Abstract

We introduce a plasmonic oligomer that supports two quasi-dark modes. A double plasmon-induced transparency spectrum arises from the Fano interference between a bright mode and two quasi-dark modes. A coupling Lorentzian oscillator model is employed to explain the resulting line shape. It is found that the modulation depths and frequency of two Fano resonances can be tuned effectively by displacement of each component of the oligomer. The oligomer can be used as a sensitive plasmon ruler based on both frequency shift and radiance sensing. Furthermore, an artificial magnetic quadrupole is also introduced by one of the quasi-dark modes. We expect that the oligomer will be valuable for the design of plasmonic circuits and multiwavelength surface-enhanced Raman scattering.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113, 4028–4034 (2009).
    [CrossRef]
  2. J. Britt Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
    [CrossRef]
  3. M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G., Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19, 4949–4956 (2011).
    [CrossRef]
  4. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15, 17736–17746(2007).
    [CrossRef]
  5. T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
    [CrossRef]
  6. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 8, 3184–3189 (2010).
    [CrossRef]
  7. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
    [CrossRef]
  8. M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
    [CrossRef]
  9. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663(2011).
    [CrossRef]
  10. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [CrossRef]
  11. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. 101, 047401 (2008).
    [CrossRef]
  12. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
    [CrossRef]
  13. A. E. Cetin, A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, “Plasmon induced transparency in cascaded π-shaped metamaterials,” Opt. Express 19, 22607–22618 (2011).
    [CrossRef]
  14. B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the angstrom scale with visible light” Nano Lett. 13, 497–503 (2013).
    [CrossRef]
  15. X.-R. Jin, J. Park, H. Zheng, S. Lee, Y.-P. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19, 21652–21657 (2011).
    [CrossRef]
  16. P. Ding, C. Fan, Y. Cheng, E. Liang, and Q. Xue, “Plasmon-induced transparency by detuned magnetic atoms in trirod metamaterials,” Appl. Opt. 51, 1879–1885 (2012).
    [CrossRef]
  17. Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18, 18229–18234 (2010).
    [CrossRef]
  18. J. C. Love, A. R. Urbach, M. G. Prentiss, and G. M. Whitesides, “Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions” J. Am. Chem. Soc. 125, 12696–12697 (2003).
    [CrossRef]
  19. Z.-C. Xu, C.-M. Shen, C.-W. Xiao, T.-Z. Yang, S.-T. Chen, H.-L. Li, and H.-J. Gao, “Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior,” Chem. Phys. Lett. 432, 222–225 (2006).
    [CrossRef]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  21. Na Liu, Liwei Fu, Stefan Kaiser, Heinz Schweizer, and Harald Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
    [CrossRef]
  22. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
    [CrossRef]
  23. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2007).
    [CrossRef]
  24. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
    [CrossRef]
  25. N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmüller, P. Nordlander, and N. J. Halasi, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
    [CrossRef]
  26. Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
    [CrossRef]
  27. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
    [CrossRef]
  28. P. K. Jain, H. Wenyu, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
    [CrossRef]
  29. P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimmers,” J. Phys. Chem. C 112, 4954–4960 (2008).
    [CrossRef]
  30. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
    [CrossRef]
  31. B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).
  32. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käll, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
    [CrossRef]
  33. K.-H. Su, Q.-H. Wei, and X. Zhang, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
    [CrossRef]
  34. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
    [CrossRef]
  35. M. W. Klein, T. Tritschler, and M. Wegener, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005).
    [CrossRef]

2013 (1)

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the angstrom scale with visible light” Nano Lett. 13, 497–503 (2013).
[CrossRef]

2012 (3)

P. Ding, C. Fan, Y. Cheng, E. Liang, and Q. Xue, “Plasmon-induced transparency by detuned magnetic atoms in trirod metamaterials,” Appl. Opt. 51, 1879–1885 (2012).
[CrossRef]

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmüller, P. Nordlander, and N. J. Halasi, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[CrossRef]

2011 (6)

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef]

M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G., Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19, 4949–4956 (2011).
[CrossRef]

X.-R. Jin, J. Park, H. Zheng, S. Lee, Y.-P. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19, 21652–21657 (2011).
[CrossRef]

A. E. Cetin, A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, “Plasmon induced transparency in cascaded π-shaped metamaterials,” Opt. Express 19, 22607–22618 (2011).
[CrossRef]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663(2011).
[CrossRef]

2010 (2)

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 8, 3184–3189 (2010).
[CrossRef]

Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18, 18229–18234 (2010).
[CrossRef]

2009 (4)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113, 4028–4034 (2009).
[CrossRef]

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef]

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef]

2008 (5)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. 101, 047401 (2008).
[CrossRef]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
[CrossRef]

J. Britt Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimmers,” J. Phys. Chem. C 112, 4954–4960 (2008).
[CrossRef]

Na Liu, Liwei Fu, Stefan Kaiser, Heinz Schweizer, and Harald Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
[CrossRef]

2007 (4)

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2007).
[CrossRef]

P. K. Jain, H. Wenyu, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15, 17736–17746(2007).
[CrossRef]

2006 (2)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Z.-C. Xu, C.-M. Shen, C.-W. Xiao, T.-Z. Yang, S.-T. Chen, H.-L. Li, and H.-J. Gao, “Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior,” Chem. Phys. Lett. 432, 222–225 (2006).
[CrossRef]

2005 (4)

M. W. Klein, T. Tritschler, and M. Wegener, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005).
[CrossRef]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käll, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[CrossRef]

2003 (2)

K.-H. Su, Q.-H. Wei, and X. Zhang, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

J. C. Love, A. R. Urbach, M. G. Prentiss, and G. M. Whitesides, “Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions” J. Am. Chem. Soc. 125, 12696–12697 (2003).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Agarwal, H.

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).

Aizpurua, J.

J. Britt Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).

Altug, H.

Artar, A.

Bao, K.

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmüller, P. Nordlander, and N. J. Halasi, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663(2011).
[CrossRef]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113, 4028–4034 (2009).
[CrossRef]

Bar-Joseph, I.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef]

Brandl, D. W.

J. Britt Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Breslow, R.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef]

Britt Lassiter, J.

J. Britt Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Brown, L. V.

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmüller, P. Nordlander, and N. J. Halasi, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

Bryant, G. W.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef]

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 8, 3184–3189 (2010).
[CrossRef]

Cetin, A. E.

Chen, S.-T.

Z.-C. Xu, C.-M. Shen, C.-W. Xiao, T.-Z. Yang, S.-T. Chen, H.-L. Li, and H.-J. Gao, “Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior,” Chem. Phys. Lett. 432, 222–225 (2006).
[CrossRef]

Cheng, Y.

Cheong, H. S.

Christ, A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Dadosh, T.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef]

Ding, P.

Dong, Z.-G.

Dorfmüller, J.

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmüller, P. Nordlander, and N. J. Halasi, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

Dregely, D.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef]

Dyshel, M.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef]

Ekinci, Y.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
[CrossRef]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimmers,” J. Phys. Chem. C 112, 4954–4960 (2008).
[CrossRef]

P. K. Jain, H. Wenyu, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

Fan, C.

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 8, 3184–3189 (2010).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2007).
[CrossRef]

Fu, Liwei

Na Liu, Liwei Fu, Stefan Kaiser, Heinz Schweizer, and Harald Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
[CrossRef]

Gallinet, B.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the angstrom scale with visible light” Nano Lett. 13, 497–503 (2013).
[CrossRef]

Gao, H.-J.

Z.-C. Xu, C.-M. Shen, C.-W. Xiao, T.-Z. Yang, S.-T. Chen, H.-L. Li, and H.-J. Gao, “Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior,” Chem. Phys. Lett. 432, 222–225 (2006).
[CrossRef]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. 101, 047401 (2008).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Giannini, V.

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2007).
[CrossRef]

Giessen, Harald

Na Liu, Liwei Fu, Stefan Kaiser, Heinz Schweizer, and Harald Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
[CrossRef]

Gippius, N. A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
[CrossRef]

Gómez Rivas, J.

Gray, S. K.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef]

Gunnarsson, L.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käll, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[CrossRef]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2007).
[CrossRef]

Guyot-Sionnest, P.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef]

Hafner, J. H.

J. Britt Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Halas, N. J.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663(2011).
[CrossRef]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 8, 3184–3189 (2010).
[CrossRef]

J. Britt Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Halasi, N. J.

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmüller, P. Nordlander, and N. J. Halasi, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

Haran, G.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef]

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef]

Hernandez, L. I.

J. Britt Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Hong, M. H.

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimmers,” J. Phys. Chem. C 112, 4954–4960 (2008).
[CrossRef]

P. K. Jain, H. Wenyu, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

Jang, W. H.

Jin, X.-R.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2007).
[CrossRef]

Kaiser, Stefan

Na Liu, Liwei Fu, Stefan Kaiser, Heinz Schweizer, and Harald Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
[CrossRef]

Käll, M.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käll, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[CrossRef]

Kasemo, B.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käll, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[CrossRef]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

Kim, K. W.

Klein, M. W.

M. W. Klein, T. Tritschler, and M. Wegener, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005).
[CrossRef]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 8, 3184–3189 (2010).
[CrossRef]

Lal, S.

J. Britt Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 8, 3184–3189 (2010).
[CrossRef]

Lee, S.

Lee, T.-W.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef]

Lee, Y.-P.

Li, H.-L.

Z.-C. Xu, C.-M. Shen, C.-W. Xiao, T.-Z. Yang, S.-T. Chen, H.-L. Li, and H.-J. Gao, “Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior,” Chem. Phys. Lett. 432, 222–225 (2006).
[CrossRef]

Li, T.

Liang, E.

Liew, Y. F.

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[CrossRef]

Liphardt, J.

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

Liu, H.

Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18, 18229–18234 (2010).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Liu, M.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. 101, 047401 (2008).
[CrossRef]

Liu, N.

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmüller, P. Nordlander, and N. J. Halasi, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2007).
[CrossRef]

Liu, Na

Na Liu, Liwei Fu, Stefan Kaiser, Heinz Schweizer, and Harald Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
[CrossRef]

Liu, Y.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[CrossRef]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Love, J. C.

J. C. Love, A. R. Urbach, M. G. Prentiss, and G. M. Whitesides, “Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions” J. Am. Chem. Soc. 125, 12696–12697 (2003).
[CrossRef]

Lukiyanchuk, B.

Mai, P.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef]

Martin, O. J. F.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the angstrom scale with visible light” Nano Lett. 13, 497–503 (2013).
[CrossRef]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
[CrossRef]

Mirin, N. A.

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113, 4028–4034 (2009).
[CrossRef]

Mukherjee, S.

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmüller, P. Nordlander, and N. J. Halasi, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

Muskens, O. L.

Ng, B.

Nordlander, P.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the angstrom scale with visible light” Nano Lett. 13, 497–503 (2013).
[CrossRef]

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmüller, P. Nordlander, and N. J. Halasi, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663(2011).
[CrossRef]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 8, 3184–3189 (2010).
[CrossRef]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113, 4028–4034 (2009).
[CrossRef]

J. Britt Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Palomba, S.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[CrossRef]

Park, J.

Park, Y.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[CrossRef]

Pelton, M.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

Prentiss, M. G.

J. C. Love, A. R. Urbach, M. G. Prentiss, and G. M. Whitesides, “Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions” J. Am. Chem. Soc. 125, 12696–12697 (2003).
[CrossRef]

Prikulis, J.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käll, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[CrossRef]

Rahmani, M.

Reinhard, B. M.

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

Rhee, J. Y.

Rindzevicius, T.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käll, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[CrossRef]

Romero, I.

J. Britt Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Sánchez-Gil, J. A.

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2007).
[CrossRef]

Schweizer, Heinz

Na Liu, Liwei Fu, Stefan Kaiser, Heinz Schweizer, and Harald Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
[CrossRef]

Shegai, T.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef]

Shen, C.-M.

Z.-C. Xu, C.-M. Shen, C.-W. Xiao, T.-Z. Yang, S.-T. Chen, H.-L. Li, and H.-J. Gao, “Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior,” Chem. Phys. Lett. 432, 222–225 (2006).
[CrossRef]

Siegfried, T.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the angstrom scale with visible light” Nano Lett. 13, 497–503 (2013).
[CrossRef]

Sigg, H.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the angstrom scale with visible light” Nano Lett. 13, 497–503 (2013).
[CrossRef]

Siu, M.

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).

Sobhani, H.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 8, 3184–3189 (2010).
[CrossRef]

Sönnichsen, C.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[CrossRef]

Sperling, J.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef]

Steele, J. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Su, K.-H.

K.-H. Su, Q.-H. Wei, and X. Zhang, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Taubert, R.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef]

Tavakkoli K. G., A.

Tikhodeev, S. G.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
[CrossRef]

Tittl, A.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef]

Tritschler, T.

M. W. Klein, T. Tritschler, and M. Wegener, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005).
[CrossRef]

Turkmen, M.

Urbach, A. R.

J. C. Love, A. R. Urbach, M. G. Prentiss, and G. M. Whitesides, “Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions” J. Am. Chem. Soc. 125, 12696–12697 (2003).
[CrossRef]

Wang, S.-M.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. 101, 047401 (2008).
[CrossRef]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[CrossRef]

M. W. Klein, T. Tritschler, and M. Wegener, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005).
[CrossRef]

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, and X. Zhang, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

Wenyu, H.

P. K. Jain, H. Wenyu, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

Whitesides, G. M.

J. C. Love, A. R. Urbach, M. G. Prentiss, and G. M. Whitesides, “Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions” J. Am. Chem. Soc. 125, 12696–12697 (2003).
[CrossRef]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Xiao, C.-W.

Z.-C. Xu, C.-M. Shen, C.-W. Xiao, T.-Z. Yang, S.-T. Chen, H.-L. Li, and H.-J. Gao, “Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior,” Chem. Phys. Lett. 432, 222–225 (2006).
[CrossRef]

Xu, H.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663(2011).
[CrossRef]

Xu, M.-X.

Xu, Z.-C.

Z.-C. Xu, C.-M. Shen, C.-W. Xiao, T.-Z. Yang, S.-T. Chen, H.-L. Li, and H.-J. Gao, “Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior,” Chem. Phys. Lett. 432, 222–225 (2006).
[CrossRef]

Xue, Q.

Yang, T.-Z.

Z.-C. Xu, C.-M. Shen, C.-W. Xiao, T.-Z. Yang, S.-T. Chen, H.-L. Li, and H.-J. Gao, “Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior,” Chem. Phys. Lett. 432, 222–225 (2006).
[CrossRef]

Yanik, A. A.

Yin, X.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[CrossRef]

Zentgraf, T.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[CrossRef]

Zhang, S.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663(2011).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. 101, 047401 (2008).
[CrossRef]

Zhang, X.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[CrossRef]

Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18, 18229–18234 (2010).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. 101, 047401 (2008).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

K.-H. Su, Q.-H. Wei, and X. Zhang, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

Zheng, H.

Zhu, S. N.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Zhu, S.-N.

ACS Nano (1)

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef]

Adv. Mater. (1)

Na Liu, Liwei Fu, Stefan Kaiser, Heinz Schweizer, and Harald Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
[CrossRef]

Appl. Opt. (1)

Chem. Phys. Lett. (1)

Z.-C. Xu, C.-M. Shen, C.-W. Xiao, T.-Z. Yang, S.-T. Chen, H.-L. Li, and H.-J. Gao, “Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior,” Chem. Phys. Lett. 432, 222–225 (2006).
[CrossRef]

J. Am. Chem. Soc. (1)

J. C. Love, A. R. Urbach, M. G. Prentiss, and G. M. Whitesides, “Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions” J. Am. Chem. Soc. 125, 12696–12697 (2003).
[CrossRef]

J. Phys. Chem. A (1)

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113, 4028–4034 (2009).
[CrossRef]

J. Phys. Chem. B (1)

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käll, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[CrossRef]

J. Phys. Chem. C (1)

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimmers,” J. Phys. Chem. C 112, 4954–4960 (2008).
[CrossRef]

Nano Lett. (11)

K.-H. Su, Q.-H. Wei, and X. Zhang, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[CrossRef]

