsky, E. A.

E. A. Korsunsky and D. V. Kosachiov, “Generation of continuous-wave terahertz radiation by use of quantum interference,” J. Opt. Soc. Am. B 17, 1405–1411 (2000).
[CrossRef]

D. V. Kosachiov and E. A. Korsunsky, “Efficient microwave-induced optical frequency conversion,” Eur. Phys. J. D 11, 457–463 (2000).
[CrossRef]

Kosachiov, D. V.

D. V. Kosachiov and E. A. Korsunsky, “Efficient microwave-induced optical frequency conversion,” Eur. Phys. J. D 11, 457–463 (2000).
[CrossRef]

E. A. Korsunsky and D. V. Kosachiov, “Generation of continuous-wave terahertz radiation by use of quantum interference,” J. Opt. Soc. Am. B 17, 1405–1411 (2000).
[CrossRef]

D. V. Kosachiov, G. G. Matisov, and Y. U. Rozhdestvensky, “Coherent phenomena in multilevel systems with closed interaction contour,” J. Phys. B 25, 2473–2488 (1992).
[CrossRef]

Lazoudis, A.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

Li, H.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

Li-Juan, Yang

E. A. Wilson, N. B. Manson, C. Wei, and Yang Li-Juan, “Perturbing an electromagnetically induced transparency in a Λ system using a low-frequency driving field. I. three-level system,” Phys. Rev. A 72, 063813 (2005).
[CrossRef]

Luo, B.

B. Luo, H. Tang, and H. Guo, “Dark states in electromagnetically induced transparency controlled by a microwave field,” J. Phys. B 42, 235505 (2009).
[CrossRef]

Lyyra, A. M.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

Manson, N. B.

E. A. Wilson, N. B. Manson, C. Wei, and Yang Li-Juan, “Perturbing an electromagnetically induced transparency in a Λ system using a low-frequency driving field. I. three-level system,” Phys. Rev. A 72, 063813 (2005).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamog˜lu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Matisov, G. G.

D. V. Kosachiov, G. G. Matisov, and Y. U. Rozhdestvensky, “Coherent phenomena in multilevel systems with closed interaction contour,” J. Phys. B 25, 2473–2488 (1992).
[CrossRef]

Matsko, A. B.

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored and frozen light,” Adv. Atom. Mol. Phys. 46, 191–242 (2000).
[CrossRef]

Mazets, I. E.

I. E. Mazets, “Adiabatic pulse propagation in coherent atomic media with the tripod level configuration,” Phys. Rev. A 71, 023806 (2005).
[CrossRef]

Menon, S.

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

Orozco, L. A.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009).
[CrossRef]

Qi, P.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

Raczynski, A.

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007).
[CrossRef]

A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Polariton picture of light propagation and storing in a tripod system,” Opt. Commun. 260, 73–80 (2006).
[CrossRef]

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Electromagnetically induced transparency and storing of a pair of pulses of light,” Phys. Rev. A 69, 043801 (2004).
[CrossRef]

Rolston, S. L.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009).
[CrossRef]

Rostovtsev, Y.

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored and frozen light,” Adv. Atom. Mol. Phys. 46, 191–242 (2000).
[CrossRef]

Rostovtsev, Y. V.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

Rozhdestvensky, Y. U.

D. V. Kosachiov, G. G. Matisov, and Y. U. Rozhdestvensky, “Coherent phenomena in multilevel systems with closed interaction contour,” J. Phys. B 25, 2473–2488 (1992).
[CrossRef]

Rzepecka, M.

A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Polariton picture of light propagation and storing in a tripod system,” Opt. Commun. 260, 73–80 (2006).
[CrossRef]

Sautenkov, V. A.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

Scully, M. O.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored and frozen light,” Adv. Atom. Mol. Phys. 46, 191–242 (2000).
[CrossRef]

Shahriar, M. S.

M. S. Shahriar and P. M. Hemmer, “Direct excitation of microwave-spin dressed states using a laser-excited resonance Raman interaction,” Phys. Rev. Lett. 65, 1865–1868 (1990).
[CrossRef]

Shore, B.

B. Shore, “Coherent manipulations of atoms using laser light,” Acta Phys. Slovaca 58, 243–486 (2008).
[CrossRef]

B. Shore, Manipulating Quantum Structures Using Laser Pulses (Cambridge University, 2011).

Tang, H.

B. Luo, H. Tang, and H. Guo, “Dark states in electromagnetically induced transparency controlled by a microwave field,” J. Phys. B 42, 235505 (2009).
[CrossRef]

Wei, C.

E. A. Wilson, N. B. Manson, C. Wei, and Yang Li-Juan, “Perturbing an electromagnetically induced transparency in a Λ system using a low-frequency driving field. I. three-level system,” Phys. Rev. A 72, 063813 (2005).
[CrossRef]

Welch, G. R.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored and frozen light,” Adv. Atom. Mol. Phys. 46, 191–242 (2000).
[CrossRef]

Willis, R. T.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009).
[CrossRef]

Wilson, E. A.

