A. Bekal and B. Srinivasan, “Adaptive Adams–Bashforth method for modeling of highly doped fiber amplifiers and fiber lasers,” Opt. Eng. 51, 065005 (2012).

[CrossRef]

Y. Wei, Y. Zhao, J. Yang, M. Wang, and X. Jiang, “Chirp characteristics of silicon Mach–Zehnder modulator under small-signal modulation,” J. Lightwave Technol. 29, 1011–1017 (2011).

[CrossRef]

D. B. S. Soh, S. E. Bisson, B. D. Patterson, and S. W. Moore, “High-power all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: numerical simulations,” Opt. Lett. 36, 2536–2538 (2011).

[CrossRef]

K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, “10 GHz 1.1 ps optical pulse generation from a regeneratively mode-locked Yb fiber laser in the 1.1 μm band,” Opt. Express 19, 25426 (2011).

[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene modelocked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[CrossRef]

A. Komarov, H. Leblond, and F. Sanchez, “Quintic complex Ginzburg–Landau model for ring fiber lasers,” Phys. Rev. E 72, 025604 (2005).

[CrossRef]

R. Paschotta, “Noise of mode-locked lasers (part I): numerical model,” Appl. Phys. B 79, 153–162 (2004).

[CrossRef]

R. Paschotta, “Noise of mode-locked lasers (part II): timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004).

[CrossRef]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).

[CrossRef]

J. O’Neil, J. N. Kutz, and B. Sandstede, “Theory and simulation of the dynamics and stability of actively modelocked lasers,” IEEE J. Quantum Electron. 38, 1412–1419 (2002).

[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach,” Phys. Rev. E 63, 056602 (2001).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).

[CrossRef]

Y. Yuhua, C. Lou, M. Han, and Y. Gao, “Detuning characteristics of the AM mode-locked fiber laser,” Opt. Quantum Electron. 33, 589–597 (2000).

N. Pandit, D. U. Noske, S. Kelly, and J. R. Taylor, “Characteristic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).

[CrossRef]

R. Wilbrandt and H. Weber, “Fluctuations in mode-locking threshold due to statistics of spontaneous emission,” IEEE J. Quantum Electron. 11, 186–190 (1975).

[CrossRef]

G. P. Agarwal, Nonlinear Fiber Optics. (Academic, 2001).

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach,” Phys. Rev. E 63, 056602 (2001).

[CrossRef]

A. Bekal and B. Srinivasan, “Adaptive Adams–Bashforth method for modeling of highly doped fiber amplifiers and fiber lasers,” Opt. Eng. 51, 065005 (2012).

[CrossRef]

L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Lasers (CRC Press, 2010).

E. Desurvire, Erbium Doped Fiber Amplifier—Principles and Applications (Wiley, 2009).

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).

[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene modelocked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[CrossRef]

Y. Yuhua, C. Lou, M. Han, and Y. Gao, “Detuning characteristics of the AM mode-locked fiber laser,” Opt. Quantum Electron. 33, 589–597 (2000).

Y. Yuhua, C. Lou, M. Han, and Y. Gao, “Detuning characteristics of the AM mode-locked fiber laser,” Opt. Quantum Electron. 33, 589–597 (2000).

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).

[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene modelocked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[CrossRef]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).

[CrossRef]

N. Pandit, D. U. Noske, S. Kelly, and J. R. Taylor, “Characteristic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).

[CrossRef]

A. Komarov, H. Leblond, and F. Sanchez, “Quintic complex Ginzburg–Landau model for ring fiber lasers,” Phys. Rev. E 72, 025604 (2005).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).

[CrossRef]

J. O’Neil, J. N. Kutz, and B. Sandstede, “Theory and simulation of the dynamics and stability of actively modelocked lasers,” IEEE J. Quantum Electron. 38, 1412–1419 (2002).

[CrossRef]

A. Komarov, H. Leblond, and F. Sanchez, “Quintic complex Ginzburg–Landau model for ring fiber lasers,” Phys. Rev. E 72, 025604 (2005).

[CrossRef]

Y. Yuhua, C. Lou, M. Han, and Y. Gao, “Detuning characteristics of the AM mode-locked fiber laser,” Opt. Quantum Electron. 33, 589–597 (2000).

L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Lasers (CRC Press, 2010).

N. Pandit, D. U. Noske, S. Kelly, and J. R. Taylor, “Characteristic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).

[CrossRef]

J. O’Neil, J. N. Kutz, and B. Sandstede, “Theory and simulation of the dynamics and stability of actively modelocked lasers,” IEEE J. Quantum Electron. 38, 1412–1419 (2002).

[CrossRef]

N. Pandit, D. U. Noske, S. Kelly, and J. R. Taylor, “Characteristic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).

[CrossRef]

R. Paschotta, “Noise of mode-locked lasers (part I): numerical model,” Appl. Phys. B 79, 153–162 (2004).

[CrossRef]

R. Paschotta, “Noise of mode-locked lasers (part II): timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004).

[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene modelocked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[CrossRef]

A. Komarov, H. Leblond, and F. Sanchez, “Quintic complex Ginzburg–Landau model for ring fiber lasers,” Phys. Rev. E 72, 025604 (2005).

[CrossRef]

J. O’Neil, J. N. Kutz, and B. Sandstede, “Theory and simulation of the dynamics and stability of actively modelocked lasers,” IEEE J. Quantum Electron. 38, 1412–1419 (2002).

[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach,” Phys. Rev. E 63, 056602 (2001).

[CrossRef]

A. Bekal and B. Srinivasan, “Adaptive Adams–Bashforth method for modeling of highly doped fiber amplifiers and fiber lasers,” Opt. Eng. 51, 065005 (2012).

[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene modelocked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[CrossRef]

N. Pandit, D. U. Noske, S. Kelly, and J. R. Taylor, “Characteristic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).

[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene modelocked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach,” Phys. Rev. E 63, 056602 (2001).

[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene modelocked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[CrossRef]

R. Wilbrandt and H. Weber, “Fluctuations in mode-locking threshold due to statistics of spontaneous emission,” IEEE J. Quantum Electron. 11, 186–190 (1975).

[CrossRef]

R. Wilbrandt and H. Weber, “Fluctuations in mode-locking threshold due to statistics of spontaneous emission,” IEEE J. Quantum Electron. 11, 186–190 (1975).

[CrossRef]

Y. Yuhua, C. Lou, M. Han, and Y. Gao, “Detuning characteristics of the AM mode-locked fiber laser,” Opt. Quantum Electron. 33, 589–597 (2000).

R. Paschotta, “Noise of mode-locked lasers (part I): numerical model,” Appl. Phys. B 79, 153–162 (2004).

[CrossRef]

R. Paschotta, “Noise of mode-locked lasers (part II): timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004).

[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene modelocked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).

[CrossRef]

N. Pandit, D. U. Noske, S. Kelly, and J. R. Taylor, “Characteristic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).

[CrossRef]

R. Wilbrandt and H. Weber, “Fluctuations in mode-locking threshold due to statistics of spontaneous emission,” IEEE J. Quantum Electron. 11, 186–190 (1975).

[CrossRef]

J. O’Neil, J. N. Kutz, and B. Sandstede, “Theory and simulation of the dynamics and stability of actively modelocked lasers,” IEEE J. Quantum Electron. 38, 1412–1419 (2002).

[CrossRef]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).

[CrossRef]

A. Bekal and B. Srinivasan, “Adaptive Adams–Bashforth method for modeling of highly doped fiber amplifiers and fiber lasers,” Opt. Eng. 51, 065005 (2012).

[CrossRef]

L. R. Chen, J. E. Sipe, S. D. Benjamin, H. Jung, and P. W. E. Smith, “Dynamics of ultrashort pulse propagation through fiber gratings,” Opt. Express 1, 242–249 (1997).

[CrossRef]

K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, “10 GHz 1.1 ps optical pulse generation from a regeneratively mode-locked Yb fiber laser in the 1.1 μm band,” Opt. Express 19, 25426 (2011).

[CrossRef]

Y. Yuhua, C. Lou, M. Han, and Y. Gao, “Detuning characteristics of the AM mode-locked fiber laser,” Opt. Quantum Electron. 33, 589–597 (2000).

A. Komarov, H. Leblond, and F. Sanchez, “Quintic complex Ginzburg–Landau model for ring fiber lasers,” Phys. Rev. E 72, 025604 (2005).

[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach,” Phys. Rev. E 63, 056602 (2001).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).

[CrossRef]

http://www.photonics.umd.edu/software/ssprop/ (2011).

G. P. Agarwal, Nonlinear Fiber Optics. (Academic, 2001).

L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Lasers (CRC Press, 2010).

E. Desurvire, Erbium Doped Fiber Amplifier—Principles and Applications (Wiley, 2009).