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmüller, P. Nordlander, and N. J. Halasi, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[CrossRef]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef]

P. K. Jain, H. Wenyu, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007).
[CrossRef]

J. Britt Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the angstrom scale with visible light” Nano Lett. 13, 497–503 (2013).
[CrossRef]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 8, 3184–3189 (2010).
[CrossRef]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008).
[CrossRef]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663(2011).
[CrossRef]

Nat. Biotechnol. (1)

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[CrossRef]

Nat. Mater. (2)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2007).
[CrossRef]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef]

Opt. Express (5)

Phys. Rev. (2)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. 101, 047401 (2008).
[CrossRef]

Phys. Rev. B (2)

M. W. Klein, T. Tritschler, and M. Wegener, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef]

Science (2)

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the five-bar structure. Inset: definitions of the geometrical parameters. Two yellow and blue bars are symmetrically arranged at both sides of the green bar in the x axis; the left and right side blue bars have displacements of y2 and y2 in the y direction, respectively, and the left and right side yellow bars have displacements of y1 and y2 in the y direction, respectively. The distance between the green bar and yellow bar is d1, and that between the yellow bar and blue bar is d2. The length and width of the bars are L and W, respectively. E, H, and k represent the electric field, magnetic field and direction of light propagation, respectively.

Fig. 2.
Fig. 2.

(a) Absorption and (b) transmittance spectra simulated as a function of the interbar spacing d (here d1=d2=d), when y1=180nm, y2=0nm. Spectra are shifted upward in sequence for clarity. The dotted curves show the original dipole mode, which is obtained by fitting the spectra with three Lorentzian peaks. The dashed curves show the redshift of the original dipole mode (green) and the frequency evolvement of the two quasi-dark modes (blue and yellow) when d is decreased. (c) The surface charge distribution of the structure at transmittance peaks and dips at a cross section of the bars. (d) The Ey field distribution of the structure at transmittance peaks and dips at a plane 5 nm above the bars. (e) The Hz field distribution of quasi-dark mode A at plane 5 nm above the bars; the black arrows show directions of instantaneous current; the red and blue arrows show the direction of magnetic field.

Fig. 3.
Fig. 3.

(a) Transmittance spectra simulated at different y1, when y2=0nm, d=20nm. The dashed lines show the redshift of the Type I antiphase mode and the blueshift of the Type II antiphase mode when y1 is increased. (b), (c), and (d) The transmittance spectra simulated at different y2 in three regimes. (a) y1=90nm, (b) y1=150nm, and (c) y1=240nm. d=20nm in all three spectra. Spectra are shifted upward in sequence for clarity.

Fig. 4.
Fig. 4.

Simulated transmittance spectra with different displacements of (a) a single middle bar and (b) a single outer bar. (c) Simulated transmittance spectra of the structures with various Δd1 (moving two bars on one side together). (d), (e), and (f) are the transmittance intensities of the resonances R1 (black line) and R2 (red line) with the changes of Δy1, Δy2, and Δd1, which are extracted from (a), (b), and (c), respectively.

Fig. 5.
Fig. 5.

(a) Simulated absorption spectra of the structure and multi-Lorentz-peak fitting. y1=180nm, y2=0nm. Inset: the schematic diagram of a coupling Lorentz oscillator analogue. (b) Simulated transmittance spectra (solid lines) and the fitting curves calculated by the coupling Lorentz oscillators model (dashed lines) under various y2 when y1=150nm. (c) The relationship of the coupling strength with y2, which are extracted from the fitting curves of (b).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

x¨1+γ1x˙1+ω12x1κ12x3=q1E,
x¨2+γ2x˙2+ω22x2κ22x3=q2E,
x¨3+γ3x˙3+ω32x3κ12x1κ22x2=q3E.
x˜1=(C2C3κ22)q1+κ12κ22q2+C2κ12q3C1C2C3κ14C2κ24C1,
x˜2=κ12κ22q1+(C1C3κ14)q2+C1κ12q3C1C2C3κ14C2κ24C1,
x˜3=κ12C2q1+C1κ22q2+C1C2q3C1C2C3κ14C2κ24C1,

Metrics