Abstract

In this paper we present experiments and calculations of the property changes of a highly reflecting volume Bragg grating (VBG) when it is used as a laser cavity mirror. A small absorption of the reflected laser beam resulted in a laser output power roll-off, increased coupling through the VBG, and a change of the spectrum from a single to a double peak at high power. The simulations revealed that an inhomogeneous temperature distribution deformed the grating such that the diffraction efficiency was reduced and the light penetrated deeper into the VBG, which accelerated the deteriorating effects. We extrapolated the power limit found in our investigations for various beam radii and absorption coefficients.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription