Abstract

Fused silica surface structuring has been performed using temporally shaped femtosecond laser pulses. For this purpose we have designed pulse bursts with a triangular intensity envelope and different slope sign and interpulse separation that were experimentally generated using a home-made temporal pulse shaper. We have found that pulse bursts with decreasing intensity envelopes are remarkably more efficient in terms of surface ablation than bursts with increasing intensity envelopes. The results reveal that laser energy coupling in the material is enhanced as the interpulse spacing decreases. A study of the ablation depth using stretched single pulses was carried out and compared to results obtained for pulse bursts with different interpulse spacing. We find that the deepest crater was achieved with bursts of 0.5 ps interpulse separation and decreasing envelope. This pulse form also induced the largest change of the surface reflectivity after irradiation. The results are discussed in terms of how the laser energy coupling efficiency is linked to the temporal pulse shape.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Misawa and S. Juodkazis, 3D Laser Microfabrication(Wiley-VcH Verlag, 2006).
  2. K. Sugioka, M. Meunier, and A. Piqué, Laser Precision Micromachining (Springer-Heidelberg, 2010).
  3. A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
    [CrossRef]
  4. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16, 16265–16271 (2008).
    [CrossRef]
  5. D. Ashkenasi, R. Stoian, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
    [CrossRef]
  6. F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006).
    [CrossRef]
  7. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
    [CrossRef]
  8. P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
    [CrossRef]
  9. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
    [CrossRef]
  10. J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
    [CrossRef]
  11. R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
    [CrossRef]
  12. C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
    [CrossRef]
  13. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
    [CrossRef]
  14. M. Boyle, R. Stoian, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353(2002).
    [CrossRef]
  15. R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, “Tempoal pulse tailoring in ultrafast laser manufacturing technologies,” in Laser Precision Microfabrication, Springer Series in Material Sciences 135 (Springer, 2010), pp. 121–144.
  16. J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A, doi: 10.1007/s00339-012-7238-2 (2012).
    [CrossRef]
  17. M. Wollenhaupt, A. Präkelt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74, 4950 (2003).
  18. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  19. O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
    [CrossRef]
  20. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277 (1997).
    [CrossRef]
  21. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196–198 (1982).
    [CrossRef]
  22. L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).
    [CrossRef]
  23. M. Lebugle, N. Sanner, S. Pierrot, and O. Utéza, “Absorption dynamics of a femtosecond laser pulse at the surface of dielectrics,” AIP Conf. Proc. 1464, 91–101 (2012).
    [CrossRef]
  24. For transform-limited pulses the relation between permanent optical changes and change of surface topography was studied in previous works [9,10]. By means of femtosecond microscopy, topography measurements, and conventional microscopy, it was concluded that the annular topography change of 30 nm corresponds to a surface depression via densification, which leads to an increase in reflectivity caused by an increase of the refractive index. For transform-limited pulses the reflectivity increment ΔR/Ro≈3%, and the corresponding structural change leads to an increment of refractive index produced by density increase Δn/no≈Δρ/ρo≈0.6%.
  25. D. Puerto, J. Siegel, A. Ferrer, J. Hernandez-Rueda, and J. Solis, “Correlation of the refractive index change at the surface and inside phosphate glass upon femtosecond laser irradiation,” J. Opt. Soc. Am. B 29, 2665–2668 (2012).
    [CrossRef]

2013 (1)

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[CrossRef]

2012 (4)

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[CrossRef]

C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
[CrossRef]

M. Lebugle, N. Sanner, S. Pierrot, and O. Utéza, “Absorption dynamics of a femtosecond laser pulse at the surface of dielectrics,” AIP Conf. Proc. 1464, 91–101 (2012).
[CrossRef]

D. Puerto, J. Siegel, A. Ferrer, J. Hernandez-Rueda, and J. Solis, “Correlation of the refractive index change at the surface and inside phosphate glass upon femtosecond laser irradiation,” J. Opt. Soc. Am. B 29, 2665–2668 (2012).
[CrossRef]

2010 (1)

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).
[CrossRef]

2008 (1)

2007 (2)

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

2006 (2)

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006).
[CrossRef]

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
[CrossRef]

2005 (1)

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

2004 (1)

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
[CrossRef]

2003 (1)

M. Wollenhaupt, A. Präkelt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74, 4950 (2003).

2002 (1)

M. Boyle, R. Stoian, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353(2002).
[CrossRef]

2000 (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

D. Ashkenasi, R. Stoian, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[CrossRef]

1997 (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

1988 (1)

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
[CrossRef]

1982 (1)

Ashkenasi, D.

D. Ashkenasi, R. Stoian, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[CrossRef]

Assion, A.

M. Wollenhaupt, A. Präkelt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74, 4950 (2003).

Averback, R. S.

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006).
[CrossRef]

Bachelier, G.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

Balling, P.

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[CrossRef]

Baumert, T.

C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
[CrossRef]

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[CrossRef]

M. Wollenhaupt, A. Präkelt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74, 4950 (2003).

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, “Tempoal pulse tailoring in ultrafast laser manufacturing technologies,” in Laser Precision Microfabrication, Springer Series in Material Sciences 135 (Springer, 2010), pp. 121–144.

Bonse, J.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

Boyle, M.

M. Boyle, R. Stoian, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353(2002).
[CrossRef]

Bulgakova, N. M.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Burakov, I. M.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Cahill, D. G.

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006).
[CrossRef]

Campbell, E. E. B.

D. Ashkenasi, R. Stoian, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[CrossRef]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Ehrentraut, L.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

Englert, L.

Ferrer, A.

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Fotakis, C.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Galvan-Sosa, M.

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[CrossRef]

J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A, doi: 10.1007/s00339-012-7238-2 (2012).
[CrossRef]

Gawelda, W.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A, doi: 10.1007/s00339-012-7238-2 (2012).
[CrossRef]

Gundrum, B.

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006).
[CrossRef]

Haag, L.

Hernandez-Rueda, J.

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[CrossRef]

D. Puerto, J. Siegel, A. Ferrer, J. Hernandez-Rueda, and J. Solis, “Correlation of the refractive index change at the surface and inside phosphate glass upon femtosecond laser irradiation,” J. Opt. Soc. Am. B 29, 2665–2668 (2012).
[CrossRef]

J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A, doi: 10.1007/s00339-012-7238-2 (2012).
[CrossRef]

Hertel, I. V.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

M. Boyle, R. Stoian, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353(2002).
[CrossRef]

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, “Tempoal pulse tailoring in ultrafast laser manufacturing technologies,” in Laser Precision Microfabrication, Springer Series in Material Sciences 135 (Springer, 2010), pp. 121–144.

Horn, C.

M. Wollenhaupt, A. Präkelt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74, 4950 (2003).

Hunt, A. J.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
[CrossRef]

Ji, Y.

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).
[CrossRef]

Jiao, L.

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).
[CrossRef]

Jin, Y.

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).
[CrossRef]

Joglekar, A. P.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
[CrossRef]

Juodkazis, S.

H. Misawa and S. Juodkazis, 3D Laser Microfabrication(Wiley-VcH Verlag, 2006).

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Köhler, J.

C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
[CrossRef]

Korn, G.

M. Boyle, R. Stoian, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353(2002).
[CrossRef]

Koudoumas, E.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Lebugle, M.

M. Lebugle, N. Sanner, S. Pierrot, and O. Utéza, “Absorption dynamics of a femtosecond laser pulse at the surface of dielectrics,” AIP Conf. Proc. 1464, 91–101 (2012).
[CrossRef]

Liu, H.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
[CrossRef]

Liu, J. M.

Liu, T.

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).
[CrossRef]

Martinez, O. E.

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
[CrossRef]

Mermillod-Blondin, A.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Meunier, M.

K. Sugioka, M. Meunier, and A. Piqué, Laser Precision Micromachining (Springer-Heidelberg, 2010).

Meyhöfer, E.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
[CrossRef]

Misawa, H.

H. Misawa and S. Juodkazis, 3D Laser Microfabrication(Wiley-VcH Verlag, 2006).

Miyaji, G.

Miyazaki, K.

Mourou, G.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
[CrossRef]

Pierrot, S.

M. Lebugle, N. Sanner, S. Pierrot, and O. Utéza, “Absorption dynamics of a femtosecond laser pulse at the surface of dielectrics,” AIP Conf. Proc. 1464, 91–101 (2012).
[CrossRef]

Piqué, A.

K. Sugioka, M. Meunier, and A. Piqué, Laser Precision Micromachining (Springer-Heidelberg, 2010).

Präkelt, A.

M. Wollenhaupt, A. Präkelt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74, 4950 (2003).

Puerto, D.

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[CrossRef]

D. Puerto, J. Siegel, A. Ferrer, J. Hernandez-Rueda, and J. Solis, “Correlation of the refractive index change at the surface and inside phosphate glass upon femtosecond laser irradiation,” J. Opt. Soc. Am. B 29, 2665–2668 (2012).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A, doi: 10.1007/s00339-012-7238-2 (2012).
[CrossRef]

Rethfeld, B.

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Rosenfeld, A.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

M. Boyle, R. Stoian, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353(2002).
[CrossRef]

D. Ashkenasi, R. Stoian, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[CrossRef]

Sanner, N.

M. Lebugle, N. Sanner, S. Pierrot, and O. Utéza, “Absorption dynamics of a femtosecond laser pulse at the surface of dielectrics,” AIP Conf. Proc. 1464, 91–101 (2012).
[CrossRef]

Sarpe, C.

C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
[CrossRef]

Sarpe-Tudoran, C.

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[CrossRef]

M. Wollenhaupt, A. Präkelt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74, 4950 (2003).

Schou, J.

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[CrossRef]

Siegel, J.

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[CrossRef]

D. Puerto, J. Siegel, A. Ferrer, J. Hernandez-Rueda, and J. Solis, “Correlation of the refractive index change at the surface and inside phosphate glass upon femtosecond laser irradiation,” J. Opt. Soc. Am. B 29, 2665–2668 (2012).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A, doi: 10.1007/s00339-012-7238-2 (2012).
[CrossRef]

Solis, J.

D. Puerto, J. Siegel, A. Ferrer, J. Hernandez-Rueda, and J. Solis, “Correlation of the refractive index change at the surface and inside phosphate glass upon femtosecond laser irradiation,” J. Opt. Soc. Am. B 29, 2665–2668 (2012).
[CrossRef]

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A, doi: 10.1007/s00339-012-7238-2 (2012).
[CrossRef]

Spyridaki, M.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Stoian, R.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

M. Boyle, R. Stoian, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353(2002).
[CrossRef]

D. Ashkenasi, R. Stoian, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[CrossRef]

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, “Tempoal pulse tailoring in ultrafast laser manufacturing technologies,” in Laser Precision Microfabrication, Springer Series in Material Sciences 135 (Springer, 2010), pp. 121–144.

Sugioka, K.

K. Sugioka, M. Meunier, and A. Piqué, Laser Precision Micromachining (Springer-Heidelberg, 2010).

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Thoss, A.

M. Boyle, R. Stoian, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353(2002).
[CrossRef]

Tong, Y.

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).
[CrossRef]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Tzanetakis, P.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Utéza, O.

M. Lebugle, N. Sanner, S. Pierrot, and O. Utéza, “Absorption dynamics of a femtosecond laser pulse at the surface of dielectrics,” AIP Conf. Proc. 1464, 91–101 (2012).
[CrossRef]

Wang, F.

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).
[CrossRef]

Wang, L.

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).
[CrossRef]

Watanabe, F.

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Winkler, S. W.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Winkler, T.

C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
[CrossRef]

Winter, M.

M. Wollenhaupt, A. Präkelt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74, 4950 (2003).

Wollenhaupt, M.

C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
[CrossRef]

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[CrossRef]

M. Wollenhaupt, A. Präkelt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74, 4950 (2003).

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, “Tempoal pulse tailoring in ultrafast laser manufacturing technologies,” in Laser Precision Microfabrication, Springer Series in Material Sciences 135 (Springer, 2010), pp. 121–144.

AIP Conf. Proc. (1)

M. Lebugle, N. Sanner, S. Pierrot, and O. Utéza, “Absorption dynamics of a femtosecond laser pulse at the surface of dielectrics,” AIP Conf. Proc. 1464, 91–101 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

M. Boyle, R. Stoian, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353(2002).
[CrossRef]

Appl. Surf. Sci. (1)

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
[CrossRef]

J. Appl. Phys. (1)

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

New J. Phys. (1)

C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
[CrossRef]

Opt. Eng. (1)

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
[CrossRef]

D. Ashkenasi, R. Stoian, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004).
[CrossRef]

Proc. SPIE (1)

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).
[CrossRef]

Rep. Prog. Phys. (1)

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[CrossRef]

Rev. Sci. Instrum. (3)

M. Wollenhaupt, A. Präkelt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74, 4950 (2003).

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Other (5)

H. Misawa and S. Juodkazis, 3D Laser Microfabrication(Wiley-VcH Verlag, 2006).

K. Sugioka, M. Meunier, and A. Piqué, Laser Precision Micromachining (Springer-Heidelberg, 2010).

R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, “Tempoal pulse tailoring in ultrafast laser manufacturing technologies,” in Laser Precision Microfabrication, Springer Series in Material Sciences 135 (Springer, 2010), pp. 121–144.

J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A, doi: 10.1007/s00339-012-7238-2 (2012).
[CrossRef]

For transform-limited pulses the relation between permanent optical changes and change of surface topography was studied in previous works [9,10]. By means of femtosecond microscopy, topography measurements, and conventional microscopy, it was concluded that the annular topography change of 30 nm corresponds to a surface depression via densification, which leads to an increase in reflectivity caused by an increase of the refractive index. For transform-limited pulses the reflectivity increment ΔR/Ro≈3%, and the corresponding structural change leads to an increment of refractive index produced by density increase Δn/no≈Δρ/ρo≈0.6%.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimentally measured pulse shapes and crater depth profiles induced for each pulse at fluence of F=6.0±0.5J/cm2. The red line marks a 50 nm crater depth.

Fig. 2.
Fig. 2.

Crater depth as a function of laser fluence for pulse bursts with different interpulse spacing. The inset illustrates the sign of the bursts; circles correspond to increasing envelope, squares to decreasing envelope.

Fig. 3.
Fig. 3.

Crater depth as a function of pulse duration for single pulses and interpulse spacing for bursts at a fluence of (a) 9.8J/cm2 and (b) 6.4J/cm2. The inset in (b) shows a schematic representation of the temporal intensity distribution; triangles correspond to pulse bursts and circles to single pulses.

Fig. 4.
Fig. 4.

(a)–(j) Combined graphs of microscopy images (upper half) and topography maps (lower half). The topography micrographs were measured using an interferometric microscope.

Fig. 5.
Fig. 5.

(a), (b) Optical microscopy images of the same crater produced using a 500 fs single laser pulse at F9.1J/cm2, illuminated with monochromatic light of 460 and 850 nm, respectively. (c) Scheme of a micro-Fabry–Perot system as result of the laser-induced layer underneath the ablation crater. (d) Calculated reflectivity modulation using an increased absorption of κ=0.02 for the laser-induced layer.

Fig. 6.
Fig. 6.

(a)–(c) SEM images (second and third rows) of the irradiated area measured using secondary electrons detector and optical microscopy images (first row). The irradiations were performed using a single Gaussian pulse of (a) 100 fs duration at F9.1J/cm2, (b) 500 fs duration, and (c) a burst of pulses with negative envelope and an interpulse spacing of 0.8 ps. The small white rectangles in the second row SEM images highlight the crater profile morphology shown on the third row.

Metrics