E. A. Wilson, N. B. Manson, C. Wei, and Yang Li-Juan, “Perturbing an electromagnetically induced transparency in a Λ system using a low-frequency driving field. I. three-level system,” Phys. Rev. A 72, 063813 (2005).
[CrossRef]

Wilson-Gordon, A. D.

Xiao, M.

A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
[CrossRef]

Zaremba, J.

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007).
[CrossRef]

A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Polariton picture of light propagation and storing in a tripod system,” Opt. Commun. 260, 73–80 (2006).
[CrossRef]

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Electromagnetically induced transparency and storing of a pair of pulses of light,” Phys. Rev. A 69, 043801 (2004).
[CrossRef]

Zibrov, A. S.

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored and frozen light,” Adv. Atom. Mol. Phys. 46, 191–242 (2000).
[CrossRef]

Zielinska-Kaniasty, S.

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007).
[CrossRef]

A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Polariton picture of light propagation and storing in a tripod system,” Opt. Commun. 260, 73–80 (2006).
[CrossRef]

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Electromagnetically induced transparency and storing of a pair of pulses of light,” Phys. Rev. A 69, 043801 (2004).
[CrossRef]

Acta Phys. Slovaca

B. Shore, “Coherent manipulations of atoms using laser light,” Acta Phys. Slovaca 58, 243–486 (2008).
[CrossRef]

Adv. Atom. Mol. Phys.

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored and frozen light,” Adv. Atom. Mol. Phys. 46, 191–242 (2000).
[CrossRef]

Eur. Phys. J. D

D. V. Kosachiov and E. A. Korsunsky, “Efficient microwave-induced optical frequency conversion,” Eur. Phys. J. D 11, 457–463 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

D. V. Kosachiov, G. G. Matisov, and Y. U. Rozhdestvensky, “Coherent phenomena in multilevel systems with closed interaction contour,” J. Phys. B 25, 2473–2488 (1992).
[CrossRef]

B. Luo, H. Tang, and H. Guo, “Dark states in electromagnetically induced transparency controlled by a microwave field,” J. Phys. B 42, 235505 (2009).
[CrossRef]

Opt. Commun.

A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Polariton picture of light propagation and storing in a tripod system,” Opt. Commun. 260, 73–80 (2006).
[CrossRef]

Opt. Lett.

Phys. Rev. A

R. Fleischhaker and J. Evers, “Nonlinear effects in pulse propagation through Doppler-broadened closed-loop atomic media,” Phys. Rev. A 77, 043805 (2008).
[CrossRef]

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007).
[CrossRef]

E. Cerboneschi and E. Arimondo, “Transparency and dressing for optical pulse pairs through a double-Λ absorbing medium,” Phys. Rev. A 52, R1823–R1826 (1995).
[CrossRef]

E. Cerboneschi and E. Arimondo, “Propagation and amplitude correlation of pairs of intense pulses interacting with a double-Λ system,” Phys. Rev. A 54, 5400–5409 (1996).
[CrossRef]

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Electromagnetically induced transparency and storing of a pair of pulses of light,” Phys. Rev. A 69, 043801 (2004).
[CrossRef]

I. E. Mazets, “Adiabatic pulse propagation in coherent atomic media with the tripod level configuration,” Phys. Rev. A 71, 023806 (2005).
[CrossRef]

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A 80, 023820 (2009).
[CrossRef]

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

E. A. Wilson, N. B. Manson, C. Wei, and Yang Li-Juan, “Perturbing an electromagnetically induced transparency in a Λ system using a low-frequency driving field. I. three-level system,” Phys. Rev. A 72, 063813 (2005).
[CrossRef]

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005).
[CrossRef]

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009).
[CrossRef]

Phys. Rev. Lett.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

M. S. Shahriar and P. M. Hemmer, “Direct excitation of microwave-spin dressed states using a laser-excited resonance Raman interaction,” Phys. Rev. Lett. 65, 1865–1868 (1990).
[CrossRef]

Rev. Mod. Phys.

M. Fleischhauer, A. Imamog˜lu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Other

B. Shore, Manipulating Quantum Structures Using Laser Pulses (Cambridge University, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Level and coupling scheme in the Δ configuration.

Fig. 2.
Fig. 2.

Real (solid red curve) and imaginary (dashed green curve) parts of (a) M11d and (b) M22d.

Fig. 3.
Fig. 3.

Pulse spectrum at given positions inside the sample: (a) z=0, (b) z=0.2l, (c) z=0.4l, (d) z=0.6l, (e) z=0.8l, and (f) z=l. The three-photon detuning is Δ=109a.u.. The term representing the monochromatic light generated by the sample, proportional to the delta function located at Δ, has not been included.

Fig. 4.
Fig. 4.

Pulse time evolution at given positions inside the sample: (a) z=0.2l, (b) z=0.4l, (c) z=0.6l, (d) z=0.8l, and (e) z=l; net pulse (solid red curve), deformed incoming pulse (dashed green curve), light emitted by the sample (dotted blue curve). The amplitude of the deformed incoming pulse in (d) and (e) has been multiplied by a factor of 10.

Fig. 5.
Fig. 5.

Snapshots of the field amplitude at time instants: 1.5×1010a.u. (solid red curve), 2×1010a.u. (dashed green curve), 3×1010a.u. (short-dashed blue curve), 6×1010a.u. (dashed-double-dotted orange curve). Deep inside the sample the field amplitude increases due to the light emitted by the sample.

Fig. 6.
Fig. 6.

Spatial distribution of the monochromatic light emission of the medium for different values of the microwave field: Ω3=1011a.u. (solid red curve), Ω3=1010a.u. (dashed green curve), Ω3=7×1010a.u. (short-dashed blue curve), Ω3=109a.u. (dashed-double-dotted orange curve), Ω3=2×109a.u. (dashed–dotted light blue curve). Note a nonmonotonical behavior of the level of light emission.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

H=j=a,b,cEj|j><j|[E1(z,t)dab|a><b|+E2(z,t)dac|a><c|+E3(z,t)dcb|c><b|+h.c.],
iσ˙aa+i(Γab+Γac)σaa+Ω2σcaΩ2*σac=Ω1exp(iϕ)σba+Ω1*exp(iϕ)σab,iσ˙cciΓacσaa+Ω2*σacΩ2σca+Ω3σbcΩ3*σcb=0,iσ˙ab(δ2δ3iγab)σab+Ω2σcbΩ3σac=Ω1exp(iϕ)(1σcc2σaa),iσ˙ac(δ2iγac)σac+Ω2(σccσaa)Ω3*σab=Ω1exp(iϕ)σbc,iσ˙cb(δ3iγcb)σcb+Ω3(1σaa2σcc)+Ω2*σab=Ω1exp(iϕ)σca,iσ˙ba(δ2+δ3iγab)σbaΩ2*σbc+Ω3*σca=Ω1*exp(iϕ)(1σcc2σaa),iσ˙ca(δ2iγac)σcaΩ2*(σccσaa)+Ω3σba=Ω1*exp(iϕ)σcb,iσ˙bc(δ3iγcb)σbcΩ3*(1σaa2σcc)Ω2σba=Ω1*exp(iϕ)σac,
iσ˙+Aσ=Ω3a+Ω3*b+Ω1exp(iΔt)Bσ+Ω1*exp(iΔt)Cσ+Ω1exp(iΔt)c+Ω1*exp(iΔt)d,
σT=(σaa,σcc,σab,σac,σcb,σba,σca,σbc).
Aσ0=Ω3a+Ω3*b,(ω+A)σ1(z,ω)=Ω1(z,ωΔ)Bσ0+Ω1*(z,ωΔ)Cσ0+Ω1(z,ωΔ)c+Ω1*(z,ωΔ)d.
σab1(z,ω)=((ω+A)1(Ω1(z,ωΔ)Bσ0+Ω1*(z,ωΔ)Cσ0+Ω1(z,ωΔ)c+Ω1*(z,ωΔ)d)3X(ω)Ω1(z,ωΔ)+Y(ω)Ω1*(z,ωΔ).
(2z21c22t2)ϵ1(z,t)exp[i(k1zω1t)]=μ02t2dbaσab(z,t)exp[i((k1+k2)z(ω1+ω2)t)].
(iω+cz)Ω1(z,ω)=iN|dab|2(ω2+ω3)22e0ω1σab(z,ω+Δ)iκ2σab(z,ω+Δ).
z(Ω1(z,ω)Ω1*(z,ω2Δ))=iωc(Ω1(z,ω)Ω1*(z,ω2Δ))+ic(κ2X(ω+Δ)κ2Y(ω+Δ)κ2Y*(ωΔ)κ2X*(ωΔ)+2Δ)×(Ω1(z,ω)Ω1*(z,ω2Δ))+iκ2c2πδ(ω+Δ)(σab0σba0).
Ω1(z=0,t)=Ω10exp[(tτ)2D2],
Ω1(z,t)=Ω10πD12πdωj=1,2exp[iω(tzc)]×U1j(ω)exp[iMjjd(ω)zc]×(Uj11(ω)exp[iωτ14ω2D2]+Uj21(ω)exp[i(ω+2Δ)τ14(ω+2Δ)2D2])+iκ2cj=1,2U1j(ω)1exp[izc(ω+Mjjd(ω))]ic(ω+Mjjd(ω))×(Uj11(ω)σab0Uj21(ω)σba0)exp(iωt)|ω=Δ.

Metrics