Abstract

Fused silica surface structuring has been performed using temporally shaped femtosecond laser pulses. For this purpose we have designed pulse bursts with a triangular intensity envelope and different slope sign and interpulse separation that were experimentally generated using a home-made temporal pulse shaper. We have found that pulse bursts with decreasing intensity envelopes are remarkably more efficient in terms of surface ablation than bursts with increasing intensity envelopes. The results reveal that laser energy coupling in the material is enhanced as the interpulse spacing decreases. A study of the ablation depth using stretched single pulses was carried out and compared to results obtained for pulse bursts with different interpulse spacing. We find that the deepest crater was achieved with bursts of 0.5 ps interpulse separation and decreasing envelope. This pulse form also induced the largest change of the surface reflectivity after irradiation. The results are discussed in terms of how the laser energy coupling efficiency is linked to the temporal pulse shape.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription