Abstract

We develop a generalized model to describe thin film interference in interface-specific nonlinear optical spectroscopies of ideal isotropic stratified systems that enables the separation of this effect from the individual interfacial nonlinear responses. The model utilizes a property of the transfer matrix formalism that allows for simplification of an arbitrary layered system to a single layer with newly defined coefficients of reflection and transmission. In addition to the already well known internal transfer coefficients that relate incident fields to internal fields, we define external transfer coefficients that describe how internally generated fields propagate out of the system. By applying the usual boundary conditions we are able to analytically describe the local and induced fields immediately adjacent to an arbitrary interface, followed by transfer of the generated fields out of the system. The model provides a complete and easily implemented approach to calculating the observables from interface-specific spectroscopies on arbitrary layered thin film systems in a concise way.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (75)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription