## Abstract

Excitation of the ${{}^{2}\mathrm{F}}_{7/2}\to {{}^{2}\mathrm{F}}_{5/2}$ transition of the ${\mathrm{Yb}}^{3+}$ ion in ${\mathrm{Yb}}^{3+}$, ${\mathrm{Pr}}^{3+}$-doped fluorozirconate glass at 974 nm results in efficient excitation of the ${}^{1}{\mathrm{G}}_{4}$ level of ${\mathrm{Pr}}^{3+}$ ion that in turn emits in the middle infrared at $\sim 3.6\text{\hspace{0.17em}}\text{\hspace{0.17em}}\mathrm{\mu m}$. The energy transfer (ET) process ${\mathrm{Yb}}^{3+}({{}^{2}\mathrm{F}}_{5/2})\to {\mathrm{Pr}}^{3+}({}^{1}{\mathrm{G}}_{4})$ is assisted by fast excitation migration among the ${\mathrm{Yb}}^{3+}$ ions. An upconversion process involving ET from the ${{}^{2}\mathrm{F}}_{5/2}$ level to the ${}^{1}{\mathrm{G}}_{4}$ excited state populates the ${}^{3}{\mathrm{P}}_{0}$ excited state that produces emission at 481, 521, 603, 636, and 717 nm. A study of the behavior of the fluorescence from the ${}^{1}{\mathrm{G}}_{4}$ level at 1325 nm and from the ${}^{3}{\mathrm{P}}_{0}$ level at 603 nm allowed the estimation of the ET rate constants for the processes involved after short-pulsed laser excitation at 974 nm. A rate-equation model was employed to evaluate the population inversion relating to the ${}^{1}{\mathrm{G}}_{4}\to {}^{3}{\mathrm{F}}_{4}$ transition of the ${\mathrm{Pr}}^{3+}$ ion at 3.6 μm under continuous wave pumping.

© 2013 Optical Society of America

Full Article | PDF Article**OSA Recommended Articles**

^{3+}-doped tellurite glasses

Laércio Gomes, Joris Lousteau, Daniel Milanese, Emanuele Mura, and Stuart D. Jackson

J. Opt. Soc. Am. B **31**(3) 429-435 (2014)

^{3+}-doped and Er

^{3+}, Pr

^{3+}-codoped PbO–Bi

_{2}O

_{3}–Ga

_{2}O

_{3}glasses

Daniel J. Coleman, Stuart D. Jackson, Paul Golding, and Terence A. King

J. Opt. Soc. Am. B **19**(12) 2927-2937 (2002)

^{3+}-doped and Er

^{3+}, Pr

^{3+}-codoped GeGaS glasses

Daniel J. Coleman, Paul Golding, Terence A. King, and Stuart D. Jackson

J. Opt. Soc. Am. B **19**(9) 1982-1989 (2002)