Abstract

The dimensionless zero-frequency intrinsic second hyperpolarizability γint=γ/4E105m2(e)4 was optimized for a single electron in a 1D well by adjusting the shape of the potential. Optimized potentials were found to have hyperpolarizabilities in the range 0.15γint0.60; potentials optimizing gamma were arbitrarily close to the lower bound and were within 0.5% of the upper bound. All optimal potentials possess parity symmetry. Analysis of the Hessian of γint around the maximum reveals that effectively only a single parameter, one of those chosen in the piecewise linear representation adopted, is important to obtaining an extremum. Prospects for designing chromophores based on the design principle here elucidated are discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription