Abstract

Excitation of the F27/2F25/2 transition of the Yb3+ ion in Yb3+, Pr3+-doped fluorozirconate glass at 974 nm results in efficient excitation of the G41 level of Pr3+ ion that in turn emits in the middle infrared at 3.6μm. The energy transfer (ET) process Yb3+(F25/2)Pr3+(G41) is assisted by fast excitation migration among the Yb3+ ions. An upconversion process involving ET from the F25/2 level to the G41 excited state populates the P03 excited state that produces emission at 481, 521, 603, 636, and 717 nm. A study of the behavior of the fluorescence from the G41 level at 1325 nm and from the P03 level at 603 nm allowed the estimation of the ET rate constants for the processes involved after short-pulsed laser excitation at 974 nm. A rate-equation model was employed to evaluate the population inversion relating to the G41F43 transition of the Pr3+ ion at 3.6 μm under continuous wave pumping.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallee, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36, 1104 (2011).
    [CrossRef]
  2. S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm,” Opt. Lett. 34, 2327 (2009).
    [CrossRef]
  3. J. Schneider, C. Carbonnier, and U.B. Unrau, “Characterization of a Ho3+-doped fluoride fiber laser with a 3.9 μm emission wavelength,” Appl. Opt. 36, 8595 (1997).
    [CrossRef]
  4. A.A. Kaminskii, K. Kurbanov, and T. V. Uvarova, “Stimulated radiation from single-crystals of BaYb2F8Pr(3+),” Izv. Akad. Nauk SSSR, Sev. Neorgan. Matter 23, 1049 (1987).
  5. A. A. Kaminskii, K. Kurbanov, and A. V. Pelevin, “New channels for stimulated-emission of Pr(3+) ions in tetragonal fluorides LiRF4 with the structure of scheelite,” Izv. Akad. Nauk. SSSR, Sev. Neorgan. Matter 23, 1934 (1987).
  6. A. A. Kaminskii, “Progress in praseodymium crystalline lasers emitting in the visible,” in Advanced Solid State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15, OSA Proceedings Series(Optical Society of America, 1993), pp. 266–270.
  7. S. Kück, K. Sebald, A. Diening, E. Heumann, E. Mix, and G. Huber, “Energy transfer processes in Pr, Yb-doped crystals,” in OSA Trends in Optics and Photonics, Martin M. Fejer, Hagop Injeyan, and Ursula Keller, eds., Vol. 26, Advanced Solid State Lasers (Optical Society of America, 1999), pp. 658–663.
  8. A. I. Burshtein, “Jump mechanism of energy transfer,” Soviet Phys. JETP 35, 882 (1972).
  9. L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm–Ho energy transfer and deactivation of the F43 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95, 5451 (2004).
    [CrossRef]
  10. R. C. Powell, “Nonradiative energy-transfer: multistep process,” in Physics of Solid-State Laser Materials (Springer, 1998), pp. 193–203.
  11. W. Seeber, E. A. Downing, L. Hesselink, M. M. Fejer, and D. Ehrt, “Pr3+-doped fluoride glasses,” J. Non-Crystalline Solids 189, 218 (1995).
  12. W. G. Jordan, Animesh Jha, M. Lunt, S. T. Davey, R. Wyatt, and W. J. Rothwell, “The optical properties of ZrF4-based glasses with extended Pr3+:G14→H35 fluorescence lifetimes,” J. Non-Crystalline Solids 184, 5 (1995).
  13. L. Gomes, A. F. H. Librantz, F. H. Jagosich, L. A. W. Alves, I. M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508(2009).
    [CrossRef]
  14. A. F. H. Librantz, L. Gomes, L. C. Courrol, I. M. Ranieri, and S. L. Baldochi, “Population inversion of G14 excited state of Tm3+ investigated by means of numerical solutions of the rate equations system in Yb:Tm:Nd:LiYF4 crystal,” J. Appl. Phys. 105, 113503 (2009).
    [CrossRef]
  15. H. Marconi da Silva, M. D. Linhares, A. F. H. Librantz, L. Gomes, L. C. Courrol, S. L. Baldochi, and I. M. Ranieri, “Energy transfer rates and population inversion investigation of G14 and D12excited states of Tm3+ in Yb:Tm:Nd:KY3F10 crystals,” J. Appl. Phys. 109, 083533 (2011).
    [CrossRef]
  16. A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
    [CrossRef]
  17. L. Gomes, M. Oermann, H. E. Heidepriem, D. Ottaway, T. Monro, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110, 083111 (2011).
    [CrossRef]
  18. A. B. Arauzo, R. Cases, and R. Alcalá, “Optical absorption, photoluminescence and cross relaxation of Pr3+ ion in some fluoride glasses,” Phys. Chem. Glasses 35, 202(1994).

2011 (3)

H. Marconi da Silva, M. D. Linhares, A. F. H. Librantz, L. Gomes, L. C. Courrol, S. L. Baldochi, and I. M. Ranieri, “Energy transfer rates and population inversion investigation of G14 and D12excited states of Tm3+ in Yb:Tm:Nd:KY3F10 crystals,” J. Appl. Phys. 109, 083533 (2011).
[CrossRef]

L. Gomes, M. Oermann, H. E. Heidepriem, D. Ottaway, T. Monro, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110, 083111 (2011).
[CrossRef]

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallee, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36, 1104 (2011).
[CrossRef]

2009 (3)

S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm,” Opt. Lett. 34, 2327 (2009).
[CrossRef]

L. Gomes, A. F. H. Librantz, F. H. Jagosich, L. A. W. Alves, I. M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508(2009).
[CrossRef]

A. F. H. Librantz, L. Gomes, L. C. Courrol, I. M. Ranieri, and S. L. Baldochi, “Population inversion of G14 excited state of Tm3+ investigated by means of numerical solutions of the rate equations system in Yb:Tm:Nd:LiYF4 crystal,” J. Appl. Phys. 105, 113503 (2009).
[CrossRef]

2007 (1)

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

2004 (1)

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm–Ho energy transfer and deactivation of the F43 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95, 5451 (2004).
[CrossRef]

1997 (1)

1995 (2)

W. Seeber, E. A. Downing, L. Hesselink, M. M. Fejer, and D. Ehrt, “Pr3+-doped fluoride glasses,” J. Non-Crystalline Solids 189, 218 (1995).

W. G. Jordan, Animesh Jha, M. Lunt, S. T. Davey, R. Wyatt, and W. J. Rothwell, “The optical properties of ZrF4-based glasses with extended Pr3+:G14→H35 fluorescence lifetimes,” J. Non-Crystalline Solids 184, 5 (1995).

1994 (1)

A. B. Arauzo, R. Cases, and R. Alcalá, “Optical absorption, photoluminescence and cross relaxation of Pr3+ ion in some fluoride glasses,” Phys. Chem. Glasses 35, 202(1994).

1987 (2)

A.A. Kaminskii, K. Kurbanov, and T. V. Uvarova, “Stimulated radiation from single-crystals of BaYb2F8Pr(3+),” Izv. Akad. Nauk SSSR, Sev. Neorgan. Matter 23, 1049 (1987).

A. A. Kaminskii, K. Kurbanov, and A. V. Pelevin, “New channels for stimulated-emission of Pr(3+) ions in tetragonal fluorides LiRF4 with the structure of scheelite,” Izv. Akad. Nauk. SSSR, Sev. Neorgan. Matter 23, 1934 (1987).

1972 (1)

A. I. Burshtein, “Jump mechanism of energy transfer,” Soviet Phys. JETP 35, 882 (1972).

Alcalá, R.

A. B. Arauzo, R. Cases, and R. Alcalá, “Optical absorption, photoluminescence and cross relaxation of Pr3+ ion in some fluoride glasses,” Phys. Chem. Glasses 35, 202(1994).

Alves, L. A. W.

L. Gomes, A. F. H. Librantz, F. H. Jagosich, L. A. W. Alves, I. M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508(2009).
[CrossRef]

Androz, G.

Arauzo, A. B.

A. B. Arauzo, R. Cases, and R. Alcalá, “Optical absorption, photoluminescence and cross relaxation of Pr3+ ion in some fluoride glasses,” Phys. Chem. Glasses 35, 202(1994).

Baldochi, S. L.

H. Marconi da Silva, M. D. Linhares, A. F. H. Librantz, L. Gomes, L. C. Courrol, S. L. Baldochi, and I. M. Ranieri, “Energy transfer rates and population inversion investigation of G14 and D12excited states of Tm3+ in Yb:Tm:Nd:KY3F10 crystals,” J. Appl. Phys. 109, 083533 (2011).
[CrossRef]

L. Gomes, A. F. H. Librantz, F. H. Jagosich, L. A. W. Alves, I. M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508(2009).
[CrossRef]

A. F. H. Librantz, L. Gomes, L. C. Courrol, I. M. Ranieri, and S. L. Baldochi, “Population inversion of G14 excited state of Tm3+ investigated by means of numerical solutions of the rate equations system in Yb:Tm:Nd:LiYF4 crystal,” J. Appl. Phys. 105, 113503 (2009).
[CrossRef]

Bernier, M.

Burshtein, A. I.

A. I. Burshtein, “Jump mechanism of energy transfer,” Soviet Phys. JETP 35, 882 (1972).

Carbonnier, C.

Caron, N.

Cases, R.

A. B. Arauzo, R. Cases, and R. Alcalá, “Optical absorption, photoluminescence and cross relaxation of Pr3+ ion in some fluoride glasses,” Phys. Chem. Glasses 35, 202(1994).

Courrol, L. C.

H. Marconi da Silva, M. D. Linhares, A. F. H. Librantz, L. Gomes, L. C. Courrol, S. L. Baldochi, and I. M. Ranieri, “Energy transfer rates and population inversion investigation of G14 and D12excited states of Tm3+ in Yb:Tm:Nd:KY3F10 crystals,” J. Appl. Phys. 109, 083533 (2011).
[CrossRef]

A. F. H. Librantz, L. Gomes, L. C. Courrol, I. M. Ranieri, and S. L. Baldochi, “Population inversion of G14 excited state of Tm3+ investigated by means of numerical solutions of the rate equations system in Yb:Tm:Nd:LiYF4 crystal,” J. Appl. Phys. 105, 113503 (2009).
[CrossRef]

da Vila, L. D.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm–Ho energy transfer and deactivation of the F43 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95, 5451 (2004).
[CrossRef]

Davey, S. T.

W. G. Jordan, Animesh Jha, M. Lunt, S. T. Davey, R. Wyatt, and W. J. Rothwell, “The optical properties of ZrF4-based glasses with extended Pr3+:G14→H35 fluorescence lifetimes,” J. Non-Crystalline Solids 184, 5 (1995).

Diening, A.

S. Kück, K. Sebald, A. Diening, E. Heumann, E. Mix, and G. Huber, “Energy transfer processes in Pr, Yb-doped crystals,” in OSA Trends in Optics and Photonics, Martin M. Fejer, Hagop Injeyan, and Ursula Keller, eds., Vol. 26, Advanced Solid State Lasers (Optical Society of America, 1999), pp. 658–663.

Downing, E. A.

W. Seeber, E. A. Downing, L. Hesselink, M. M. Fejer, and D. Ehrt, “Pr3+-doped fluoride glasses,” J. Non-Crystalline Solids 189, 218 (1995).

Ehrt, D.

W. Seeber, E. A. Downing, L. Hesselink, M. M. Fejer, and D. Ehrt, “Pr3+-doped fluoride glasses,” J. Non-Crystalline Solids 189, 218 (1995).

Faucher, D.

Fejer, M. M.

W. Seeber, E. A. Downing, L. Hesselink, M. M. Fejer, and D. Ehrt, “Pr3+-doped fluoride glasses,” J. Non-Crystalline Solids 189, 218 (1995).

Gomes, L.

H. Marconi da Silva, M. D. Linhares, A. F. H. Librantz, L. Gomes, L. C. Courrol, S. L. Baldochi, and I. M. Ranieri, “Energy transfer rates and population inversion investigation of G14 and D12excited states of Tm3+ in Yb:Tm:Nd:KY3F10 crystals,” J. Appl. Phys. 109, 083533 (2011).
[CrossRef]

L. Gomes, M. Oermann, H. E. Heidepriem, D. Ottaway, T. Monro, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110, 083111 (2011).
[CrossRef]

L. Gomes, A. F. H. Librantz, F. H. Jagosich, L. A. W. Alves, I. M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508(2009).
[CrossRef]

A. F. H. Librantz, L. Gomes, L. C. Courrol, I. M. Ranieri, and S. L. Baldochi, “Population inversion of G14 excited state of Tm3+ investigated by means of numerical solutions of the rate equations system in Yb:Tm:Nd:LiYF4 crystal,” J. Appl. Phys. 105, 113503 (2009).
[CrossRef]

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm–Ho energy transfer and deactivation of the F43 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95, 5451 (2004).
[CrossRef]

Heidepriem, H. E.

L. Gomes, M. Oermann, H. E. Heidepriem, D. Ottaway, T. Monro, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110, 083111 (2011).
[CrossRef]

Hesselink, L.

W. Seeber, E. A. Downing, L. Hesselink, M. M. Fejer, and D. Ehrt, “Pr3+-doped fluoride glasses,” J. Non-Crystalline Solids 189, 218 (1995).

Heumann, E.

S. Kück, K. Sebald, A. Diening, E. Heumann, E. Mix, and G. Huber, “Energy transfer processes in Pr, Yb-doped crystals,” in OSA Trends in Optics and Photonics, Martin M. Fejer, Hagop Injeyan, and Ursula Keller, eds., Vol. 26, Advanced Solid State Lasers (Optical Society of America, 1999), pp. 658–663.

Huber, G.

S. Kück, K. Sebald, A. Diening, E. Heumann, E. Mix, and G. Huber, “Energy transfer processes in Pr, Yb-doped crystals,” in OSA Trends in Optics and Photonics, Martin M. Fejer, Hagop Injeyan, and Ursula Keller, eds., Vol. 26, Advanced Solid State Lasers (Optical Society of America, 1999), pp. 658–663.

Jackson, S. D.

L. Gomes, M. Oermann, H. E. Heidepriem, D. Ottaway, T. Monro, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110, 083111 (2011).
[CrossRef]

S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm,” Opt. Lett. 34, 2327 (2009).
[CrossRef]

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

Jagosich, F. H.

L. Gomes, A. F. H. Librantz, F. H. Jagosich, L. A. W. Alves, I. M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508(2009).
[CrossRef]

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

Jha, Animesh

W. G. Jordan, Animesh Jha, M. Lunt, S. T. Davey, R. Wyatt, and W. J. Rothwell, “The optical properties of ZrF4-based glasses with extended Pr3+:G14→H35 fluorescence lifetimes,” J. Non-Crystalline Solids 184, 5 (1995).

Jordan, W. G.

W. G. Jordan, Animesh Jha, M. Lunt, S. T. Davey, R. Wyatt, and W. J. Rothwell, “The optical properties of ZrF4-based glasses with extended Pr3+:G14→H35 fluorescence lifetimes,” J. Non-Crystalline Solids 184, 5 (1995).

Kaminskii, A. A.

A. A. Kaminskii, K. Kurbanov, and A. V. Pelevin, “New channels for stimulated-emission of Pr(3+) ions in tetragonal fluorides LiRF4 with the structure of scheelite,” Izv. Akad. Nauk. SSSR, Sev. Neorgan. Matter 23, 1934 (1987).

A. A. Kaminskii, “Progress in praseodymium crystalline lasers emitting in the visible,” in Advanced Solid State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15, OSA Proceedings Series(Optical Society of America, 1993), pp. 266–270.

Kaminskii, A.A.

A.A. Kaminskii, K. Kurbanov, and T. V. Uvarova, “Stimulated radiation from single-crystals of BaYb2F8Pr(3+),” Izv. Akad. Nauk SSSR, Sev. Neorgan. Matter 23, 1049 (1987).

Kück, S.

S. Kück, K. Sebald, A. Diening, E. Heumann, E. Mix, and G. Huber, “Energy transfer processes in Pr, Yb-doped crystals,” in OSA Trends in Optics and Photonics, Martin M. Fejer, Hagop Injeyan, and Ursula Keller, eds., Vol. 26, Advanced Solid State Lasers (Optical Society of America, 1999), pp. 658–663.

Kurbanov, K.

A.A. Kaminskii, K. Kurbanov, and T. V. Uvarova, “Stimulated radiation from single-crystals of BaYb2F8Pr(3+),” Izv. Akad. Nauk SSSR, Sev. Neorgan. Matter 23, 1049 (1987).

A. A. Kaminskii, K. Kurbanov, and A. V. Pelevin, “New channels for stimulated-emission of Pr(3+) ions in tetragonal fluorides LiRF4 with the structure of scheelite,” Izv. Akad. Nauk. SSSR, Sev. Neorgan. Matter 23, 1934 (1987).

Librantz, A. F. H.

L. Gomes, M. Oermann, H. E. Heidepriem, D. Ottaway, T. Monro, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110, 083111 (2011).
[CrossRef]

H. Marconi da Silva, M. D. Linhares, A. F. H. Librantz, L. Gomes, L. C. Courrol, S. L. Baldochi, and I. M. Ranieri, “Energy transfer rates and population inversion investigation of G14 and D12excited states of Tm3+ in Yb:Tm:Nd:KY3F10 crystals,” J. Appl. Phys. 109, 083533 (2011).
[CrossRef]

L. Gomes, A. F. H. Librantz, F. H. Jagosich, L. A. W. Alves, I. M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508(2009).
[CrossRef]

A. F. H. Librantz, L. Gomes, L. C. Courrol, I. M. Ranieri, and S. L. Baldochi, “Population inversion of G14 excited state of Tm3+ investigated by means of numerical solutions of the rate equations system in Yb:Tm:Nd:LiYF4 crystal,” J. Appl. Phys. 105, 113503 (2009).
[CrossRef]

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

Linhares, M. D.

H. Marconi da Silva, M. D. Linhares, A. F. H. Librantz, L. Gomes, L. C. Courrol, S. L. Baldochi, and I. M. Ranieri, “Energy transfer rates and population inversion investigation of G14 and D12excited states of Tm3+ in Yb:Tm:Nd:KY3F10 crystals,” J. Appl. Phys. 109, 083533 (2011).
[CrossRef]

Lunt, M.

W. G. Jordan, Animesh Jha, M. Lunt, S. T. Davey, R. Wyatt, and W. J. Rothwell, “The optical properties of ZrF4-based glasses with extended Pr3+:G14→H35 fluorescence lifetimes,” J. Non-Crystalline Solids 184, 5 (1995).

Marconi da Silva, H.

H. Marconi da Silva, M. D. Linhares, A. F. H. Librantz, L. Gomes, L. C. Courrol, S. L. Baldochi, and I. M. Ranieri, “Energy transfer rates and population inversion investigation of G14 and D12excited states of Tm3+ in Yb:Tm:Nd:KY3F10 crystals,” J. Appl. Phys. 109, 083533 (2011).
[CrossRef]

Messaddeq, Y.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm–Ho energy transfer and deactivation of the F43 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95, 5451 (2004).
[CrossRef]

Mix, E.

S. Kück, K. Sebald, A. Diening, E. Heumann, E. Mix, and G. Huber, “Energy transfer processes in Pr, Yb-doped crystals,” in OSA Trends in Optics and Photonics, Martin M. Fejer, Hagop Injeyan, and Ursula Keller, eds., Vol. 26, Advanced Solid State Lasers (Optical Society of America, 1999), pp. 658–663.

Monro, T.

L. Gomes, M. Oermann, H. E. Heidepriem, D. Ottaway, T. Monro, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110, 083111 (2011).
[CrossRef]

Oermann, M.

L. Gomes, M. Oermann, H. E. Heidepriem, D. Ottaway, T. Monro, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110, 083111 (2011).
[CrossRef]

Ottaway, D.

L. Gomes, M. Oermann, H. E. Heidepriem, D. Ottaway, T. Monro, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110, 083111 (2011).
[CrossRef]

Pelevin, A. V.

A. A. Kaminskii, K. Kurbanov, and A. V. Pelevin, “New channels for stimulated-emission of Pr(3+) ions in tetragonal fluorides LiRF4 with the structure of scheelite,” Izv. Akad. Nauk. SSSR, Sev. Neorgan. Matter 23, 1934 (1987).

Poirier, G.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

Powell, R. C.

R. C. Powell, “Nonradiative energy-transfer: multistep process,” in Physics of Solid-State Laser Materials (Springer, 1998), pp. 193–203.

Ranieri, I. M.

H. Marconi da Silva, M. D. Linhares, A. F. H. Librantz, L. Gomes, L. C. Courrol, S. L. Baldochi, and I. M. Ranieri, “Energy transfer rates and population inversion investigation of G14 and D12excited states of Tm3+ in Yb:Tm:Nd:KY3F10 crystals,” J. Appl. Phys. 109, 083533 (2011).
[CrossRef]

L. Gomes, A. F. H. Librantz, F. H. Jagosich, L. A. W. Alves, I. M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508(2009).
[CrossRef]

A. F. H. Librantz, L. Gomes, L. C. Courrol, I. M. Ranieri, and S. L. Baldochi, “Population inversion of G14 excited state of Tm3+ investigated by means of numerical solutions of the rate equations system in Yb:Tm:Nd:LiYF4 crystal,” J. Appl. Phys. 105, 113503 (2009).
[CrossRef]

Ribeiro, S. J. L.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm–Ho energy transfer and deactivation of the F43 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95, 5451 (2004).
[CrossRef]

Rothwell, W. J.

W. G. Jordan, Animesh Jha, M. Lunt, S. T. Davey, R. Wyatt, and W. J. Rothwell, “The optical properties of ZrF4-based glasses with extended Pr3+:G14→H35 fluorescence lifetimes,” J. Non-Crystalline Solids 184, 5 (1995).

Schneider, J.

Sebald, K.

S. Kück, K. Sebald, A. Diening, E. Heumann, E. Mix, and G. Huber, “Energy transfer processes in Pr, Yb-doped crystals,” in OSA Trends in Optics and Photonics, Martin M. Fejer, Hagop Injeyan, and Ursula Keller, eds., Vol. 26, Advanced Solid State Lasers (Optical Society of America, 1999), pp. 658–663.

Seeber, W.

W. Seeber, E. A. Downing, L. Hesselink, M. M. Fejer, and D. Ehrt, “Pr3+-doped fluoride glasses,” J. Non-Crystalline Solids 189, 218 (1995).

Tarelho, L. V. G.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm–Ho energy transfer and deactivation of the F43 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95, 5451 (2004).
[CrossRef]

Unrau, U.B.

Uvarova, T. V.

A.A. Kaminskii, K. Kurbanov, and T. V. Uvarova, “Stimulated radiation from single-crystals of BaYb2F8Pr(3+),” Izv. Akad. Nauk SSSR, Sev. Neorgan. Matter 23, 1049 (1987).

Vallee, R.

Wyatt, R.

W. G. Jordan, Animesh Jha, M. Lunt, S. T. Davey, R. Wyatt, and W. J. Rothwell, “The optical properties of ZrF4-based glasses with extended Pr3+:G14→H35 fluorescence lifetimes,” J. Non-Crystalline Solids 184, 5 (1995).

Appl. Opt. (1)

Izv. Akad. Nauk SSSR, Sev. Neorgan. Matter (1)

A.A. Kaminskii, K. Kurbanov, and T. V. Uvarova, “Stimulated radiation from single-crystals of BaYb2F8Pr(3+),” Izv. Akad. Nauk SSSR, Sev. Neorgan. Matter 23, 1049 (1987).

Izv. Akad. Nauk. SSSR, Sev. Neorgan. Matter (1)

A. A. Kaminskii, K. Kurbanov, and A. V. Pelevin, “New channels for stimulated-emission of Pr(3+) ions in tetragonal fluorides LiRF4 with the structure of scheelite,” Izv. Akad. Nauk. SSSR, Sev. Neorgan. Matter 23, 1934 (1987).

J. Appl. Phys. (6)

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm–Ho energy transfer and deactivation of the F43 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95, 5451 (2004).
[CrossRef]

L. Gomes, A. F. H. Librantz, F. H. Jagosich, L. A. W. Alves, I. M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508(2009).
[CrossRef]

A. F. H. Librantz, L. Gomes, L. C. Courrol, I. M. Ranieri, and S. L. Baldochi, “Population inversion of G14 excited state of Tm3+ investigated by means of numerical solutions of the rate equations system in Yb:Tm:Nd:LiYF4 crystal,” J. Appl. Phys. 105, 113503 (2009).
[CrossRef]

H. Marconi da Silva, M. D. Linhares, A. F. H. Librantz, L. Gomes, L. C. Courrol, S. L. Baldochi, and I. M. Ranieri, “Energy transfer rates and population inversion investigation of G14 and D12excited states of Tm3+ in Yb:Tm:Nd:KY3F10 crystals,” J. Appl. Phys. 109, 083533 (2011).
[CrossRef]

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

L. Gomes, M. Oermann, H. E. Heidepriem, D. Ottaway, T. Monro, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110, 083111 (2011).
[CrossRef]

J. Non-Crystalline Solids (2)

W. Seeber, E. A. Downing, L. Hesselink, M. M. Fejer, and D. Ehrt, “Pr3+-doped fluoride glasses,” J. Non-Crystalline Solids 189, 218 (1995).

W. G. Jordan, Animesh Jha, M. Lunt, S. T. Davey, R. Wyatt, and W. J. Rothwell, “The optical properties of ZrF4-based glasses with extended Pr3+:G14→H35 fluorescence lifetimes,” J. Non-Crystalline Solids 184, 5 (1995).

Opt. Lett. (2)

Phys. Chem. Glasses (1)

A. B. Arauzo, R. Cases, and R. Alcalá, “Optical absorption, photoluminescence and cross relaxation of Pr3+ ion in some fluoride glasses,” Phys. Chem. Glasses 35, 202(1994).

Soviet Phys. JETP (1)

A. I. Burshtein, “Jump mechanism of energy transfer,” Soviet Phys. JETP 35, 882 (1972).

Other (3)

R. C. Powell, “Nonradiative energy-transfer: multistep process,” in Physics of Solid-State Laser Materials (Springer, 1998), pp. 193–203.

A. A. Kaminskii, “Progress in praseodymium crystalline lasers emitting in the visible,” in Advanced Solid State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15, OSA Proceedings Series(Optical Society of America, 1993), pp. 266–270.

S. Kück, K. Sebald, A. Diening, E. Heumann, E. Mix, and G. Huber, “Energy transfer processes in Pr, Yb-doped crystals,” in OSA Trends in Optics and Photonics, Martin M. Fejer, Hagop Injeyan, and Ursula Keller, eds., Vol. 26, Advanced Solid State Lasers (Optical Society of America, 1999), pp. 658–663.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Measured absorption spectrum of Yb3+(1mol.%), Pr3+(1mol.%) and Yb3+(3mol.%), Pr3+(1mol.%)-doped ZBLAN. The absorption cross section of Yb3+ is equal to 1.025×1020cm2 at 975 nm and the absorption cross section of Pr3+ is equal to 6.04×1022cm2 at 1017 nm.

Fig. 2.
Fig. 2.

Measured mid-infrared emission spectrum of Yb3+(5mol.%), Pr3+(1mol.%)-doped ZBLAN measured using a box-car integrator and an InSb detector (cooled to 77 K) with a fast pre-amplifier and a 974 nm pulsed laser excitation of 4 ns duration time and 10 Hz. The emission intensities were not corrected for grating efficiency. The emission cross section at 3690 nm (i.e., the second peak) was calculated to be 5.76×1021cm2.

Fig. 3.
Fig. 3.

Emission decay from Yb3+ measured at 994 nm for (a) Yb3+(1mol.%) and (b) Yb3+(5mol.%), Pr3+(1mol.%)-doped ZBLAN samples after the pulsed laser excitation at 970 nm with 4 ns and 10 Hz (E10mJ).

Fig. 4.
Fig. 4.

Measured luminescence decay of the G14 excited level in Yb3+(x), Pr3+(1mol.%)-doped ZBLAN measured at 1310 nm after the laser excitation at 442 nm at 300 K. A best fit was performed using Eq. (1). The dashed line curves show the total luminescence transient (rise and decay) for singly (x=0) and codoped (x=5mol.%) samples.

Fig. 5.
Fig. 5.

Measured luminescence decay of the G14 excited level in Yb3+(x), Pr3+(1mol.%)-doped ZBLAN measured at 1310 nm after the laser excitation at 970 nm at 300 K. A best fit was performed using Eq. (4).

Fig. 6.
Fig. 6.

(a) Shows the integrated lifetime of the G14 level (τ1) obtained from Eq. (2) for the Yb3+(x):Pr3+(1mol.%) systems. (b) Transfer rate WT (slow) (s1) obtained using Eq. (5).

Fig. 7.
Fig. 7.

Measured risetime (t3) of the 1310 nm luminescence from the G14 excited level after the laser excitation at 970 nm for Yb3+(1mol.%):Pr3+(1mol.%) and Yb3+(5mol.%):Pr3+(1mol.%) systems. A comparison is made with the F5/22 level emission at 1000 nm measured for Yb3+(1mol.%)-doped ZBLAN for comparison.

Fig. 8.
Fig. 8.

(a) Shows the measured risetime constant (t3) of the G41 after laser excitation at 970 nm. A linear increase in t3 with increasing [Yb3+] is observed that is consistent with excitation migration trapping effects expected for higher Yb3+ concentrations. (b) Shows the Yb3+Pr3+ transfer probability, WT (fast) (s1) as a function of [Yb3+] (or x mol. %).

Fig. 9.
Fig. 9.

Measured upconversion luminescence spectrum measured for Yb3+(5mol.%), Pr3+(1mol.%)-doped ZBLAN induced by laser excitation at 970 nm (10 Hz, 4 ns), and detected using a HR 2000 spectrometer with a CCD connected to an fiber optical.

Fig. 10.
Fig. 10.

Measured upconversion luminescence transient of the P03 level measured at 603 nm in Yb3+(5mol.%), Pr3+(1mol.%)-doped ZBLAN after laser excitation at 970 nm (red solid line) and after laser excitation at 480 nm (black solid line). The risetime of the upconverted 603 nm emission is similar to the decay time of the P03 level that is τ=6.8μs for x=5mol.%.

Fig. 11.
Fig. 11.

Measured upconversion luminescence transient of the P03 level measured at 603 nm for Yb3+(x), Pr3+(1mol.%)-doped ZBLAN after laser excitation at 970 nm (T=300K) with an average pulse energy of 11.8 mJ.

Fig. 12.
Fig. 12.

Upconversion rate, WUP (s1), as a function of the density of excited Yb3+ ions for (a) x=1mol.% and (b) x=5 (b) samples. A best fit was done using the critical radius model [16] that is represented by the red lines.

Fig. 13.
Fig. 13.

Rate constant values K0 (in s1) obtained from a best fit using the critical radius model for the upconversion process shown in Fig. 12 as a function [Yb3+] where a linear dependence of K0 with increasing of x is observed.

Fig. 14.
Fig. 14.

(a) Measured integrated lifetime of the P03 level (τ1) obtained from Eq. (2) for the Yb3+(x):Pr3+(1mol.%)) system after laser excitation at 480 nm. τ1=35μs was determined for Pr3+(1mol.%)-doped ZBLAN as the intrinsic lifetime of the P03 level. (b) The CR rate WCR (s1) obtained using Eq. (9).

Fig. 15.
Fig. 15.

Energy level diagram for Yb3+, Pr3+-codoped ZBLAN used for the rate equation modeling of optical pumping of the F25/2 level at 970 nm. a represents the 3600 nm laser emission, b represents the G14, ET represents direct energy transfer, BT represents back transfer, upconversion represents upconversion, and CR represents cross-relaxation. Note that the populations of the F43, F33 levels of Pr3+ are negligible due to strong multiphonon relaxation to the next H63 level.

Fig. 16.
Fig. 16.

Calculations of (a) the time evolution of n4 population (in mol. %) representing the G14 showing steady state equilibrium is reached in a time shorter than 0.7 ms. (b) Inversion population efficiency values (%) obtained for Yb3+(x), Pr3+(1mol.)-doped ZBLAN showing that x=1mol.% is the most efficient Yb3+ concentration.

Fig. 17.
Fig. 17.

Calculated population inversion (in mol. %) calculated using numerical solution of rate equations system for Yb3+(x):Pr3+(1mol.%) samples for CW pumping at 970 nm for several pump intensities (given in kWcm2). A small effect due to upconversion process is observed for higher pumping intensities.

Tables (1)

Tables Icon

Table 1. Experimental Values of the Spectroscopic Parameters of Yb3+, Pr3+-doped ZBLAN

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Yb3+(F27/2)+hv(974nm)Yb3+(F25/2),
Yb3+(F25/2)+Pr3+(H43)Yb3+(F27/2)+Pr3+(G41),
Pr3+(G41)+Yb3+(F27/2)Pr3+(H43)+Yb3+(F25/2),
Pr3+(G41)+Yb3++(F25/2)Pr3+(P03)+Yb3+(F27/2),
Pr3+(P03)+Yb3+(F27/2)Pr3+(G41)+Yb3+(F25/2).
I1(t)=Aexp(tt1γt).
τ1=1AI(t)dt.
WBT=1τ11τi(1G4),
I2(t)=B(exp(tt2γt)exp(tt3)),
τ2=1BI2(t)dt+t3.
τ(slow)=τ2τ1,
WT(fast)=1t31τi(2F5/2),
WUP=1τuP1τ21τi(F5/22),
WCR=1τ1τi(3P0),
dn1dt=RPn1+n2τR2+WTn2n3WBTn1n4+WUPn2n4WCRn1n5,
dn2dt=RPn1n2τR2WTn2n3+WBTn1n4WUPn2n4+WCRn1n5,
dn3dt=WTn2n3+WBTn1n4+n4τn4+(1β54)n5τn5,
dn4dt=WTn2n3WBTn1n4WUPn2n4+WCRn1n5n4τn4+β54n5τn5,
dn5dt=WUPn2n4WCRn1n5n5τn5,

Metrics